Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.472
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2408346121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968117

ABSTRACT

Xenopus embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early ß-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes. The following step was the activation of Xenopus Nodal-related growth factors, which could rescue the depletion of ß-catenin and were themselves blocked by the extracellular Nodal antagonists Cerberus-Short and Lefty. During gastrulation, the Spemann-Mangold organizer secretes a cocktail of growth factor antagonists, of which the BMP antagonists Chordin and Noggin could rescue simultaneously D-V and A-P tissues in ß-catenin-depleted embryos. Surprisingly, this rescue occurred in the absence of any ß-catenin transcriptional activity as measured by ß-catenin activated Luciferase reporters. The Wnt antagonist Dickkopf (Dkk1) strongly synergized with the early Hwa signal by inhibiting late Wnt signals. Depletion of Sizzled (Szl), an antagonist of the Tolloid chordinase, was epistatic over the Hwa and Dkk1 synergy. BMP4 mRNA injection blocked Hwa-induced ectopic axes, and Dkk1 inhibited BMP signaling late, but not early, during gastrulation. Several unexpected findings were made, e.g., well-patterned complete embryonic axes are induced by Chordin or Nodal in ß-catenin knockdown embryos, dorsalization by Lithium chloride (LiCl) is mediated by Nodals, Dkk1 exerts its anteriorizing and dorsalizing effects by regulating late BMP signaling, and the Dkk1 phenotype requires Szl.


Subject(s)
Body Patterning , Intercellular Signaling Peptides and Proteins , Signal Transduction , Xenopus Proteins , beta Catenin , Animals , Body Patterning/genetics , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , beta Catenin/metabolism , beta Catenin/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Xenopus laevis/embryology , Gene Expression Regulation, Developmental , Gastrulation , Nodal Protein/metabolism , Nodal Protein/genetics , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology , Organizers, Embryonic/metabolism , Glycoproteins
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000172

ABSTRACT

In this study, we present data on the effects of condensed tannins (CTs) and hydrolysable tannins (HTs), polyphenols extracted from plants, at different concentrations on zebrafish development to identify the range of concentrations with toxic effects. Zebrafish embryos were exposed to CTs and HTs at two different concentration ranges (5.0-20.0 µgL-1 and 5.0-20.0 mgL-1) for 72 h. The toxicity parameters were observed up to 72 h of treatment. The uptake of CTs and HTs by the zebrafish larvae was assessed via HPLC analysis. A qRT-PCR analysis was performed to evaluate the expressions of genes cd63, zhe1, and klf4, involved in the hatching process of zebrafish. CTs and HTs at 5.0, 10.0, and 20.0 µgL-1 were not toxic. On the contrary, at 5.0, 10.0, and 20.0 mgL-1, HTs induced a delay in hatching starting from 48 h of treatment, while CTs showed a delay in hatching mainly at 48 h. The analysis of gene expression showed a downregulation in the group exposed to HTs, confirming the hatching data. We believe that this study is important for defining the optimal doses of CTs and HTs to be employed in different application fields such as the chemical industry, the animal feed industry, and medical science.


Subject(s)
Zebrafish , Zebrafish/embryology , Zebrafish/genetics , Animals , Hydrolyzable Tannins/pharmacology , Gene Expression Regulation, Developmental/drug effects , Proanthocyanidins/pharmacology , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Larva/drug effects , Larva/growth & development , Embryonic Development/drug effects
3.
Methods Mol Biol ; 2805: 137-151, 2024.
Article in English | MEDLINE | ID: mdl-39008179

ABSTRACT

Transcription in developing metazoans is inherently stochastic, involving transient and dynamic interactions among transcriptional machinery. A fundamental challenge with traditional techniques, including fixed-tissue protein and RNA staining, is the lack of temporal resolution. Quantifying kinetic changes in transcription can elucidate underlying mechanisms of interaction among regulatory modules. In this protocol, we describe the successful implementation of a combination of MS2/MCP and PP7/PCP systems in living Drosophila embryos to further our understanding of transcriptional dynamics during development. Our technique can be extended to visualize transcriptional activities of multiple genes or alleles simultaneously, characterize allele-specific expression of a target gene, and quantitatively analyze RNA polymerase II activity in a single-cell resolution.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Animals , Embryonic Development/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Embryo, Nonmammalian/metabolism , Drosophila/embryology , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Transcription, Genetic , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
4.
Int J Dev Biol ; 68(2): 85-91, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39016375

