Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.895
Filter
2.
Virol J ; 21(1): 128, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840203

ABSTRACT

The envelope (E) protein of the Japanese encephalitis virus (JEV) is a key protein for virus infection and adsorption of host cells, which determines the virulence of the virus and regulates the intensity of inflammatory response. The mutation of multiple aa residues in the E protein plays a critical role in the attenuated strain of JEV. This study demonstrated that the Asp to Gly, Ser, and His mutation of the E389 site, respectively, the replication ability of the viruses in cells was significantly reduced, and the viral neuroinvasiveness was attenuated to different degrees. Among them, the mutation at E389 site enhanced the E protein flexibility contributed to the attenuation of neuroinvasiveness. In contrast, less flexibility of E protein enhanced the neuroinvasiveness of the strain. Our results indicate that the mechanism of attenuation of E389 aa mutation attenuates neuroinvasiveness is related to increased flexibility of the E protein. In addition, the increased flexibility of E protein enhanced the viral sensitivity to heparin inhibition in vitro, which may lead to a decrease in the viral load entering brain. These results suggest that E389 residue is a potential site affecting JEV virulence, and the flexibility of the E protein of aa at this site plays an important role in the determination of neuroinvasiveness.


Subject(s)
Encephalitis Virus, Japanese , Viral Envelope Proteins , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/drug effects , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/chemistry , Animals , Cell Line , Virulence , Virus Replication , Encephalitis, Japanese/virology , Humans , Heparin/pharmacology , Amino Acid Substitution , Mutation, Missense , Mice , Mutation , Virulence Factors/genetics , Membrane Glycoproteins
3.
Emerg Microbes Infect ; 13(1): 2356140, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38742328

ABSTRACT

Reverse genetic systems are mainly used to rescue recombinant viral strains in cell culture. These tools have also been used to generate, by inoculating infectious clones, viral strains directly in living animals. We previously developed the "Infectious Subgenomic Amplicons" (ISA) method, which enables the rescue of single-stranded positive sense RNA viruses in vitro by transfecting overlapping subgenomic DNA fragments. Here, we provide proof-of-concept for direct in vivo generation of infectious particles following the inoculation of subgenomic amplicons. First, we rescued a strain of tick-borne encephalitis virus in mice to transpose the ISA method in vivo. Subgenomic DNA fragments were amplified using a 3-fragment reverse genetics system and inoculated intramuscularly. Almost all animals were infected when quantities of DNA inoculated were at least 20 µg. We then optimized our procedure in order to increase the animal infection rate. This was achieved by adding an electroporation step and/or using a simplified 2- fragment reverse genetics system. Under optimal conditions, a large majority of animals were infected with doses of 20 ng of DNA. Finally, we demonstrated the versatility of this method by applying it to Japanese encephalitis and Chikungunya viruses. This method provides an efficient strategy for in vivo rescue of arboviruses. Furthermore, in the context of the development of DNA-launched live attenuated vaccines, this new approach may facilitate the generation of attenuated strains in vivo. It also enables to deliver a substance free of any vector DNA, which seems to be an important criterion for the development of human vaccines.


Subject(s)
Arboviruses , Encephalitis Viruses, Tick-Borne , Reverse Genetics , Animals , Mice , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/physiology , Reverse Genetics/methods , Arboviruses/genetics , Chikungunya virus/genetics , Encephalitis Virus, Japanese/genetics , DNA, Viral/genetics , Encephalitis, Tick-Borne/virology , Female , Genome, Viral , Chikungunya Fever/virology , Humans
4.
Comp Immunol Microbiol Infect Dis ; 110: 102189, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718722

