Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.281
Filter
1.
J Vet Sci ; 25(3): e35, 2024 May.
Article in English | MEDLINE | ID: mdl-38834505

ABSTRACT

IMPORTANCE: Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis characterized by inflammation within the central nervous system. However, inflammation in non-neuronal tissues, including the lungs, has not been fully evaluated. OBJECTIVE: This study evaluated the inflammatory response in lungs of EAE mice by immunohistochemistry and histochemistry. METHODS: Eight adult C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE. Lungs and spinal cords were sampled from the experimental mice at the time of sacrifice and used for the western blotting, histochemistry, and immunohistochemistry. RESULTS: Histopathological examination revealed inflammatory lesions in the lungs of EAE mice, characterized by infiltration of myeloperoxidase (MPO)- and galectin-3-positive cells, as determined by immunohistochemistry. Increased numbers of collagen fibers in the lungs of EAE mice were confirmed by histopathological analysis. Western blotting revealed significantly elevated level of osteopontin (OPN), cluster of differentiation 44 (CD44), MPO and galectin-3 in the lungs of EAE mice compared with normal controls (p < 0.05). Immunohistochemical analysis revealed both OPN and CD44 in ionized calcium-binding adapter molecule 1-positive macrophages within the lungs of EAE mice. CONCLUSIONS AND RELEVANCE: Taken together, these findings suggest that the increased OPN level in lungs of EAE mice led to inflammation; concurrent increases in proinflammatory factors (OPN and galectin-3) caused pulmonary impairment.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Lung , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Lung/pathology , Female , Immunohistochemistry , Osteopontin/metabolism , Galectin 3/metabolism , Peroxidase/metabolism , Hyaluronan Receptors/metabolism , Spinal Cord/pathology , Inflammation/pathology , Blotting, Western
2.
J Neuroinflammation ; 21(1): 146, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824594

ABSTRACT

T cells play an important role in the acquired immune response, with regulatory T cells (Tregs) serving as key players in immune tolerance. Tregs are found in nonlymphoid and damaged tissues and are referred to as "tissue Tregs". They have tissue-specific characteristics and contribute to immunomodulation, homeostasis, and tissue repair through interactions with tissue cells. However, important determinants of Treg tissue specificity, such as antigen specificity, tissue environment, and pathology, remain unclear. In this study, we analyzed Tregs in the central nervous system of mice with ischemic stroke and experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. The gene expression pattern of brain Tregs in the EAE model was more similar to that of ischemic stroke Tregs in the brain than to that of spinal cord Tregs. In addition, most T-cell receptors (TCRs) with high clonality were present in both the brain and spinal cord. Furthermore, Gata3+ and Rorc+ Tregs expressed TCRs recognizing MOG in the spinal cord, suggesting a tissue environment conducive to Rorc expression. Tissue-specific chemokine/chemokine receptor interactions in the spinal cord and brain influenced Treg localization. Finally, spinal cord- or brain-derived Tregs had greater anti-inflammatory capacities in EAE mice, respectively. Taken together, these findings suggest that the tissue environment, rather than pathogenesis or antigen specificity, is the primary determinant of the tissue-specific properties of Tregs. These findings may contribute to the development of novel therapies to suppress inflammation through tissue-specific Treg regulation.


Subject(s)
Brain , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Spinal Cord , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Spinal Cord/immunology , Spinal Cord/pathology , Spinal Cord/metabolism , Brain/immunology , Brain/metabolism , Brain/pathology , Female , Disease Models, Animal
3.
J Neuroinflammation ; 21(1): 144, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822334

ABSTRACT

Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-ß or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-ß and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-ß-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-ß. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.