ABSTRACT

The tRNA-histidine guanylyltransferase 1-like (THG1L), also known as induced in high glucose-1 (IHG-1), encodes for an essential mitochondria-associated protein highly conserved throughout evolution, that catalyses the 3'-5' addition of a guanine to the 5'-end of tRNA-histidine (tRNAHis). Previous data indicated that THG1L plays a crucial role in the regulation of mitochondrial biogenesis and dynamics, in ATP production, and is critically involved in the modulation of apoptosis, cell-cycle progression and survival, as well as in cellular stress responses and redox homeostasis. Dysregulations of THG1L expression play a central role in various pathologies, including nephropathies, and neurodevelopmental disorders often characterized by developmental delay and cerebellar ataxia. Despite the essential role of THG1L, little is known about its expression during vertebrate development. Herein, we examined the detailed spatio-temporal expression of this gene in the developing Xenopus laevis. Our results show that thg1l is maternally inherited and its temporal expression suggests a role during the earliest stages of embryogenesis. Spatially, thg1l mRNA localizes in the ectoderm and marginal zone mesoderm during early stages of development. Then, at tadpole stages, thg1l transcripts mostly localise in neural crests and their derivatives, somites, developing kidney and central nervous system, therefore largely coinciding with territories displaying intense energy metabolism during organogenesis in Xenopus.


Subject(s)
Gene Expression Regulation, Developmental , Xenopus Proteins , Xenopus laevis , Animals , Xenopus laevis/metabolism , Xenopus laevis/embryology , Xenopus laevis/genetics , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology , Embryonic Development/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Nat Cell Biol ; 26(7): 1187-1199, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38977847

ABSTRACT

Currently, the dynamic accessible elements that determine regulatory programs responsible for the unique identity and function of each cell type during zebrafish embryogenesis lack detailed study. Here we present SPATAC-seq: a split-pool ligation-based assay for transposase-accessible chromatin using sequencing. Using SPATAC-seq, we profiled chromatin accessibility in more than 800,000 individual nuclei across 20 developmental stages spanning the sphere stage to the early larval protruding mouth stage. Using this chromatin accessibility map, we identified 604 cell states and inferred their developmental relationships. We also identified 959,040 candidate cis-regulatory elements (cCREs) and delineated development-specific cCREs, as well as transcription factors defining diverse cell identities. Importantly, enhancer reporter assays confirmed that the majority of tested cCREs exhibited robust enhanced green fluorescent protein expression in restricted cell types or tissues. Finally, we explored gene regulatory programs that drive pigment and notochord cell differentiation. Our work provides a valuable open resource for exploring driver regulators of cell fate decisions in zebrafish embryogenesis.


Subject(s)
Chromatin , Embryonic Development , Gene Expression Regulation, Developmental , Single-Cell Analysis , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Chromatin/metabolism , Chromatin/genetics , Single-Cell Analysis/methods , Embryonic Development/genetics , Cell Differentiation/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Embryo, Nonmammalian/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Enhancer Elements, Genetic , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Transposases/metabolism , Transposases/genetics , Cell Lineage/genetics
6.
Sci Rep ; 14(1): 16510, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020012

ABSTRACT

The reproductive process in Octopus maya was analyzed to establish the amount of reactive oxygen species that the embryos inherit from females, during yolk synthesis. At the same time, respiratory metabolism, ROS production, and the expression of some genes of the antioxidant system were monitored to understand the ability of embryos to neutralize maternal ROS and those produced during development. The results indicate that carbonylated proteins and peroxidized lipids (LPO) were transferred from females to the embryos, presumably derived from the metabolic processes carried out during yolk synthesis in the ovary. Along with ROS, females also transferred to embryos glutathione (GSH), a key element of the antioxidant defense system, thus facilitating the neutralization of inherited ROS and those produced during development. Embryos are capable of neutralizing ROS thanks to the early expression of genes such as catalase (CAT) and superoxide dismutase (SOD), which give rise to the synthesis of enzymes when the circulatory system is activated. Also, it was observed that the levels of the routine metabolic rate of embryos are almost as high as those of the maximum activity metabolism, which leads, on the one hand, to the elevated production of ROS and suggests that, at this stage of the life cycle in octopuses, energy production is maximum and is physically limited by the biological properties inherent to the structure of embryonic life (oxygen transfer through the chorion, gill surface, pumping capacity, etc.). Due to its role in regulating vascularization, a high expression of HIf-1A during organogenesis suggests that circulatory system development has begun in this phase of embryo development. The results indicate that the routine metabolic rate and the ability of O. maya embryos to neutralize the ROS are probably the maximum possible. Under such circumstances, embryos cannot generate more energy to combat the free radicals produced by their metabolism, even when environmental factors such as high temperatures or contaminants could demand excess energy.


Subject(s)
Embryo, Nonmammalian , Energy Metabolism , Octopodiformes , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Octopodiformes/metabolism , Octopodiformes/genetics , Embryo, Nonmammalian/metabolism , Female , Gene Expression Regulation, Developmental , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Catalase/metabolism , Catalase/genetics , Glutathione/metabolism
7.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893289

ABSTRACT

Copper nanoparticles (CuNPs) are extensively used in electronics, cosmetics, fungicides, and various other fields due to their distinctive qualities. However, this widespread usage can contribute to environmental contamination and heightened health risks for living organisms. Despite their prevalent use, the ecological impacts and biosafety of CuNPs remain inadequately understood. The present study aims to delve into the potential toxic effects of CuNPs on zebrafish (Danio rerio) embryos, focusing on multiple indexes such as embryonic development, neurotoxicity, oxidative stress, and inflammatory response. The results revealed a notable increase in the death rate and deformity rate, alongside varying degrees of decrease in hatching rate and heart rate following CuNPs exposure. Particularly, the frequency of spontaneous tail coiling significantly declined under exposure to CuNPs at concentrations of 500 µg/L. Furthermore, CuNPs exposure induced alterations in the transcriptional expression of GABA signaling pathway-related genes (gabra1, gad, abat, and gat1), indicating potential impacts on GABA synthesis, release, catabolism, recovery, and receptor binding. Additionally, CuNPs triggered oxidative stress, evidenced by disruption in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, along with elevated malondialdehyde (MDA) levels. This oxidative stress subsequently led to a proinflammatory cascade, as demonstrated by the increased transcriptional expression of inflammatory markers (il-1ß, tnf-α, il-6, and il-8). Comparative analysis with copper ion (provided as CuCl2) exposure highlighted more significant changes in most indexes with CuCl2, indicating greater toxicity compared to CuNPs at equivalent concentrations. In conclusion, these findings provide valuable insights into the toxic effects of CuNPs on zebrafish embryo development and neurotransmitter conduction. Furthermore, they present technical methodologies for assessing environmental and health risks associated with CuNPs, contributing to a better understanding of their biosafety and ecological impact.


Subject(s)
Copper , Metal Nanoparticles , Oxidative Stress , Zebrafish , Animals , Oxidative Stress/drug effects , Copper/toxicity , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Embryonic Development/drug effects
8.
Elife ; 122024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900560

ABSTRACT

The paramount importance of mechanical forces in morphogenesis and embryogenesis is widely recognized, but understanding the mechanism at the cellular and molecular level remains challenging. Because of its simple internal organization, Caenorhabditis elegans is a rewarding system of study. As demonstrated experimentally, after an initial period of steady elongation driven by the actomyosin network, muscle contractions operate a quasi-periodic sequence of bending, rotation, and torsion, that leads to the final fourfold size of the embryos before hatching. How actomyosin and muscles contribute to embryonic elongation is investigated here theoretically. A filamentary elastic model that converts stimuli generated by biochemical signals in the tissue into driving forces, explains embryonic deformation under actin bundles and muscle activity, and dictates mechanisms of late elongation based on the effects of energy conversion and dissipation. We quantify this dynamic transformation by stretches applied to a cylindrical structure that mimics the body shape in finite elasticity, obtaining good agreement and understanding of both wild-type and mutant embryos at all stages.


Subject(s)
Actomyosin , Caenorhabditis elegans , Embryo, Nonmammalian , Muscle Contraction , Caenorhabditis elegans/embryology , Animals , Actomyosin/metabolism , Muscle Contraction/physiology , Embryo, Nonmammalian/physiology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology , Embryonic Development , Morphogenesis , Models, Biological , Biomechanical Phenomena
9.
EMBO J ; 43(13): 2685-2714, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38831123

ABSTRACT

Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.


Subject(s)
Chromosomal Proteins, Non-Histone , Heterochromatin , Histones , Animals , Histones/metabolism , Histones/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Methylation , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromobox Protein Homolog 5 , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Embryo, Nonmammalian/metabolism , Genome, Insect , Embryonic Development/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics
10.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928108

ABSTRACT

Airborne fine particulate matter (PM2.5) in air pollution has become a significant global public health concern related to allergic diseases. Previous research indicates that PM2.5 not only affects the respiratory system but may also induce systemic inflammation in various tissues. Moreover, its impact may vary among different populations, with potential consequences during pregnancy and in newborns. However, the precise mechanisms through which PM2.5 induces inflammatory reactions remain unclear. This study aims to explore potential pathways of inflammatory responses induced by PM2.5 through animal models and zebrafish embryo experiments. In this study, zebrafish embryo experiments were conducted to analyze the effects of PM2.5 on embryo development and survival, and mouse experimental models were employed to assess the impact of PM2.5 stimulation on various aspects of mice. Wild-type zebrafish embryos were exposed to a PM2.5 environment of 25-400 µg/mL starting at 6 h after fertilization (6 hpf). At 6 days post-fertilization, the survival rates of the 25, 50, 100, and 200 µg/mL groups were 100%, 80, 40%, and 40%, respectively. Zebrafish embryos stimulated with 25 µg/mL of PM2.5 still exhibited successful development and hatching. Additionally, zebrafish subjected to doses of 25-200 µg/mL displayed abnormalities such as spinal curvature and internal swelling after hatching, indicating a significant impact of PM2.5 stimulation on embryo development. In the mouse model, mice exposed to PM2.5 exhibited apparent respiratory overreaction, infiltration of inflammatory cells into the lungs, elevated levels of inflammatory response-related cytokines, and inflammation in various organs, including the liver, lungs, and uterus. Blood tests on experimental mice revealed increased expression of inflammatory and chemotactic cytokines, and GSEA indicated the induction of various inflammatory responses and an upregulation of the TNF-α/NFκB pathway by PM2.5. Our results provide insights into the harmful effects of PM2.5 on embryos and organs. The induced inflammatory responses by PM2.5 may be mediated through the TNF-α/NFκB pathway, leading to systemic organ inflammation. However, whether PM2.5-induced inflammatory responses in various organs and abnormal embryo development are generated through different pathways requires further study to comprehensively clarify and identify potential treatment and prevention methods.


Subject(s)
Embryonic Development , Particulate Matter , Zebrafish , Animals , Particulate Matter/adverse effects , Particulate Matter/toxicity , Zebrafish/embryology , Mice , Embryonic Development/drug effects , Female , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Air Pollutants/toxicity , Cytokines/metabolism
11.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38913324

ABSTRACT

Here, we report the generation of a transgenic Lifeact-EGFP quail line for the investigation of actin organization and dynamics during morphogenesis in vivo. This transgenic avian line allows for the high-resolution visualization of actin structures within the living embryo, from the subcellular filaments that guide cell shape to the supracellular assemblies that coordinate movements across tissues. The unique suitability of avian embryos to live imaging facilitates the investigation of previously intractable processes during embryogenesis. Using high-resolution live imaging approaches, we present the dynamic behaviors and morphologies of cellular protrusions in different tissue contexts. Furthermore, through the integration of live imaging with computational segmentation, we visualize cells undergoing apical constriction and large-scale actin structures such as multicellular rosettes within the neuroepithelium. These findings not only enhance our understanding of tissue morphogenesis but also demonstrate the utility of the Lifeact-EGFP transgenic quail as a new model system for live in vivo investigations of the actin cytoskeleton.


Subject(s)
Actin Cytoskeleton , Actins , Animals, Genetically Modified , Green Fluorescent Proteins , Quail , Animals , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Actins/metabolism , Actins/genetics , Actin Cytoskeleton/metabolism , Morphogenesis , Embryo, Nonmammalian/metabolism
12.
Open Biol ; 14(6): 240065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896085

ABSTRACT

The transition from oocyte to embryo requires translation of maternally provided transcripts that in Drosophila is activated by Pan Gu kinase to release a rapid succession of 13 mitotic cycles. Mitotic entry is promoted by several protein kinases that include Greatwall/Mastl, whose Endosulfine substrates antagonize Protein Phosphatase 2A (PP2A), facilitating mitotic Cyclin-dependent kinase 1/Cyclin B kinase activity. Here we show that hyperactive greatwallScant can not only be suppressed by mutants in its Endos substrate but also by mutants in Pan Gu kinase subunits. Conversely, mutants in me31B or trailer hitch, which encode a complex that represses hundreds of maternal mRNAs, enhance greatwallScant . Me31B and Trailer Hitch proteins, known substrates of Pan Gu kinase, copurify with Endos. This echoes findings that budding yeast Dhh1, orthologue of Me31B, associates with Igo1/2, orthologues of Endos and substrates of the Rim15, orthologue of Greatwall. endos-derived mutant embryos show reduced Me31B and elevated transcripts for the mitotic activators Cyclin B, Polo and Twine/Cdc25. Together, our findings demonstrate a previously unappreciated conservation of the Greatwall-Endosulfine pathway in regulating translational repressors and its interactions with the Pan Gu kinase pathway to regulate translation and/or stability of maternal mRNAs upon egg activation.


Subject(s)
Drosophila Proteins , Gene Expression Regulation, Developmental , Oocytes , Protein Phosphatase 2 , Animals , Female , DEAD-box RNA Helicases , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Embryo, Nonmammalian/metabolism , Mutation , Oocytes/metabolism , Oocytes/cytology , Protein Biosynthesis , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , RNA Stability , RNA, Messenger, Stored/metabolism , RNA, Messenger, Stored/genetics
13.
Dev Biol ; 514: 1-11, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38878991

ABSTRACT

In chordates, the central nervous system arises from precursors that have distinct developmental and transcriptional trajectories. Anterior nervous systems are ontogenically associated with ectodermal lineages while posterior nervous systems are associated with mesoderm. Taking advantage of the well-documented cell lineage of ascidian embryos, we asked to what extent the transcriptional states of the different neural lineages become similar during the course of progressive lineage restriction. We performed single-cell RNA sequencing (scRNA-seq) analyses on hand-dissected neural precursor cells of the two distinct lineages, together with those of their sister cell lineages, with a high temporal resolution covering five successive cell cycles from the 16-cell to neural plate stages. A transcription factor binding site enrichment analysis of neural specific genes at the neural plate stage revealed limited evidence for shared transcriptional control between the two neural lineages, consistent with their different ontogenies. Nevertheless, PCA analysis and hierarchical clustering showed that, by neural plate stages, the two neural lineages cluster together. Consistent with this, we identified a set of genes enriched in both neural lineages at the neural plate stage, including miR-124, Celf3.a, Zic.r-b, and Ets1/2. Altogether, the current study has revealed genome-wide transcriptional dynamics of neural progenitor cells of two distinct developmental origins. Our scRNA-seq dataset is unique and provides a valuable resource for future analyses, enabling a precise temporal resolution of cell types not previously described from dissociated embryos.


Subject(s)
Cell Lineage , Embryonic Development , Gene Expression Regulation, Developmental , Animals , Cell Lineage/genetics , Embryonic Development/genetics , Neural Plate/embryology , Neural Plate/metabolism , Neural Plate/cytology , Ciona intestinalis/embryology , Ciona intestinalis/genetics , Urochordata/embryology , Urochordata/genetics , Single-Cell Analysis , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology
14.
PLoS Biol ; 22(6): e3002701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38913712

ABSTRACT

In the highly regulative embryo of the sea urchin Paracentrotus lividus, establishment of the dorsal-ventral (D/V) axis critically depends on the zygotic expression of the TGF-ß nodal in the ventral ectoderm. nodal expression is first induced ubiquitously in the 32-cell embryo and becomes progressively restricted to the presumptive ventral ectoderm by the early blastula stage. This early spatial restriction of nodal expression is independent of Lefty, and instead relies on the activity of Panda, a maternally expressed TGF-ß ligand related to Lefty and Inhibins, which is required maternally for D/V axis specification. However, the mechanism by which Panda restricts the early nodal expression has remained enigmatic and it is not known if Panda works like a BMP ligand by opposing Nodal and antagonizing Smad2/3 signaling, or if it works like Lefty by sequestering an essential component of the Nodal signaling pathway. In this study, we report that Panda functions as an antagonist of the TGF-ß type II receptor ACVRII (Activin receptor type II), which is the only type II receptor for Nodal signaling in the sea urchin and is also a type II receptor for BMP ligands. Inhibiting translation of acvrII mRNA disrupted D/V patterning across all 3 germ layers and caused acvrII morphants to develop with a typical Nodal loss-of-function phenotype. In contrast, embryos overexpressing acvrII displayed strong ectopic Smad1/5/8 signaling at blastula stages and developed as dorsalized larvae, a phenotype very similar to that caused by over activation of BMP signaling. Remarkably, embryos co-injected with acvrII mRNA and panda mRNA did not show ectopic Smad1/5/8 signaling and developed with a largely normal dorsal-ventral polarity. Furthermore, using an axis induction assay, we found that Panda blocks the ability of ACVRII to orient the D/V axis when overexpressed locally. Using co-immunoprecipitation, we showed that Panda physically interacts with ACVRII, as well as with the Nodal co-receptor Cripto, and with TBR3 (Betaglycan), which is a non-signaling receptor for Inhibins in mammals. At the molecular level, we have traced back the antagonistic activity of Panda to the presence of a single proline residue, conserved with all the Lefty factors, in the ACVRII binding motif of Panda, instead of a serine as in most of TGF-ß ligands. Conversion of this proline to a serine converted Panda from an antagonist that opposed Nodal signaling and promoted dorsalization to an agonist that promoted Nodal signaling and triggered ventralization when overexpressed. Finally, using phylogenomics, we analyzed the emergence of the agonist and antagonist form of Panda in the course of evolution. Our data are consistent with the idea that the presence of a serine at that position, like in most TGF-ß, was the ancestral condition and that the initial function of Panda was possibly in promoting and not in antagonizing Nodal signaling. These results highlight the existence of key functional and structural elements conserved between Panda and Lefty, allow to draw an intriguing parallel between sea urchin Panda and mammalian Inhibin α and raise the unexpected possibility that the original function of Panda may have been in activation of the Nodal pathway rather than in its inhibition.


Subject(s)
Activin Receptors, Type II , Body Patterning , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Nodal Protein , Paracentrotus , Transforming Growth Factor beta , Animals , Transforming Growth Factor beta/metabolism , Body Patterning/genetics , Paracentrotus/embryology , Paracentrotus/metabolism , Paracentrotus/genetics , Activin Receptors, Type II/metabolism , Activin Receptors, Type II/genetics , Nodal Protein/metabolism , Nodal Protein/genetics , Embryo, Nonmammalian/metabolism , Ligands , Signal Transduction
15.
Dev Biol ; 514: 99-108, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38914191

ABSTRACT

Fifty years ago, researchers discovered a link between ambient temperature and the sex of turtle embryos. More recently, significant progress has been made in understanding the influence of temperature on freshwater turtles. However, our understanding of the key genetic factors in other turtle groups, such as sea turtles, remains limited. To address this gap, we conducted RNA-seq analyses on embryonic tissues from the sea olive ridley turtle during the thermosensitive period (stages 21-26) at temperatures known to produce males (26 °C) and females (33 °C). Our findings revealed that incubation temperatures primarily influence genes with broad expression across tissues due to differential cell division rates and later have an effect regulating gonad-specific transcripts. This effect is mostly related to gene activation rather than transcription repression. We performed transcriptome analyses following shifts in incubation temperatures of bi-potential gonads. This approach allowed us to identify genes that respond rapidly and may be closer to the beginning of the temperature-sensing pathway. Notably, we observed swift adaptations in the expression levels of chromatin modifiers JARID2 and KDM6B, as well as the splicing factor SRSF5, and transcription regulators THOC2, DDX3X and CBX3, but little impact in the overall gonad-specific pathways, indicating that temperature-sensing genes may change rapidly but the rewiring of the gonad's developmental fate is complex and resilient. AUTHOR SUMMARY: Sea turtles, one of the most iconic creatures of our oceans, confront a troubling reality of endangerment, a peril magnified by the looming specter of climate change. This climatic shift is gradually increasing the temperature of the nesting beaches thus causing dramatic male/female population biases. Conservation efforts will need genetic and molecular information to reverse the negative effects of climate change on the populations. In this study, we conducted the first transcriptomic analysis of embryonic tissues, including gonads, brain, liver, and mesonephros, in the olive ridley sea turtle during the critical thermosensitive period spanning stages 21-26. We examined both male-producing (26 °C) and female-producing (33 °C) temperatures and found that incubation temperatures influence temperature-sensitive genes that are either expressed globally or specifically associated with the gonads. These findings indicate that incubation temperatures predominantly sway genes with broad expression patterns due to differential cell division rates. This natural process was opted in the gonads to drive sex determination. We also identified genes that are rapidly capable of sensing temperature changes and that could play a role in the activation of the sex determination pathway. Overall, our study sheds light on the intricate interplay between temperature and gene expression during sea turtle development, revealing dynamic changes in the transcriptome and highlighting the involvement of key genetic players in sex determination.


Subject(s)
Gene Expression Regulation, Developmental , Gonads , Sex Determination Processes , Temperature , Turtles , Animals , Turtles/embryology , Turtles/genetics , Sex Determination Processes/genetics , Male , Female , Gonads/metabolism , Gonads/embryology , Transcriptome/genetics , Gene Expression Profiling , Embryo, Nonmammalian/metabolism
16.
STAR Protoc ; 5(2): 103099, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38824639

ABSTRACT

The MS2-PP7 two-color live-imaging system provides insights into the spatiotemporal dynamics of nascent transcripts at tagged loci. Here, we present a protocol to quantitatively measure the rate of RNA polymerase II elongation for each actively transcribing nucleus in living Drosophila embryos. The elongation rate is calculated by measuring the effective distance and the time elapsed between MS2 and PP7 trajectories. We describe steps for preparing embryo samples, performing live imaging, and measuring the elongation rate. For complete details on the use and execution of this protocol, please refer to Keller et al.1.


Subject(s)
Embryo, Nonmammalian , RNA Polymerase II , Animals , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Embryo, Nonmammalian/metabolism , Drosophila/embryology , Drosophila/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics
17.
Elife ; 122024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847802

ABSTRACT

CRISPR prime editing (PE) requires a Cas9 nickase-reverse transcriptase fusion protein (known as PE2) and a prime editing guide RNA (pegRNA), an extended version of a standard guide RNA (gRNA) that both specifies the intended target genomic sequence and encodes the desired genetic edit. Here, we show that sequence complementarity between the 5' and the 3' regions of a pegRNA can negatively impact its ability to complex with Cas9, thereby potentially reducing PE efficiency. We demonstrate this limitation can be overcome by a simple pegRNA refolding procedure, which improved ribonucleoprotein-mediated PE efficiencies in zebrafish embryos by up to nearly 25-fold. Further gains in PE efficiencies of as much as sixfold could also be achieved by introducing point mutations designed to disrupt internal interactions within the pegRNA. Our work defines simple strategies that can be implemented to improve the efficiency of PE.


Subject(s)
CRISPR-Cas Systems , Gene Editing , RNA, Guide, CRISPR-Cas Systems , Zebrafish , Zebrafish/genetics , Animals , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Embryo, Nonmammalian/metabolism , RNA Folding
18.
Elife ; 132024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869942

ABSTRACT

Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene - which we term Movement Modulator (Motor) - as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.


Subject(s)
MicroRNAs , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Gene Expression Regulation, Developmental , Movement , Embryo, Nonmammalian/metabolism , Drosophila/genetics , Drosophila/embryology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
19.
Sci Rep ; 14(1): 14454, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914633

ABSTRACT

Hydrogen peroxide is considered deleterious molecule that cause cellular damage integrity and function. Its key redox signaling molecule in oxidative stress and exerts toxicity on a wide range of organisms. Thus, to understand whether oxidative stress alters visual development, zebrafish embryos were exposed to H2O2 at concentration of 0.02 to 62.5 mM for 7 days. Eye to body length ratio (EBR) and apoptosis in retina at 48 hpf, and optomotor response (OMR) at 7 dpf were all measured. To investigate whether hydrogen peroxide-induced effects were mediated by oxidative stress, embryos were co-incubated with the antioxidant, glutathione (GSH) at 50 µM. Results revealed that concentrations of H2O2 at or above 0.1 mM induced developmental toxicity, leading to increased mortality and hatching delay. Furthermore, exposure to 0.1 mM H2O2 decreased EBR at 48 hpf and impaired OMR visual behavior at 7 dpf. Additionally, exposure increased the area of apoptotic cells in the retina at 48 hpf. The addition of GSH reversed the effects of H2O2, suggesting the involvement of oxidative stress. H2O2 decreased the expression of eye development-related genes, pax6α and pax6ß. The expression of apoptosis-related genes, tp53, casp3 and bax, significantly increased, while bcl2α expression decreased. Antioxidant-related genes sod1, cat and gpx1a showed decreased expression. Expression levels of estrogen receptors (ERs) (esr1, esr2α, and esr2ß) and ovarian and brain aromatase genes (cyp19a1a and cyp19a1b, respectively) were also significantly reduced. Interestingly, co-incubation of GSH effectivity reversed the impact of H2O2 on most parameters. Overall, these results demonstrate that H2O2 induces adverse effects on visual development via oxidative stress, which leads to alter apoptosis, diminished antioxidant defenses and reduced estrogen production.


Subject(s)
Antioxidants , Apoptosis , Hydrogen Peroxide , Oxidative Stress , Zebrafish , Animals , Oxidative Stress/drug effects , Apoptosis/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Glutathione/metabolism , Retina/drug effects , Retina/metabolism , Estrogens/pharmacology , Gene Expression Regulation, Developmental/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Vision, Ocular/drug effects
20.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928164

ABSTRACT

Neurogenesis is the process by which new brain cells are formed. This crucial event emerges during embryonic life and proceeds in adulthood, and it could be influenced by environmental pollution. Non-combustion-derived magnetite represents a portion of the coarse particulate matter (PM) contributing to air and water pollution in urban settings. Studies on humans have reported that magnetite and other iron oxides have significant damaging effects at a central level, where these particles accumulate and promote oxidative stress. Similarly, magnetite nanoparticles can cross the placenta and damage the embryo brain during development, but the impact on neurogenesis is still unknown. Furthermore, an abnormal Fe cation concentration in cells and tissues might promote reactive oxygen species (ROS) generation and has been associated with multiple neurodegenerative conditions. In the present study, we used zebrafish as an in vivo system to analyze the specific effects of magnetite on embryonic neurogenesis. First, we characterized magnetite using mineralogical and spectroscopic analyses. Embryos treated with magnetite at sub-lethal concentrations showed a dose-response increase in ROS in the brain, which was accompanied by a massive decrease in antioxidant genes (sod2, cat, gsr, and nrf2). In addition, a higher number of apoptotic cells was observed in embryos treated with magnetite. Next, interestingly, embryos exposed to magnetite displayed a decrease in neural staminal progenitors (nestin, sox2, and pcna markers) and a neuronal marker (elavl3). Finally, we observed significative increases in apoeb (specific microglia marker) and interleukin-1b (il1b), confirming a status of inflammation in the brain embryos treated with magnetite. Our study represents the very first in vivo evidence concerning the effects of magnetite on brain development.


Subject(s)
Embryo, Nonmammalian , Ferrosoferric Oxide , Neurogenesis , Zebrafish , Animals , Zebrafish/embryology , Neurogenesis/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Brain/metabolism , Brain/drug effects , Brain/embryology , Apoptosis/drug effects , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...