ABSTRACT

Japanese encephalitis virus (JEV) is a major cause of encephalitis in Southeast Asia. Tamil Nadu, a state located in the southern part of India, contributes substantially to the national burden of human JE cases every year. However, limited information is available on the epidemiology of JE in pig populations of Tamil Nadu. A cross-sectional study was conducted to assess JEV prevalence in pig populations of Tamil Nadu. A total of 710 pigs reared in 118 farms across 10 districts of Tamil Nadu were sampled using multistage cluster random sampling. Serum samples were analyzed for their JEV status using Immunoglobulin M (IgM) and Immunoglobulin G (IgG) Enzyme-Linked Immunosorbent Assay (ELISA). At the animal-level, the apparent JEV seroprevalence was 60.4% (95% CI: 56.8% - 64.0%) and the true seroprevalence was 50.1% (95% CI: 47.0% - 53.2%). The herd-level apparent seroprevalence was 94.1% (95% CI: 88.1% - 97.5%) and the true seroprevalence was 93.3% (95% CI: 89.5% - 96.2%). The intensity of JEV circulation was high in all the districts, with seroprevalence ranging between 43% and 100%. Pigs across all age categories were seropositive and a high overall seroprevalence of 95.2% (95% CI: 76.2% - 99.9%) was recorded in pigs older than 12 months. JEV seropositivity was recorded in all the seasons but the prevalence peaked in the monsoon (67.9%, 95% CI: 61.1% - 74.2%) followed by winter (65.1%, 95%CI: 57.4% - 72.2%) and summer (53.3%, 95% CI: 47.8% - 58.8%) seasons. The results indicate that JEV is endemic in pigs populations of the state and a one health approach is essential with collaborative actions from animal and public health authorities to control JE in Tamil Nadu, India.


Subject(s)
Antibodies, Viral , Encephalitis Virus, Japanese , Encephalitis, Japanese , Swine Diseases , Animals , India/epidemiology , Seroepidemiologic Studies , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/virology , Swine , Swine Diseases/epidemiology , Swine Diseases/virology , Cross-Sectional Studies , Antibodies, Viral/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Prevalence , Female , Enzyme-Linked Immunosorbent Assay , Male , Seasons
5.
J Immunol Methods ; 530: 113695, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797275

ABSTRACT

Japanese Encephalitis (JE) is a mosquito borne re-emerging viral zoonotic disease. Sero-conversion in swine occurs 2-3 weeks before human infection, thus swine act as a suitable sentinel for predicting JE outbreaks in humans. The present study was undertaken with the objective of developing immunochromatographic strip (ICS) assay to detect recent infection of Japanese Encephalitis virus (JEV) in swine population. The two formats of ICS assay were standardized. In the first format, gold nanoparticles (GNP) were conjugated with goat anti-pig IgM (50 µg/ml) followed by spotting of recombinant NS1 protein (1 mg/ml) of JEV on NCM as test line and protein G (1 mg/ml) as control line. In the format-II, GNP were conjugated with rNS1 protein (50 µg/ml) followed by spotting of Goat anti-pig IgM (1 mg/ml) as test line and IgG against rNS1 (1 mg/ml) as control line. To decrease the non- specific binding, blocking of serum and nitrocellulose membrane (NCM) was done using 5% SMP in PBS-T and 1% BSA, respectively. Best reaction conditions for the assay were observed when 10 µl of GNP conjugate and 50 µl of 1:10 SMP blocked sera was reacted on BSA blocked NCM followed by reaction time of 15 mins. Samples showing both test and control line were considered positive whereas samples showing only control line were considered negative. A total of 318 field swine sera samples were screened using indirect IgM ELISA and developed ICS assay. Relative diagnostic sensitivity and specificity of format-I was 81.25% and 93.0% whereas of format-II was 87.50% and 62.93%, respectively. Out of 318 samples tested, 32 were positive through IgM ELISA with sero-positivity of 10.06% while sero-positivity with format-I of ICS was 8.1%. Owing to optimal sensitivity and higher specificity of format-I, it was validated in three different labs and the kappa agreement ranged from 0.80 to 1, which signifies excellent repeatability of the developed assay to test field swine sera samples for detecting recent JEV infection.


Subject(s)
Antibodies, Viral , Encephalitis Virus, Japanese , Encephalitis, Japanese , Immunoglobulin M , Metal Nanoparticles , Swine Diseases , Animals , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/diagnosis , Encephalitis, Japanese/immunology , Encephalitis, Japanese/virology , Encephalitis Virus, Japanese/immunology , Swine , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Metal Nanoparticles/chemistry , Swine Diseases/diagnosis , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/blood , Viral Nonstructural Proteins/immunology , Sensitivity and Specificity , Chromatography, Affinity/methods , Gold/chemistry , Reagent Strips , Reproducibility of Results , Immunoglobulin G/blood , Immunoglobulin G/immunology , Humans
6.
Med J Aust ; 220(11): 566-572, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38803004

ABSTRACT

OBJECTIVES: To investigate the distribution and prevalence of Japanese encephalitis virus (JEV) antibody (as evidence of past infection) in northern Victoria following the 2022 Japanese encephalitis outbreak, seeking to identify groups of people at particular risk of infection; to investigate the distribution and prevalence of antibodies to two related flaviviruses, Murray Valley encephalitis virus (MVEV) and West Nile virus Kunjin subtype (KUNV). STUDY DESIGN: Cross-sectional serosurvey (part of a national JEV serosurveillance program). SETTING: Three northern Victorian local public health units (Ovens Murray, Goulburn Valley, Loddon Mallee), 8 August - 1 December 2022. PARTICIPANTS: People opportunistically recruited at pathology collection centres and by targeted recruitment through community outreach and advertisements. People vaccinated against or who had been diagnosed with Japanese encephalitis were ineligible for participation, as were those born in countries where JEV is endemic. MAIN OUTCOME MEASURES: Seroprevalence of JEV IgG antibody, overall and by selected factors of interest (occupations, water body exposure, recreational activities and locations, exposure to animals, protective measures). RESULTS: 813 participants were recruited (median age, 59 years [interquartile range, 42-69 years]; 496 female [61%]); 27 were JEV IgG-seropositive (3.3%; 95% confidence interval [CI], 2.2-4.8%) (median age, 73 years [interquartile range, 63-78 years]; 13 female [48%]); none were IgM-seropositive. JEV IgG-seropositive participants were identified at all recruitment locations, including those without identified cases of Japanese encephalitis. The only risk factors associated with JEV IgG-seropositivity were age (per year: prevalence odds ratio [POR], 1.07; 95% CI, 1.03-1.10) and exposure to feral pigs (POR, 21; 95% CI, 1.7-190). The seroprevalence of antibody to MVEV was 3.0% (95% CI, 1.9-4.5%; 23 of 760 participants), and of KUNV antibody 3.3% (95% CI, 2.1-4.8%; 25 of 761). CONCLUSIONS: People living in northern Victoria are vulnerable to future JEV infection, but few risk factors are consistently associated with infection. Additional prevention strategies, including expanding vaccine eligibility, may be required to protect people in this region from Japanese encephalitis.


Subject(s)
Antibodies, Viral , Disease Outbreaks , Encephalitis Virus, Japanese , Encephalitis, Japanese , Humans , Cross-Sectional Studies , Encephalitis Virus, Japanese/immunology , Middle Aged , Seroepidemiologic Studies , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/immunology , Adult , Female , Male , Antibodies, Viral/blood , Aged , Victoria/epidemiology , Immunoglobulin G/blood , Young Adult , Encephalitis Virus, Murray Valley/immunology , Adolescent , Risk Factors
8.
Med J Aust ; 220(11): 561-565, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38815982

ABSTRACT

OBJECTIVES: To determine the proportion of people in New South Wales towns at high risk of Japanese encephalitis virus (JEV) infections during the 2022 outbreak; to identify risk factors for JEV infection. STUDY DESIGN: Cross-sectional serosurvey study of the seroprevalence of JEV-specific antibodies in NSW. SETTING, PARTICIPANTS: Convenience sample of people (all ages) from five regional NSW towns deemed to be at high risk of JEV infections after first outbreak of Japanese encephalitis in southeastern Australia in early 2022 (Balranald, Corowa, Dubbo, Griffith, Temora), 21 June - 22 July 2022. MAIN OUTCOME MEASURES: Proportion of people seropositive for JEV total antibody, assayed by defined epitope-blocking enzyme-linked immunosorbent assay; prevalence odds ratios for exposure risk factors and protective behaviours. RESULTS: Eighty of 917 eligible participants (559 girls or women, 61%; 42 Aboriginal and Torres Strait Islander people, 4.6%; median age, 52 years [IQR, 37-62 years]) were seropositive for JEV-specific total antibody (8.7%); the median age of seropositive people was 61 years (IQR, 48-70 years). The seropositivity proportion was largest for people aged 65 years or more (30 of 192; weighted proportion, 13.7%) and larger for male than female participants (30 of 358, 10.6% v 50 of 559, 7.5%). Five of 42 samples from Aboriginal and Torres Strait Islander participants were seropositive (12%). We found mixed associations with a range of potential risk factors. CONCLUSION: We found evidence for a substantial number of JEV infections in five regional NSW towns during a single arbovirus season in 2022. Public health responses, including effective surveillance, vaccination against JEV, and mosquito management, are critical for controlling outbreaks. Promoting behaviours that reduce exposure to mosquitoes is a core component of prevention, particularly when the vaccine supply is limited.


Subject(s)
Antibodies, Viral , Encephalitis Virus, Japanese , Encephalitis, Japanese , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult , Antibodies, Viral/blood , Cross-Sectional Studies , Disease Outbreaks , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/immunology , New South Wales/epidemiology , Risk Factors , Seroepidemiologic Studies
9.
Acta Trop ; 256: 107276, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821146

ABSTRACT

Culex gelidus (Diptera: Culicidae), an important vector of the Japanese encephalitis virus (JEV), contributes to human viral encephalitis in many Asian countries, including Thailand. This study represents the first investigation of the demographic patterns of Cx. gelidus populations in Thailand using cytochrome c oxidase subunit I (COI) gene analysis and wing geometric morphometrics (GM). Mosquitoes were collected from 10 provinces across six regions of Thailand in 2022. Analysis of the COI sequences (n = 182) indicated high haplotype diversity (0.882) and low nucleotide diversity (0.006), with 72 haplotypes identified. The haplotype network demonstrated no profound splits among the geographic populations. Neutral tests, including Tajima's D and Fu's Fs, displayed negative values, with a significant result observed for Fu's Fs (-33.048, p < 0.05). The mismatch distribution analysis indicated that the population does not statistically deviate from a model of sudden population expansion (SSD = 0.010, p > 0.05; Rg = 0.022, p > 0.05). The estimations suggest that the Cx. gelidus population in Thailand began its expansion approximately between 459,243 and 707,011 years ago. The Mantel test showed no significant relationship between genetic and geographic distances (r = 0.048, p > 0.05). Significant phenotypic differences (based on wing shape) were observed among most populations. Additionally, in this study, we found no significant relationships between phenotypic and genetic distances (r = 0.250, p > 0.05). Understanding the genetic and morphological dynamics of Cx. gelidus is vital for developing targeted surveillance and vector control measures. This knowledge will also help to predict how future environmental changes might affect these populations, thereby informing long-term vector management strategies.


Subject(s)
Culex , Electron Transport Complex IV , Mosquito Vectors , Wings, Animal , Animals , Thailand , Culex/genetics , Culex/virology , Culex/anatomy & histology , Electron Transport Complex IV/genetics , Mosquito Vectors/genetics , Mosquito Vectors/anatomy & histology , Mosquito Vectors/virology , Wings, Animal/anatomy & histology , DNA, Mitochondrial/genetics , Genetic Variation , Haplotypes , Female , Encephalitis, Japanese/virology , Encephalitis Virus, Japanese/genetics , Male , Phylogeny
10.
Emerg Microbes Infect ; 13(1): 2362392, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38808613

ABSTRACT

Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV) infection, continues to pose significant public health challenges worldwide despite efficient vaccines. The virus is classified into five genotypes, among which genotype V (GV) was not detected for a long period after its initial isolation in 1952, until reports emerged from China and the Republic of Korea (ROK) since 2009. The characteristics of the virus are crucial in estimating its potential epidemiological impact. However, characterization of GV JEVs has so far been limited to two strains: Muar, the original isolate, and XZ0934, isolated in China. Two additional ROK GV JEV isolates, NCCP 43279 and NCCP 43413, are currently available, but their characteristics have not been explored. Our phylogenetic analysis revealed that GV virus sequences from the ROK segregate into two clades. NCCP 43279 and NCCP 43413 belong to different clades and exhibit distinct in vitro phenotypes. NCCP 43279 forms larger plaques but demonstrates inefficient propagation in cell culture compared to NCCP 43413. In vivo, NCCP 43279 induces higher morbidity and mortality in mice than NCCP 43413. Notably, NCCP 43279 shows more severe blood-brain barrier damage, suggesting superior brain invasion capabilities. Consistent with its higher virulence, NCCP 43279 displays more pronounced histopathological and immunopathological outcomes. In conclusion, our study confirms that the two ROK isolates are not only classified into different clades but also exhibit distinct in vitro and in vivo characteristics.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Genotype , Phylogeny , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/isolation & purification , Encephalitis Virus, Japanese/classification , Animals , Republic of Korea/epidemiology , Encephalitis, Japanese/virology , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/epidemiology , Mice , Humans , Virulence , Cell Line , Female
11.
Parasit Vectors ; 17(1): 220, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741172

ABSTRACT

BACKGROUND: Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS: This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS: The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS: Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.


Subject(s)
Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Mosquito Vectors , Animals , Culex/virology , Culex/physiology , Encephalitis Virus, Japanese/physiology , Sweden , Mosquito Vectors/virology , Encephalitis, Japanese/transmission , Encephalitis, Japanese/virology , Female , Saliva/virology , Humans
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 303-310, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710514

ABSTRACT

Objective To clarify the relationship between astrocyte activation patterns and disease progression in epidemic encephalitis B (Japanese encephalitis). Methods First, a mouse model of epidemic encephalitis B was constructed by foot-pad injection of Japanese encephalitis virus (JEV), and the expression of viral protein NS3 in different brain regions was detected by immunofluorescence assay (IFA). Next, IFA, RNA sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) were used to clarify the changes in the astrocyte activation patterns at different stages of epidemic encephalitis B. Finally, intracerebroventricular administration of irisin was conducted to regulate the proportion of activation in complement C3-positive A1 astrocytes and S100A10-positive A2 astrocytes, investigating whether it could improve the body mass, behavioral scores, and brain tissue damage in a mouse model. Results NS3 protein was detected by IFA predominantly in the M1/M2 region of the motor cortex and the hippocampus. The number and volume of GFAP-positive astrocytes significantly increased in JEV-infected brain regions, in which the expression of multiple genes associated with A1/A2 astrocyte activation was significantly enhanced. Although intracerebroventricular or intraperitoneal injection of irisin did not improve the prognosis of epidemic encephalitis B, it inhibited the activation of A1 astrocytes and ameliorate neuroinflammation. Conclusion Neurons in the M1/M2 motor cortex and hippocampus are susceptible to JEV infection, in which the abnormal astrocyte activation contributes to the neuroinflammatory injury. Irisin administration may restrain A1 astrocyte activation and alleviate neuroinflammation following JEV infection.


Subject(s)
Astrocytes , Disease Models, Animal , Disease Progression , Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Astrocytes/metabolism , Astrocytes/virology , Mice , Encephalitis, Japanese/immunology , Encephalitis Virus, Japanese/physiology , Brain/metabolism , Brain/virology , Brain/pathology , Male , Fibronectins/metabolism , Fibronectins/genetics
13.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38787366

ABSTRACT

Flaviviruses target their replication on membranous structures derived from the ER, where both viral and host proteins play crucial structural and functional roles. Here, we have characterized the involvement of the ER-associated degradation (ERAD) pathway core E3 ligase complex (SEL1L-HRD1) regulator proteins in the replication of Japanese encephalitis virus (JEV). Through high-resolution immunofluorescence imaging of JEV-infected HeLa cells, we observe that the virus replication complexes marked by NS1 strongly colocalize with the ERAD adapter SEL1L, lectin OS9, ER-membrane shuttle factor HERPUD1, E3 ubiquitin ligase HRD1 and rhomboid superfamily member DERLIN1. NS5 positive structures also show strong overlap with SEL1L. While these effectors show significant transcriptional upregulation, their protein levels remain largely stable in infected cells. siRNA mediated depletion of OS9, SEL1L, HERPUD1 and HRD1 significantly inhibit viral RNA replication and titres, with SEL1L depletion showing the maximum attenuation of replication. By performing protein translation arrest experiments, we show that SEL1L, and OS9 are stabilised upon JEV infection. Overall results from this study suggest that these ERAD effector proteins are crucial host-factors for JEV replication.


Subject(s)
Encephalitis Virus, Japanese , Endoplasmic Reticulum-Associated Degradation , Membrane Proteins , Ubiquitin-Protein Ligases , Virus Replication , Humans , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , HeLa Cells , Membrane Proteins/metabolism , Membrane Proteins/genetics , Host-Pathogen Interactions , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Proteins/metabolism , Proteins/genetics , Antigens, Differentiation
14.
J Neuroinflammation ; 21(1): 115, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698374

ABSTRACT

BACKGROUND: Macrophages play a pivotal role in the regulation of Japanese encephalitis (JE), a severe neuroinflammation in the central nervous system (CNS) following infection with JE virus (JEV). Macrophages are known for their heterogeneity, polarizing into M1 or M2 phenotypes in the context of various immunopathological diseases. A comprehensive understanding of macrophage polarization and its relevance to JE progression holds significant promise for advancing JE control and therapeutic strategies. METHODS: To elucidate the role of NADPH oxidase-derived reactive oxygen species (ROS) in JE progression, we assessed viral load, M1 macrophage accumulation, and cytokine production in WT and NADPH oxidase 2 (NOX2)-deficient mice using murine JE model. Additionally, we employed bone marrow (BM) cell-derived macrophages to delineate ROS-mediated regulation of macrophage polarization by ROS following JEV infection. RESULTS: NOX2-deficient mice exhibited increased resistance to JE progression rather than heightened susceptibility, driven by the regulation of macrophage polarization. These mice displayed reduced viral loads in peripheral lymphoid tissues and the CNS, along with diminished infiltration of inflammatory cells into the CNS, thereby resulting in attenuated neuroinflammation. Additionally, NOX2-deficient mice exhibited enhanced JEV-specific Th1 CD4 + and CD8 + T cell responses and increased accumulation of M1 macrophages producing IL-12p40 and iNOS in peripheral lymphoid and inflamed extraneural tissues. Mechanistic investigations revealed that NOX2-deficient macrophages displayed a more pronounced differentiation into M1 phenotypes in response to JEV infection, thereby leading to the suppression of viral replication. Importantly, the administration of H2O2 generated by NOX2 was shown to inhibit M1 macrophage polarization. Finally, oral administration of the ROS scavenger, butylated hydroxyanisole (BHA), bolstered resistance to JE progression and reduced viral loads in both extraneural tissues and the CNS, along with facilitated accumulation of M1 macrophages. CONCLUSION: In light of our results, it is suggested that ROS generated by NOX2 play a role in undermining the control of JEV replication within peripheral extraneural tissues, primarily by suppressing M1 macrophage polarization. Subsequently, this leads to an augmentation in the viral load invading the CNS, thereby facilitating JE progression. Hence, our findings ultimately underscore the significance of ROS-mediated macrophage polarization in the context of JE progression initiated JEV infection.


Subject(s)
Macrophages , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2 , Animals , Mice , Macrophages/metabolism , Macrophages/immunology , Macrophages/virology , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Encephalitis, Japanese/immunology , Reactive Oxygen Species/metabolism , Encephalitis Virus, Japanese , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/virology , Cell Polarity/drug effects , Cell Polarity/physiology
15.
J Virol ; 98(5): e0011624, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38591880

ABSTRACT

Flaviviruses in the Japanese encephalitis virus (JEV) serogroup, such as JEV, West Nile virus, and St. Louis encephalitis virus, can cause severe neurological diseases. The nonstructural protein 1 (NS1) is a multifunctional protein of flavivirus that can be secreted by infected cells and circulate in the host bloodstream. NS1' is an additional form of NS1 protein with 52 amino acids extension at its carboxy-terminal and is produced exclusively by flaviviruses in the JEV serogroup. In this study, we demonstrated that the secreted form of both NS1 and NS1' can disrupt the blood-brain barrier (BBB) of mice, with NS1' exhibiting a stronger effect. Using the in vitro BBB model, we found that treatment of soluble recombinant JEV NS1 or NS1' protein increases the permeability of human brain microvascular endothelial cells (hBMECs) and leads to the degradation of tight junction proteins through the autophagy-lysosomal pathway. Consistently, NS1' protein exhibited a more pronounced effect compared to NS1 in these cellular processes. Further research revealed that the increased expression of macrophage migration inhibitory factor (MIF) is responsible for triggering autophagy after NS1 or NS1' treatment in hBMECs. In addition, TLR4 and NF-κB signaling was found to be involved in the activation of MIF transcription. Moreover, administering the MIF inhibitor has been shown to decrease viral loads and mitigate inflammation in the brains of mice infected with JEV. This research offers a novel perspective on the pathogenesis of JEV. In addition, the stronger effect of NS1' on disrupting the BBB compared to NS1 enhances our understanding of the mechanism by which flaviviruses in the JEV serogroup exhibit neurotropism.IMPORTANCEJapanese encephalitis (JE) is a significant viral encephalitis worldwide, caused by the JE virus (JEV). In some patients, the virus cannot be cleared in time, leading to the breach of the blood-brain barrier (BBB) and invasion of the central nervous system. This invasion may result in cognitive impairment, behavioral disturbances, and even death in both humans and animals. However, the mechanism by which JEV crosses the BBB remains unclear. Previous studies have shown that the flavivirus NS1 protein plays an important role in causing endothelial dysfunction. The NS1' protein is an elongated form of NS1 protein that is particularly produced by flaviviruses in the JEV serogroup. This study revealed that both the secreted NS1 and NS1' of JEV can disrupt the BBB by breaking down tight junction proteins through the autophagy-lysosomal pathway, and NS1' is found to have a stronger effect compared to NS1 in this process. In addition, JEV NS1 and NS1' can stimulate the expression of MIF, which triggers autophagy via the ERK signaling pathway, leading to damage to BBB. Our findings reveal a new function of JEV NS1 and NS1' in the disruption of BBB, thereby providing the potential therapeutic target for JE.


Subject(s)
Autophagy , Blood-Brain Barrier , Encephalitis Virus, Japanese , Encephalitis, Japanese , Viral Nonstructural Proteins , Animals , Humans , Mice , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Brain/virology , Brain/metabolism , Encephalitis Virus, Japanese/physiology , Encephalitis, Japanese/virology , Encephalitis, Japanese/metabolism , Endothelial Cells/virology , Endothelial Cells/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , NF-kappa B/metabolism , Viral Nonstructural Proteins/metabolism
16.
J Virol ; 98(5): e0019524, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38656209

ABSTRACT

The host cytoskeleton plays crucial roles in various stages of virus infection, including viral entry, transport, replication, and release. However, the specific mechanisms by which intermediate filaments are involved in orthoflavivirus infection have not been well understood. In this study, we demonstrate that the Japanese encephalitis virus (JEV) remodels the vimentin network, resulting in the formation of cage-like structures that support viral replication. Mechanistically, JEV NS1 and NS1' proteins induce the translocation of CDK1 from the nucleus to the cytoplasm and interact with it, leading to the phosphorylation of vimentin at Ser56. This phosphorylation event recruits PLK1, which further phosphorylates vimentin at Ser83. Consequently, these phosphorylation modifications convert the typically filamentous vimentin into non-filamentous "particles" or "squiggles." These vimentin "particles" or "squiggles" are then transported retrogradely along microtubules to the endoplasmic reticulum, where they form cage-like structures. Notably, NS1' is more effective than NS1 in triggering the CDK1-PLK1 cascade response. Overall, our study provides new insights into how JEV NS1 and NS1' proteins manipulate the vimentin network to facilitate efficient viral replication. IMPORTANCE: Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus that causes severe encephalitis in humans, particularly in Asia. Despite the availability of a safe and effective vaccine, JEV infection remains a significant public health threat due to limited vaccination coverage. Understanding the interactions between JEV and host proteins is essential for developing more effective antiviral strategies. In this study, we investigated the role of vimentin, an intermediate filament protein, in JEV replication. Our findings reveal that JEV NS1 and NS1' proteins induce vimentin rearrangement, resulting in the formation of cage-like structures that envelop the viral replication factories (RFs), thus facilitating efficient viral replication. Our research highlights the importance of the interplay between the cytoskeleton and orthoflavivirus, suggesting that targeting vimentin could be a promising approach for the development of antiviral strategies to inhibit JEV propagation.


Subject(s)
Encephalitis Virus, Japanese , Vimentin , Viral Nonstructural Proteins , Virus Replication , Animals , Humans , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/virology , Encephalitis, Japanese/metabolism , HEK293 Cells , Host-Pathogen Interactions , Phosphorylation , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases/metabolism , Vimentin/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics
17.
Viruses ; 16(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38675867

ABSTRACT

Extracellular vesicles (EVs) such as exosomes have been shown to play physiological roles in cell-to-cell communication by delivering various proteins and nucleic acids. In addition, several studies revealed that the EVs derived from the cells that are infected with certain viruses could transfer the full-length viral genomes, resulting in EVs-mediated virus propagation. However, the possibility cannot be excluded that the prepared EVs were contaminated with infectious viral particles. In this study, the cells that harbor subgenomic replicon derived from the Japanese encephalitis virus and dengue virus without producing any replication-competent viruses were employed as the EV donor. It was demonstrated that the EVs in the culture supernatants of those cells were able to transfer the replicon genome to other cells of various types. It was also shown that the EVs were incorporated by the recipient cells primarily through macropinocytosis after interaction with CD33 and Tim-1/Tim-4 on HeLa and K562 cells, respectively. Since the methods used in this study are free from contamination with infectious viral particles, it is unequivocally indicated that the flavivirus genome can be transferred by EVs from cell to cell, suggesting that this pathway, in addition to the classical receptor-mediated infection, may play some roles in the viral propagation and pathogenesis.


Subject(s)
Encephalitis Virus, Japanese , Extracellular Vesicles , Genome, Viral , Replicon , Viral Proteins , Extracellular Vesicles/virology , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Humans , Replicon/genetics , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication , Flavivirus/genetics , Flavivirus/physiology , Dengue Virus/genetics , Dengue Virus/physiology , HeLa Cells , K562 Cells , Animals , Cell Line , Subgenomic RNA
18.
Int Immunopharmacol ; 133: 112083, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38648714

ABSTRACT

Japanese encephalitis virus (JEV) infection is considered a global public health emergency. Severe peripheral neuropathy caused by JEV infection has increased disability and mortality rates in recent years. Because there are very few therapeutic options for JEV infection, prompt investigations of the ability of clinically safe, efficacious and globally available drugs to inhibit JEV infection and ameliorate peripheral neuropathy are urgently needed. In this study, we found that high doses of intravenous immunoglobulin, a function inhibitor of acid sphingomyelinase (FIASMA), inhibited acid sphingomyelinase (ASM) and ceramide activity in the serum and sciatic nerve of JEV-infected rats, reduced disease severity, reversed electrophysiological and histological abnormalities, significantly reduced circulating proinflammatory cytokine levels, inhibited Th1 and Th17 cell proliferation, and suppressed the infiltration of inflammatory CD4 + cells into the sciatic nerve. It also maintained the peripheral nerve-blood barrier without causing severe clinical side effects. In terms of the potential mechanisms, ASM was found to participate in immune cell differentiation and to activate immune cells, thereby exerting proinflammatory effects. Therefore, immunoglobulin is a FIASMA that reduces abnormal immune responses and thus targets the ASM/ceramide system to treat peripheral neuropathy caused by JEV infection.


Subject(s)
Ceramides , Encephalitis, Japanese , Immunoglobulins, Intravenous , Peripheral Nervous System Diseases , Sphingomyelin Phosphodiesterase , Animals , Humans , Male , Rats , Ceramides/metabolism , Cytokines/metabolism , Encephalitis Virus, Japanese/immunology , Encephalitis Virus, Japanese/physiology , Encephalitis, Japanese/drug therapy , Encephalitis, Japanese/immunology , Immunoglobulins, Intravenous/therapeutic use , Immunoglobulins, Intravenous/pharmacology , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/immunology , Peripheral Nervous System Diseases/virology , Rats, Sprague-Dawley , Sciatic Nerve/pathology , Signal Transduction/drug effects , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/metabolism , Th1 Cells/immunology , Th17 Cells/immunology
19.
Emerg Microbes Infect ; 13(1): 2343910, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38618740

ABSTRACT

Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV), is a highly threatening disease with no specific treatment. Fortunately, the development of vaccines has enabled effective defense against JE. However, re-emerging genotype V (GV) JEV poses a challenge as current vaccines are genotype III (GIII)-based and provide suboptimal protection. Given the isolation of GV JEVs from Malaysia, China, and the Republic of Korea, there is a concern about the potential for a broader outbreak. Under the hypothesis that a GV-based vaccine is necessary for effective defense against GV JEV, we developed a pentameric recombinant antigen using cholera toxin B as a scaffold and mucosal adjuvant, which was conjugated with the E protein domain III of GV by genetic fusion. This GV-based vaccine antigen induced a more effective immune response in mice against GV JEV isolates compared to GIII-based antigen and efficiently protected animals from lethal challenges. Furthermore, a bivalent vaccine approach, inoculating simultaneously with GIII- and GV-based antigens, showed protective efficacy against both GIII and GV JEVs. This strategy presents a promising avenue for comprehensive protection in regions facing the threat of diverse JEV genotypes, including both prevalent GIII and GI as well as emerging GV strains.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Genotype , Japanese Encephalitis Vaccines , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/immunology , Encephalitis Virus, Japanese/classification , Animals , Encephalitis, Japanese/prevention & control , Encephalitis, Japanese/immunology , Encephalitis, Japanese/virology , Japanese Encephalitis Vaccines/immunology , Japanese Encephalitis Vaccines/administration & dosage , Japanese Encephalitis Vaccines/genetics , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Humans , Mice, Inbred BALB C , Female , Antigens, Viral/immunology , Antigens, Viral/genetics , Vaccine Efficacy , Cholera Toxin/genetics , Cholera Toxin/immunology
20.
J Virol ; 98(5): e0195923, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38634598

ABSTRACT

The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.


Subject(s)
Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Sialic Acids , Virus Attachment , Animals , Mice , Cell Line , Culex/virology , Culex/metabolism , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/virology , Encephalitis, Japanese/metabolism , Mosquito Vectors/virology , Neuraminidase/metabolism , Neuraminidase/genetics , Sialic Acids/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...