Subject(s)
CD11b Antigen , Encephalomyelitis, Autoimmune, Experimental , Interferon-gamma , Mice, Inbred C57BL , Myeloid Cells , Spleen , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Interferon-gamma/metabolism , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Spleen/immunology , CD11b Antigen/metabolism , Female , Myelin-Oligodendrocyte Glycoprotein/toxicity , Myelin-Oligodendrocyte Glycoprotein/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Peptide Fragments/toxicity , Peptide Fragments/pharmacology , Transforming Growth Factor beta/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Forkhead Transcription Factors/metabolism , Disease Models, Animal
4.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745307

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Interleukin-9 , Mice, Inbred C57BL , Microglia , Synapses , Tumor Necrosis Factor-alpha , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Mice , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Interleukin-9/metabolism , Female , Tumor Necrosis Factor-alpha/metabolism , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Membrane Glycoproteins/metabolism , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Disease Models, Animal
5.
Sci Rep ; 14(1): 10877, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740862

ABSTRACT

In chronic stages of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalitis (EAE), connexin (Cx)43 gap junction channel proteins are overexpressed because of astrogliosis. To elucidate the role of increased Cx43, the central nervous system (CNS)-permeable Cx blocker INI-0602 was therapeutically administered. C57BL6 mice with chronic EAE initiated by MOG35-55 received INI-0602 (40 mg/kg) or saline intraperitoneally every other day from days post-immunization (dpi) 17-50. Primary astroglia were employed to observe calcein efflux responses. In INI-0602-treated mice, EAE clinical signs improved significantly in the chronic phase, with reduced demyelination and decreased CD3+ T cells, Iba-1+ and F4/80+ microglia/macrophages, and C3+GFAP+ reactive astroglia infiltration in spinal cord lesions. Flow cytometry analysis of CD4+ T cells from CNS tissues revealed significantly reduced Th17 and Th17/Th1 cells (dpi 24) and Th1 cells (dpi 50). Multiplex array of cerebrospinal fluid showed significantly suppressed IL-6 and significantly increased IL-10 on dpi 24 in INI-0602-treated mice, and significantly suppressed IFN-γ and MCP-1 on dpi 50 in the same group. In vitro INI-0602 treatment inhibited ATP-induced calcium propagations of Cx43+/+ astroglial cells to similar levels of those of Cx43-/- cells. Astroglial Cx43 hemichannels represent a novel therapeutic target for chronic EAE and MS.


Subject(s)
Astrocytes , Connexin 43 , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Multiple Sclerosis , Animals , Connexin 43/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Female
6.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732169

ABSTRACT

Infections may affect the course of autoimmune inflammatory diseases of the central nervous system (CNS), such as multiple sclerosis (MS). Infections with lactate dehydrogenase-elevating virus (LDV) protected mice from developing experimental autoimmune encephalomyelitis (EAE), a mouse counterpart of MS. Uninfected C57BL/6 mice immunized with the myelin oligodendrocyte glycoprotein peptide (MOG35-55) experienced paralysis and lost weight at a greater rate than mice who had previously been infected with LDV. LDV infection decreased the presentation of the MOG peptide by CD11b+CD11c+ dendritic cells (DC) to pathogenic T lymphocytes. When comparing non-infected mice to infected mice, the histopathological examination of the CNS showed more areas of demyelination and CD45+ and CD3+, but not Iba1+ cell infiltration. These results suggest that the protective effect of LDV infection against EAE development is mediated by a suppression of myelin antigen presentation by a specific DC subset to autoreactive T lymphocytes. Such a mechanism might contribute to the general suppressive effect of infections on autoimmune diseases known as the hygiene hypothesis.


Subject(s)
Dendritic Cells , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Lactate dehydrogenase-elevating virus , Mice, Inbred C57BL , Multiple Sclerosis , Myelin-Oligodendrocyte Glycoprotein , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Myelin-Oligodendrocyte Glycoprotein/immunology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , Multiple Sclerosis/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/virology , Lactate dehydrogenase-elevating virus/immunology , CD11b Antigen/metabolism , CD11b Antigen/immunology , Antigen Presentation/immunology , Female , CD11c Antigen/metabolism , Cardiovirus Infections/immunology , Peptide Fragments/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
7.
CNS Neurosci Ther ; 30(5): e14736, 2024 05.
Article in English | MEDLINE | ID: mdl-38739106

ABSTRACT

AIMS: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease. Microglia are reportedly involved in the pathogenesis of MS. However, the key molecules that control the inflammatory activity of microglia in MS have not been identified. METHODS: Experimental autoimmune encephalomyelitis (EAE) mice were randomized into CD22 blockade and control groups. The expression levels of microglial CD22 were measured by flow cytometry, qRT-PCR, and immunofluorescence. The effects of CD22 blockade were examined via in vitro and in vivo studies. RESULTS: We detected increased expression of microglial CD22 in EAE mice. In addition, an in vitro study revealed that lipopolysaccharide upregulated the expression of CD22 in microglia and that CD22 blockade modulated microglial polarization. Moreover, an in vivo study demonstrated that CD22 blockade aggravated EAE in mice and promoted microglial M1 polarization. CONCLUSION: Collectively, our study indicates that CD22 may be protective against EAE and may play a critical role in the maintenance of immune homeostasis in EAE mice.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Microglia , Sialic Acid Binding Ig-like Lectin 2 , Animals , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Microglia/drug effects , Microglia/metabolism , Mice , Female , Cell Polarity/drug effects , Cell Polarity/physiology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/toxicity , Cells, Cultured , Myelin-Oligodendrocyte Glycoprotein/toxicity , Myelin-Oligodendrocyte Glycoprotein/immunology
8.
Acta Neuropathol ; 147(1): 75, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656399

ABSTRACT

In multiple sclerosis (MS), persisting disability can occur independent of relapse activity or development of new central nervous system (CNS) inflammatory lesions, termed chronic progression. This process occurs early and it is mostly driven by cells within the CNS. One promising strategy to control progression of MS is the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of both B cells and myeloid cells, such as macrophages and microglia. The benefit of BTK inhibition by evobrutinib was shown as we observed reduced pro-inflammatory activation of microglia when treating chronic experimental autoimmune encephalomyelitis (EAE) or following the adoptive transfer of activated T cells. Additionally, in a model of toxic demyelination, evobrutinib-mediated BTK inhibition promoted the clearance of myelin debris by microglia, leading to an accelerated remyelination. These findings highlight that BTK inhibition has the potential to counteract underlying chronic progression of MS.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Encephalomyelitis, Autoimmune, Experimental , Microglia , Myelin Sheath , Piperidines , Pyrimidines , Animals , Female , Mice , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Biphenyl Compounds/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice, Inbred C57BL , Microglia/pathology , Microglia/drug effects , Microglia/metabolism , Myelin Sheath/pathology , Myelin Sheath/metabolism , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Remyelination/physiology , Remyelination/drug effects
9.
Sci Adv ; 10(17): eadk1045, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657065

ABSTRACT

T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.


Subject(s)
Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental , Serine C-Palmitoyltransferase , Sphingolipids , Th17 Cells , Animals , Sphingolipids/metabolism , Sphingolipids/biosynthesis , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/cytology , Mice , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Serine C-Palmitoyltransferase/metabolism , Serine C-Palmitoyltransferase/genetics , Reactive Oxygen Species/metabolism , Glycolysis , Mice, Knockout , Colitis/metabolism , Colitis/pathology , Mice, Inbred C57BL
10.
APMIS ; 132(6): 452-464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563150

ABSTRACT

Multiple sclerosis (MS) is a condition where the central nervous system loses its myelin coating due to autoimmune inflammation. The experimental autoimmune encephalomyelitis (EAE) simulates some aspects of human MS. Boswellic acids are natural compounds derived from frankincense extract, known for their anti-inflammatory properties. The purpose of this research was to investigate therapeutic potential of boswellic acids. Mice were divided into three groups: low-dose (LD), high-dose (HD), and control groups (CTRL). Following EAE induction, the mice received daily doses of boswellic acid for 25 days. Brain tissue damage, clinical symptoms, and levels of TGF-ß, IFN-γ, and IL-17 cytokines in cell cultured supernatant of lymphocytes were assessed. Gene expression of transcription factors in brain was measured using real-time PCR. The levels of brain demyelination were significantly lower in the treatment groups compared to the CTRL group. Boswellic acid reduced the severity and duration of EAE symptoms. Furthermore, boswellic acid decreased the amounts of IFN-γ and IL-17, also the expression of T-bet and ROR-γt in brain. On the contrary, it increased the levels of TGF-ß and the expression FoxP3 and GATA3. Our findings suggest that boswellic acids possess therapeutic potential for EAE by modulating the immune response and reducing inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Triterpenes , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice , Female , Mice, Inbred C57BL , Brain/drug effects , Brain/pathology , Brain/metabolism , Brain/immunology , Cytokines/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Interleukin-17/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
11.
Neuropharmacology ; 252: 109940, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38570068

ABSTRACT

The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.


Subject(s)
Arachidonic Acids , Encephalomyelitis, Autoimmune, Experimental , Endocannabinoids , Glycerides , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Glycerides/metabolism , Mice , Endocannabinoids/metabolism , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Synapses/drug effects , Synapses/pathology , Synapses/metabolism , Microglia/drug effects , Microglia/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism
12.
Eur J Pharmacol ; 973: 176600, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38643834

ABSTRACT

Multiple sclerosis is an autoimmune disease that causes inflammatory damage to the central nervous system. At present, the pathogenesis of the disease is unknown. There is a lack of few effective therapy medications available. Therefore, it is necessary to further explore the pathogenesis of this illness and develop potential therapeutic drugs. Dabrafenib is potential therapeutic medicine for nervous system disease. In this study, we preliminarily studied the possible mechanism of dabrafenib in the treatment of multiple sclerosis from the perspective of ferroptosis. First, we observed that dabrafenib significantly improved symptoms of gait abnormalities, limb weakness or paralysis, and down-regulated levels of spinal cord inflammation in an experimental autoimmune encephalitis (EAE) model. Meanwhile, we also observed that dabrafenib could inhibit the proteins of ferroptosis in spinal cord tissue of EAE mice by Western blot. The results of immunohistochemical analysis showed that the effect of dabrafenib on ferroptosis mainly occurred in microglia. Second, dabrafenib was demonstrated to be able to inhibit the S phase of the cell cycle, reduce ROS levels, and reinstate mitochondrial activity in the LPS-induced BV2 inflammatory cell model. Futhermore, we found that dabrafenib inhibits P-JAK2 and P-STAT3 activation by acting Axl receptor, which in turn prevents neurogenic inflammation in microglia. The co-stimulated BV2 cell model with LPS and Erastin also verified these findings. Ultimately, the Axl knockout mice used to construct the EAE model allowed for the confirmation that dabrafenib prevented ferroptosis in microglia by up-regulating Axl receptor, which reduced the inflammatory demyelination associated with EAE. In summary, our research demonstrates the advantages of dabrafenib in multiple sclerosis treatment, which can prevent ferroptosis in microglia in multiple sclerosis through up-regulating Axl receptor, thus halting the progression of multiple sclerosis.


Subject(s)
Axl Receptor Tyrosine Kinase , Encephalomyelitis, Autoimmune, Experimental , Ferroptosis , Imidazoles , Oximes , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Up-Regulation , Animals , Imidazoles/pharmacology , Imidazoles/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Ferroptosis/drug effects , Proto-Oncogene Proteins/metabolism , Mice , Oximes/pharmacology , Oximes/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Up-Regulation/drug effects , Mice, Inbred C57BL , