Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Actual. Sida Infectol. (En linea) ; 32(114): 63-78, 20240000. fig, graf
Article in Spanish | LILACS, BINACIS | ID: biblio-1552316

ABSTRACT

La encefalitis equina del oeste (WEEV, por su sigla en inglés, Western Equine Encephalitis) es una enfermedad reemergente en Argentina a partir del año 2023. La co-municación inicial fue en 1933, las últimas epizootias ocurrieron en 1983 y el último caso humano se registró en 1996. Se revisan las características del agente causal, la ecología con especial referencia a los vectores iden-tificados en el país, su competencia en la transmisión y el ciclo así como los factores de riesgo para adquirir la enfermedad. La situación epidemiológica en equinos y humanos desde noviembre 2023 hasta marzo 2024 es analizada. Se describen las formas clínicas de presen-tación de la enfermedad humana, las posibilidades evo-lutivas, los datos disponibles en los casos confirmados y el tratamiento. La metodología y algoritmo empleados para el diagnóstico etiológico en el Centro Nacional de Referencia son detallados. Las estrategias para la pre-vención y el control se basan en la vacunación de los equinos, el saneamiento ambiental y el control del foco ante la presentación de la enfermedad animal (vigilancia epidemiológica activa)


Western equine encephalitis (WEE) is a re-emerging dis-ease in Argentina starting in 2023. Since the initial notifi-cation in 1933, the last epizootics occurred in 1983, and the last human case was recorded in 1996.The charac-teristics of the causative agent, the ecology with special reference to vectors identified in the country, their compe-tence in transmission, and the cycle as well as the risks factors for acquiring the disease, are reviewed.The epidemiological situation in horses and humans from November 2023 to March 2024 is analyzed. The clinical presentation of the human disease, its evolutionary po-tential, available data in confirmed cases, and the treat-ment are described.The methodology and algorithm used for the etiological diagnosis at the National Reference Center are detailed. Strategies for prevention and control are based on vaccination of horses, environmental sani-tation and outbreak control in the presence of the animal disease (active epidemiological surveillance)


Subject(s)
Humans , Animals , Male , Female , Sanitation/legislation & jurisprudence , Risk Factors , Encephalomyelitis, Western Equine/epidemiology , Encephalitis Virus, Western Equine/immunology , Epidemiological Monitoring/veterinary
3.
Viruses ; 13(11)2021 11 05.
Article in English | MEDLINE | ID: mdl-34835037

ABSTRACT

The three encephalitic alphaviruses, namely, the Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV), are classified by the Centers for Disease Control and Prevention (CDC) as biothreat agents. Currently, no licensed medical countermeasures (MCMs) against these viruses are available for humans. Neutralizing antibodies (NAbs) are fast-acting and highly effective MCMs for use in both pre- and post-exposure settings against biothreat agents. While significant work has been done to identify anti-VEEV NAbs, less has been done to identify NAbs against EEEV and WEEV. In order to develop anti-EEEV or -WEEV NAbs, mice were immunized using complementary strategies with a variety of different EEEV or WEEV immunogens to maximize the generation of NAbs to each of these viruses. Of the hybridomas generated, three anti-EEEV and seven anti-WEEV monoclonal antibodies were identified with in vitro neutralization activity. The most potent neutralizers (two anti-EEEV NAbs and three anti-WEEV NAbs) were further evaluated for neutralization activity against additional strains of EEEV, a single strain of Madariaga virus (formerly South American EEEV), or WEEV. Of these, G1-2-H4 and G1-4-C3 neutralized all three EEEV strains and the Madariaga virus strain, whereas G8-2-H9 and 12 WA neutralized six out of eight WEEV strains. To determine the protective efficacy of these NAbs, the five most potent neutralizers were evaluated in respective mouse aerosol challenge models. All five NAbs demonstrated various levels of protection when administered at doses of 2.5 mg/kg or 10 mg/kg 24 h before the respective virus exposure via the aerosol route. Of these, anti-EEEV NAb G1-4-C3 and anti-WEEV NAb 8C2 provided 100% protection at both doses and all surviving mice were free of clinical signs throughout the study. Additionally, no virus was detected in the brain 14 days post virus exposure. Taken together, efficacious NAbs were developed that demonstrate the potential for the development of cross-strain antibody-based MCMs against EEEV and WEEV infections.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Encephalitis Virus, Eastern Equine/immunology , Encephalitis Virus, Western Equine/immunology , Encephalomyelitis, Equine/prevention & control , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Antibodies, Viral/immunology , Cross Protection , Disease Models, Animal , Immunization , Mice , Neutralization Tests
4.
Exp Neurol ; 346: 113845, 2021 12.
Article in English | MEDLINE | ID: mdl-34454938

ABSTRACT

Viral infection of the central nervous system (CNS) can cause lasting neurological decline in surviving patients and can present with symptoms resembling Parkinson's disease (PD). The mechanisms underlying postencephalitic parkinsonism remain unclear but are thought to involve increased innate inflammatory signaling in glial cells, resulting in persistent neuroinflammation. We therefore studied the role of glial cells in regulating neuropathology in postencephalitic parkinsonism by studying the involvement of astrocytes in loss of dopaminergic neurons and aggregation of α-synuclein protein following infection with western equine encephalitis virus (WEEV). Infections were conducted in both wildtype mice and in transgenic mice lacking NFκB inflammatory signaling in astrocytes. For 2 months following WEEV infection, we analyzed glial activation, neuronal loss and protein aggregation across multiple brain regions, including the substantia nigra pars compacta (SNpc). These data revealed that WEEV induces loss of SNpc dopaminergic neurons, persistent activation of microglia and astrocytes that precipitates widespread aggregation of α-synuclein in the brain of C57BL/6 mice. Microgliosis and macrophage infiltration occurred prior to activation of astrocytes and was followed by opsonization of ⍺-synuclein protein aggregates in the cortex, hippocampus and midbrain by the complement protein, C3. Astrocyte-specific NFκB knockout mice had reduced gliosis, α-synuclein aggregate formation and neuronal loss. These data suggest that astrocytes play a critical role in initiating PD-like pathology following encephalitic infection with WEEV through innate immune inflammatory pathways that damage dopaminergic neurons, possibly by hindering clearance of ⍺-synuclein aggregates. Inhibiting glial inflammatory responses could therefore represent a potential therapy strategy for viral parkinsonism.


Subject(s)
Astrocytes/metabolism , Dopaminergic Neurons/metabolism , Encephalitis, Viral/metabolism , Inflammation Mediators/metabolism , Protein Aggregates/physiology , alpha-Synuclein/metabolism , Animals , Astrocytes/immunology , Dopaminergic Neurons/immunology , Encephalitis Virus, Western Equine/immunology , Encephalitis Virus, Western Equine/metabolism , Encephalitis, Viral/immunology , Female , Humans , Inflammation Mediators/immunology , Male , Mice , Mice, Knockout , Signal Transduction/physiology
5.
PLoS Pathog ; 16(2): e1008102, 2020 02.
Article in English | MEDLINE | ID: mdl-32027727

ABSTRACT

Understanding the circumstances under which arboviruses emerge is critical for the development of targeted control and prevention strategies. This is highlighted by the emergence of chikungunya and Zika viruses in the New World. However, to comprehensively understand the ways in which viruses emerge and persist, factors influencing reductions in virus activity must also be understood. Western equine encephalitis virus (WEEV), which declined during the late 20th century in apparent enzootic circulation as well as equine and human disease incidence, provides a unique case study on how reductions in virus activity can be understood by studying evolutionary trends and mechanisms. Previously, we showed using phylogenetics that during this period of decline, six amino acid residues appeared to be positively selected. To assess more directly the effect of these mutations, we utilized reverse genetics and competition fitness assays in the enzootic host and vector (house sparrows and Culex tarsalis mosquitoes). We observed that the mutations contemporary with reductions in WEEV circulation and disease that were non-conserved with respect to amino acid properties had a positive effect on enzootic fitness. We also assessed the effects of these mutations on virulence in the Syrian-Golden hamster model in relation to a general trend of increased virulence in older isolates. However, no change effect on virulence was observed based on these mutations. Thus, while WEEV apparently underwent positive selection for infection of enzootic hosts, residues associated with mammalian virulence were likely eliminated from the population by genetic drift or negative selection. These findings suggest that ecologic factors rather than fitness for natural transmission likely caused decreased levels of enzootic WEEV circulation during the late 20th century.


Subject(s)
Encephalitis Virus, Western Equine/genetics , Encephalomyelitis, Equine/genetics , Genetic Drift , Selection, Genetic , Animals , Culex/immunology , Culex/virology , Encephalitis Virus, Western Equine/immunology , Encephalitis Virus, Western Equine/pathogenicity , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/pathology , Encephalomyelitis, Equine/transmission , Humans , Mesocricetus , Mosquito Vectors/immunology , Mosquito Vectors/virology , Sparrows/immunology , Sparrows/virology
6.
Front Immunol ; 11: 598847, 2020.
Article in English | MEDLINE | ID: mdl-33542715

ABSTRACT

Venezuelan, eastern and western equine encephalitis viruses (EEV) can cause severe disease of the central nervous system in humans, potentially leading to permanent damage or death. Yet, no licensed vaccine for human use is available to protect against these mosquito-borne pathogens, which can be aerosolized and therefore pose a bioterror threat in addition to the risk of natural outbreaks. Using the mouse aerosol challenge model, we evaluated the immunogenicity and efficacy of EEV vaccines that are based on the modified vaccinia Ankara-Bavarian Nordic (MVA-BN®) vaccine platform: three monovalent vaccines expressing the envelope polyproteins E3-E2-6K-E1 of the respective EEV virus, a mixture of these three monovalent EEV vaccines (Triple-Mix) as a first approach to generate a multivalent vaccine, and a true multivalent alphavirus vaccine (MVA-WEV, Trivalent) encoding the polyproteins of all three EEVs in a single non-replicating MVA viral vector. BALB/c mice were vaccinated twice in a four-week interval and samples were assessed for humoral and cellular immunogenicity. Two weeks after the second immunization, animals were exposed to aerosolized EEV. The majority of vaccinated animals exhibited VEEV, WEEV, and EEEV neutralizing antibodies two weeks post-second administration, whereby the average VEEV neutralizing antibodies induced by the monovalent and Trivalent vaccine were significantly higher compared to the Triple-Mix vaccine. The same statistical difference was observed for VEEV E1 specific T cell responses. However, all vaccinated mice developed comparable interferon gamma T cell responses to the VEEV E2 peptide pools. Complete protective efficacy as evaluated by the prevention of mortality and morbidity, lack of clinical signs and viremia, was demonstrated for the respective monovalent MVA-EEV vaccines, the Triple-Mix and the Trivalent single vector vaccine not only in the homologous VEEV Trinidad Donkey challenge model, but also against heterologous VEEV INH-9813, WEEV Fleming, and EEEV V105-00210 inhalational exposures. These EEV vaccines, based on the safe MVA vector platform, therefore represent promising human vaccine candidates. The trivalent MVA-WEV construct, which encodes antigens of all three EEVs in a single vector and can potentially protect against all three encephalitic viruses, is currently being evaluated in a human Phase 1 trial.


Subject(s)
Encephalitis Virus, Eastern Equine/immunology , Encephalitis Virus, Venezuelan Equine/immunology , Encephalitis Virus, Western Equine/immunology , Encephalomyelitis, Equine/prevention & control , Viral Vaccines/immunology , Aerosols , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cross Protection/immunology , Disease Models, Animal , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/mortality , Female , Immunization , Mice , Mortality , Neutralization Tests , Vaccines, DNA , Viral Vaccines/administration & dosage
7.
PLoS Pathog ; 15(10): e1007867, 2019 10.
Article in English | MEDLINE | ID: mdl-31658290

ABSTRACT

Eastern equine encephalitis virus (EEEV), a mosquito-borne RNA virus, is one of the most acutely virulent viruses endemic to the Americas, causing between 30% and 70% mortality in symptomatic human cases. A major factor in the virulence of EEEV is the presence of four binding sites for the hematopoietic cell-specific microRNA, miR-142-3p, in the 3' untranslated region (3' UTR) of the virus. Three of the sites are "canonical" with all 7 seed sequence residues complimentary to miR-142-3p while one is "non-canonical" and has a seed sequence mismatch. Interaction of the EEEV genome with miR-142-3p limits virus replication in myeloid cells and suppresses the systemic innate immune response, greatly exacerbating EEEV neurovirulence. The presence of the miRNA binding sequences is also required for efficient EEEV replication in mosquitoes and, therefore, essential for transmission of the virus. In the current studies, we have examined the role of each binding site by point mutagenesis of the seed sequences in all combinations of sites followed by infection of mammalian myeloid cells, mosquito cells and mice. The resulting data indicate that both canonical and non-canonical sites contribute to cell infection and animal virulence, however, surprisingly, all sites are rapidly deleted from EEEV genomes shortly after infection of myeloid cells or mice. Finally, we show that the virulence of a related encephalitis virus, western equine encephalitis virus, is also dependent upon miR-142-3p binding sites.


Subject(s)
3' Untranslated Regions/genetics , Encephalitis Virus, Eastern Equine/genetics , Encephalitis Virus, Western Equine/genetics , MicroRNAs/genetics , Virus Replication/genetics , Aedes , Animals , Binding Sites/genetics , Cell Line , Cricetinae , Encephalitis Virus, Eastern Equine/immunology , Encephalitis Virus, Eastern Equine/pathogenicity , Encephalitis Virus, Western Equine/immunology , Encephalitis Virus, Western Equine/pathogenicity , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/virology , Female , Immunity, Innate/immunology , L Cells , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , RAW 264.7 Cells , Virulence/genetics
8.
Viruses ; 10(4)2018 03 24.
Article in English | MEDLINE | ID: mdl-29587363

ABSTRACT

Western equine encephalitis virus (WEEV) causes symptoms in humans ranging from mild febrile illness to life-threatening encephalitis, and no human medical countermeasures are licensed. A previous study demonstrated that immune serum from vaccinated mice protected against lethal WEEV infection, suggesting the utility of antibodies for pre- and post-exposure treatment. Here, three neutralizing and one binding human-like monoclonal antibodies were evaluated against WEEV aerosol challenge. Dose-dependent protection was observed with two antibodies administered individually, ToR69-3A2 and ToR68-2C3. In vitro neutralization was not a critical factor for protection in this murine model, as ToR69-3A2 is a strong neutralizing antibody, and ToR68-2C3 is a non-neutralizing antibody. This result highlights the importance of both neutralizing and non-neutralizing antibodies in the protection of mice from WEEV lethality.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Encephalitis Virus, Western Equine/immunology , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/prevention & control , Aerosols , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Disease Models, Animal , Encephalomyelitis, Equine/mortality , Encephalomyelitis, Equine/virology , Immunization , Mice , Morbidity , Mortality
9.
Virology ; 499: 30-39, 2016 12.
Article in English | MEDLINE | ID: mdl-27632563

ABSTRACT

Eastern, Venezuelan and western equine encephalitis viruses (EEEV, VEEV, and WEEV) are mosquito-borne viruses that cause substantial disease in humans and other vertebrates. Vaccines are limited and current treatment options have not proven successful. In this report, we vaccinated outbred mice with lipid-antigen-nucleic acid-complexes (LANACs) containing VEEV E1+WEEV E1 antigen and characterized protective efficacy against lethal EEEV, VEEV, and WEEV challenge. Vaccination resulted in complete protection against EEEV, VEEV, and WEEV in CD-1 mice. Measurements of bioluminescence and plaque reduction neutralization tests (PRNTs) indicate that LANAC VEEV E1+WEEV E1 vaccination is sterilizing against VEEV and WEEV challenge; whereas immunity to EEEV is not sterilizing. Passive transfer of rabbit VEEV E1+WEEV E1 immune serum to naive mice extended the mean time to death (MTD) of EEEV challenged mice and provided significant protection from lethal VEEV and WEEV challenge.


Subject(s)
Alphavirus/immunology , Antigens, Viral/immunology , Cross Reactions/immunology , Encephalitis Virus, Venezuelan Equine/immunology , Encephalitis Virus, Western Equine/immunology , Viral Proteins/immunology , Alphavirus Infections/immunology , Alphavirus Infections/mortality , Alphavirus Infections/prevention & control , Alphavirus Infections/virology , Animals , Antibodies, Viral/immunology , Antigens, Viral/administration & dosage , Antigens, Viral/genetics , Cell Line , Disease Models, Animal , Encephalitis Virus, Venezuelan Equine/genetics , Encephalitis Virus, Venezuelan Equine/pathogenicity , Encephalitis Virus, Western Equine/genetics , Encephalitis Virus, Western Equine/pathogenicity , Female , Gene Expression , Genes, Reporter , Immunity, Humoral , Immunization , Liposomes , Mice , Nucleic Acids , Sequence Homology , Viral Proteins/administration & dosage , Viral Proteins/genetics , Virulence/genetics , Virus Replication
10.
Vector Borne Zoonotic Dis ; 16(4): 264-82, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26974395

ABSTRACT

From 1996 through 2013, 54,546 individual birds comprising 152 species and 7 orders were banded, bled, and released at four study areas within California, from which 28,388 additional serum samples were collected at one or more recapture encounters. Of these, 142, 99, and 1929 birds from 41 species were positive for neutralizing antibodies against western equine encephalomyelitis virus (WEEV), St. Louis encephalitis virus (SLEV), or West Nile virus (WNV) at initial capture or recapture, respectively. Overall, 83% of the positive serum samples were collected from five species: House Finch, House Sparrow, Mourning Dove, California Quail, and Western Scrub-Jay. Temporal data supported concurrent arbovirus surveillance and documented the disappearance of birds positive for WEEV in 2008 and SLEV in 2003 and the appearance of birds positive for WNV after its invasion in 2003. Results of these serosurveys agreed well with the host selection patterns of the Culex vectors as described from bloodmeal sequencing data and indicated that transmission of WNV seemed most effective within urban areas where avian and mosquito host diversity was limited to relatively few competent species.


Subject(s)
Antibodies, Viral/blood , Bird Diseases/virology , Birds/virology , Animals , Bird Diseases/epidemiology , Bird Diseases/immunology , California/epidemiology , Encephalitis Virus, St. Louis/immunology , Encephalitis Virus, Western Equine/immunology , Encephalitis, St. Louis/blood , Encephalitis, St. Louis/immunology , Encephalitis, St. Louis/veterinary , Encephalomyelitis, Equine/blood , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/veterinary , Population Surveillance , Seroepidemiologic Studies , West Nile Fever/blood , West Nile Fever/immunology , West Nile Fever/veterinary , West Nile virus/immunology
11.
Mem Inst Oswaldo Cruz ; 110(1): 125-33, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25742272

ABSTRACT

The Pantanal hosts diverse wildlife species and therefore is a hotspot for arbovirus studies in South America. A serosurvey for Mayaro virus (MAYV), eastern (EEEV), western (WEEV) and Venezuelan (VEEV) equine encephalitis viruses was conducted with 237 sheep, 87 free-ranging caimans and 748 equids, including 37 collected from a ranch where a neurologic disorder outbreak had been recently reported. Sera were tested for specific viral antibodies using plaque-reduction neutralisation test. From a total of 748 equids, of which 264 were immunised with vaccine composed of EEEV and WEEV and 484 had no history of immunisation, 10 (1.3%) were seropositive for MAYV and two (0.3%) for VEEV using criteria of a ≥ 4-fold antibody titre difference. Among the 484 equids without history of immunisation, 48 (9.9%) were seropositive for EEEV and four (0.8%) for WEEV using the same criteria. Among the sheep, five were sero- positive for equine encephalitis alphaviruses, with one (0.4%) for EEEV, one (0.4%) for WEEV and three (1.3%) for VEEV. Regarding free-ranging caimans, one (1.1%) and three (3.4%), respectively, had low titres for neutralising antibodies to VEEV and undetermined alphaviruses. The neurological disorder outbreak could not be linked to the alphaviruses tested. Our findings represent strong evidence that MAYV and all equine encephalitis alphaviruses circulated in the Pantanal.


Subject(s)
Alligators and Crocodiles/immunology , Alphavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Horse Diseases/immunology , Sheep/immunology , Age Factors , Alligators and Crocodiles/blood , Animals , Brazil/epidemiology , Encephalitis Virus, Eastern Equine/immunology , Encephalitis Virus, Venezuelan Equine/immunology , Encephalitis Virus, Western Equine/immunology , Encephalomyelitis, Eastern Equine/epidemiology , Encephalomyelitis, Eastern Equine/veterinary , Encephalomyelitis, Venezuelan Equine/epidemiology , Encephalomyelitis, Venezuelan Equine/veterinary , Encephalomyelitis, Western Equine/epidemiology , Encephalomyelitis, Western Equine/veterinary , Horse Diseases/blood , Horse Diseases/prevention & control , Horses/blood , Horses/immunology , Neutralization Tests , Seroepidemiologic Studies , Sheep/blood , Wetlands
12.
Virology ; 474: 154-62, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25463613

ABSTRACT

Western equine encephalitis virus (WEEV), Highlands J virus (HJV), and Fort Morgan virus (FMV) are the sole representatives of the WEE antigenic complex of the genus Alphavirus, family Togaviridae, that are endemic to North America. All three viruses have their ancestry in a recombination event involving eastern equine encephalitis virus (EEEV) and a Sindbis (SIN)-like virus that gave rise to a chimeric alphavirus that subsequently diversified into the present-day WEEV, HJV, and FMV. Here, we present a comparative analysis of the genetic, ecological, and evolutionary relationships among these recombinant-origin viruses, including the description of a nsP4 polymerase mutation in FMV that allows it to circumvent the host range barrier to Asian tiger mosquito cells, a vector species that is normally refractory to infection. Notably, we also provide evidence that the recombination event that gave rise to these three WEEV antigenic complex viruses may have occurred in North America.


Subject(s)
Alphavirus/genetics , Alphavirus/immunology , Antigens, Viral/genetics , Encephalitis Virus, Western Equine/genetics , Encephalitis Virus, Western Equine/immunology , Encephalomyelitis, Western Equine/veterinary , Horse Diseases/virology , Amino Acid Sequence , Animals , Base Sequence , Culicidae/virology , Encephalitis Virus, Western Equine/pathogenicity , Encephalomyelitis, Western Equine/transmission , Encephalomyelitis, Western Equine/virology , Evolution, Molecular , Genetic Variation , Horse Diseases/transmission , Horses , Host Specificity , Insect Vectors/virology , Molecular Sequence Data , Mutation , North America , Phylogeny , RNA, Viral/genetics , Recombination, Genetic
13.
Am J Trop Med Hyg ; 91(3): 442-50, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24842880

ABSTRACT

Vaccinations against the encephalitic alphaviruses (western, eastern, and Venezuelan equine encephalitis virus) are of significant interest to biological defense, public health, and agricultural communities alike. Although vaccines licensed for veterinary applications are used in the Western Hemisphere and attenuated or inactivated viruses have been used under Investigational New Drug status to protect at-risk personnel, there are currently no licensed vaccines for use in humans. Here, we will discuss the need for a trivalent vaccine that can protect humans against all three viruses, recent progress to such a vaccine, and a strategy to continue development to Food and Drug Administration licensure.


Subject(s)
Alphavirus Infections/prevention & control , Alphavirus/immunology , Encephalitis, Viral/prevention & control , Viral Vaccines , Alphavirus/genetics , Alphavirus Infections/virology , Animals , Encephalitis Virus, Eastern Equine/genetics , Encephalitis Virus, Eastern Equine/immunology , Encephalitis Virus, Venezuelan Equine/genetics , Encephalitis Virus, Venezuelan Equine/immunology , Encephalitis Virus, Western Equine/genetics , Encephalitis Virus, Western Equine/immunology , Encephalitis, Viral/virology , Humans , Sequence Alignment , Vaccination
14.
MAbs ; 6(3): 718-27, 2014.
Article in English | MEDLINE | ID: mdl-24518197

ABSTRACT

This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69-3A2) neutralized 50% of 5x10(4) TCID 50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69-3A2 antibody is a promising candidate for future passive vaccine development.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Encephalitis Virus, Western Equine/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Cloning, Molecular , Cross Reactions , Encephalitis Virus, Western Equine/pathogenicity , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/prevention & control , Humans , Immunization , Immunization, Passive , Macaca fascicularis , Male , Peptide Library , Post-Exposure Prophylaxis , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
15.
J Virol ; 88(3): 1771-80, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24257615

ABSTRACT

Alphaviruses are mosquito-borne viruses that cause significant disease in animals and humans. Western equine encephalitis virus (WEEV) and eastern equine encephalitis virus (EEEV), two New World alphaviruses, can cause fatal encephalitis, and EEEV is a select agent of concern in biodefense. However, we have no antiviral therapies against alphaviral disease, and current vaccine strategies target only a single alphavirus species. In an effort to develop new tools for a broader response to outbreaks, we designed and tested a novel alphavirus vaccine comprised of cationic lipid nucleic acid complexes (CLNCs) and the ectodomain of WEEV E1 protein (E1ecto). Interestingly, we found that the CLNC component, alone, had therapeutic efficacy, as it increased survival of CD-1 mice following lethal WEEV infection. Immunization with the CLNC-WEEV E1ecto mixture (lipid-antigen-nucleic acid complexes [LANACs]) using a prime-boost regimen provided 100% protection in mice challenged with WEEV subcutaneously, intranasally, or via mosquito. Mice immunized with LANACs mounted a strong humoral immune response but did not produce neutralizing antibodies. Passive transfer of serum from LANAC E1ecto-immunized mice to nonimmune CD-1 mice conferred protection against WEEV challenge, indicating that antibody is sufficient for protection. In addition, the LANAC E1ecto immunization protocol significantly increased survival of mice following intranasal or subcutaneous challenge with EEEV. In summary, our LANAC formulation has therapeutic potential and is an effective vaccine strategy that offers protection against two distinct species of alphavirus irrespective of the route of infection. We discuss plausible mechanisms as well the potential utility of our LANAC formulation as a pan-alphavirus vaccine.


Subject(s)
Antigens, Viral/immunology , Encephalitis Virus, Eastern Equine/physiology , Encephalitis Virus, Western Equine/physiology , Encephalomyelitis, Equine/prevention & control , Liposomes/immunology , Nucleic Acids/immunology , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Viral/immunology , Antigens, Viral/administration & dosage , Antigens, Viral/chemistry , Antigens, Viral/genetics , Encephalitis Virus, Eastern Equine/immunology , Encephalitis Virus, Western Equine/immunology , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/virology , Female , Humans , Immunization , Liposomes/administration & dosage , Liposomes/chemistry , Mice , Nucleic Acids/administration & dosage , Nucleic Acids/chemistry , Viral Proteins/administration & dosage , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/chemistry , Viral Vaccines/genetics
16.
PLoS One ; 8(1): e53462, 2013.
Article in English | MEDLINE | ID: mdl-23301074

ABSTRACT

Western equine encephalitis virus (WEEV; Alphavirus) is a mosquito-borne virus that can cause severe encephalitis in humans and equids. Previous studies have shown that intranasal infection of outbred CD-1 mice with the WEEV McMillan (McM) strain result in high mortality within 4 days of infection. Here in vivo and ex vivo bioluminescence (BLM) imaging was applied on mice intranasally infected with a recombinant McM virus expressing firefly luciferase (FLUC) to track viral neuroinvasion by FLUC detection and determine any correlation between BLM and viral titer. Immunological markers of disease (MCP-1 and IP-10) were measured and compared to wild type virus infection. Histopathology was guided by corresponding BLM images, and showed that neuroinvasion occurred primarily through cranial nerves, mainly in the olfactory tract. Olfactory bulb neurons were initially infected with subsequent spread of the infection into different regions of the brain. WEEV distribution was confirmed by immunohistochemistry as having marked neuronal infection but very few infected glial cells. Axons displayed infection patterns consistent with viral dissemination along the neuronal axis. The trigeminal nerve served as an additional route of neuroinvasion showing significant FLUC expression within the brainstem. The recombinant virus WEEV.McM.FLUC had attenuated replication kinetics and induced a weaker immunological response than WEEV.McM but produced comparable pathologies. Immunohistochemistry staining for FLUC and WEEV antigen showed that transgene expression was present in all areas of the CNS where virus was observed. BLM provides a quantifiable measure of alphaviral neural disease progression and a method for evaluating antiviral strategies.


Subject(s)
Encephalitis Virus, Western Equine/immunology , Encephalomyelitis, Equine/virology , Luminescent Measurements/methods , Neurons/metabolism , Animals , Antiviral Agents/pharmacology , Brain/pathology , Brain/virology , Cytokines/metabolism , Disease Models, Animal , Encephalomyelitis, Equine/genetics , Genes, Reporter , Immunohistochemistry , Luciferases/genetics , Luciferases/metabolism , Mice , Neuroglia/virology , Olfactory Bulb/virology , Time Factors , Transgenes
17.
J Virol Methods ; 187(1): 185-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23085307

ABSTRACT

Viruses from the Alphavirus genus are responsible for numerous arboviral diseases impacting human health throughout the world. Confirmation of acute alphavirus infection is based on viral isolation, identification of viral RNA, or a fourfold or greater increase in antibody titers between acute and convalescent samples. In convalescence, the specificity of antibodies to an alphavirus may be confirmed by plaque reduction neutralization test. To identify the best method for alphavirus and neutralizing antibody recognition, the standard solid method using a cell monolayer overlay with 0.4% agarose and the semisolid method using a cell suspension overlay with 0.6% carboxymethyl cellulose (CMC) overlay were evaluated. Mayaro virus, Una virus, Venezuelan equine encephalitis virus (VEEV), and Western equine encephalitis virus (WEEV) were selected to be tested by both methods. The results indicate that the solid method showed consistently greater sensitivity than the semisolid method. Also, a "semisolid-variant method" using a 0.6% CMC overlay on a cell monolayer was assayed for virus titration. This method provided the same sensitivity as the solid method for VEEV and also had greater sensitivity for WEEV titration. Modifications in plaque assay conditions affect significantly results and therefore evaluation of the performance of each new assay is needed.


Subject(s)
Alphavirus Infections/diagnosis , Alphavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Viral Plaque Assay/methods , Alphavirus Infections/virology , Animals , Chlorocebus aethiops , Cricetinae , Encephalitis Virus, Venezuelan Equine/immunology , Encephalitis Virus, Western Equine/immunology , Humans , Mice , Neutralization Tests , Vero Cells
18.
J Virol ; 87(3): 1821-33, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23192868

ABSTRACT

Cell-intrinsic innate immune responses mediated by the transcription factor interferon regulatory factor 3 (IRF-3) are often vital for early pathogen control, and effective responses in neurons may be crucial to prevent the irreversible loss of these critical central nervous system cells after infection with neurotropic pathogens. To investigate this hypothesis, we used targeted molecular and genetic approaches with cultured neurons to study cell-intrinsic host defense pathways primarily using the neurotropic alphavirus western equine encephalitis virus (WEEV). We found that WEEV activated IRF-3-mediated neuronal innate immune pathways in a replication-dependent manner, and abrogation of IRF-3 function enhanced virus-mediated injury by WEEV and the unrelated flavivirus St. Louis encephalitis virus. Furthermore, IRF-3-dependent neuronal protection from virus-mediated cytopathology occurred independently of autocrine or paracrine type I interferon activity. Despite being partially controlled by IRF-3-dependent signals, WEEV also disrupted antiviral responses by inhibiting pattern recognition receptor pathways. This antagonist activity was mapped to the WEEV capsid gene, which disrupted signal transduction downstream of IRF-3 activation and was independent of capsid-mediated inhibition of host macromolecular synthesis. Overall, these results indicate that innate immune pathways have important cytoprotective activity in neurons and contribute to limiting injury associated with infection by neurotropic arboviruses.


Subject(s)
Arboviruses/immunology , Capsid Proteins/metabolism , Encephalitis Virus, Western Equine/immunology , Encephalitis Virus, Western Equine/pathogenicity , Interferon Regulatory Factor-3/immunology , Neurons/virology , Animals , Cell Line , Cytopathogenic Effect, Viral/immunology , Encephalitis Virus, St. Louis/growth & development , Encephalitis Virus, Western Equine/growth & development , Humans , Mice , Mice, Inbred C57BL
19.
Vaccine ; 30(50): 7271-7, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23031498

ABSTRACT

We compared the effect on primary vaccination plaque-reduction neutralization 80% titers (PRNT80) responses of same-day administration (at different injection sites) of two similar investigational inactivated alphavirus vaccines, eastern equine encephalitis (EEE) vaccine (TSI-GSD 104) and western equine encephalitis (WEE) vaccine (TSI-GSD 210) to separate administration. Overall, primary response rate for EEE vaccine was 524/796 (66%) and overall primary response rate for WEE vaccine was 291/695 (42%). EEE vaccine same-day administration yielded a 59% response rate and a responder geometric mean titer (GMT)=89 while separate administration yielded a response rate of 69% and a responder GMT=119. WEE vaccine same-day administration yielded a 30% response rate and a responder GMT=53 while separate administration yielded a response rate of 54% and a responder GMT=79. EEE response rates for same-day administration (group A) vs. non-same-day administration (group B) were significantly affected by gender. A logistic regression model predicting response to EEE comparing group B to group A for females yielded an OR=4.10 (95% CL 1.97-8.55; p=.0002) and for males yielded an OR=1.25 (95% CL 0.76-2.07; p=.3768). WEE response rates for same-day administration vs. non-same-day administration were independent of gender. A logistic regression model predicting response to WEE comparing group B to group A yielded an OR=2.14 (95% CL 1.22-3.73; p=.0077). We report immune interference occurring with same-day administration of two completely separate formalin inactivated viral vaccines in humans. These findings combined with the findings of others regarding immune interference would argue for a renewed emphasis on studying the immunological mechanisms of induction of inactivated viral vaccine protection.


Subject(s)
Drug Carriers/administration & dosage , Drug Interactions , Encephalitis Virus, Eastern Equine/immunology , Encephalitis Virus, Western Equine/immunology , Vaccination/methods , Viral Vaccines/administration & dosage , Adolescent , Adult , Aged , Alphavirus/genetics , Alphavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Encephalitis Virus, Eastern Equine/genetics , Encephalitis Virus, Western Equine/genetics , Encephalomyelitis, Eastern Equine/prevention & control , Encephalomyelitis, Western Equine/prevention & control , Female , Genetic Vectors , Humans , Male , Middle Aged , Time Factors , Viral Plaque Assay , Young Adult
20.
Vaccine ; 29(4): 813-20, 2011 Jan 17.
Article in English | MEDLINE | ID: mdl-21084062

ABSTRACT

Western equine encephalitis virus (WEEV) is a mosquito-borne RNA virus which causes lethal infection in humans and equines. There are no commercial vaccines or anti-WEEV drugs available for humans. We used replication-defective, human adenovirus serotype-5 (HAd5) as a delivery vector for developing WEEV vaccine. Our previous study found delivery of both E1 and E2 envelope proteins of WEEV by HAd5 vector offers complete protection against lethal challenge of WEEV. In this paper, we constructed a HAd5-vectored E1 vaccine, Ad5-E1. Mice given single-dose vaccination of Ad5-E1 were completely protected against both homologous and heterologous WEEV strains. The protection was rapid, which was achieved as early as day 7 after vaccination. In addition, Ad5-E1 induced a strong WEEV-specific T cell response. Our data suggest E1 is a potential target for developing single-dose, fast-acting, HAd5-vectored vaccine for WEEV.


Subject(s)
Encephalitis Virus, Western Equine/immunology , Encephalomyelitis, Equine/prevention & control , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Adenoviruses, Human/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Disease Models, Animal , Drug Carriers , Encephalomyelitis, Equine/immunology , Female , Genetic Vectors , Humans , Mice , Mice, Inbred BALB C , Neutralization Tests , Survival Analysis , T-Lymphocytes/immunology , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...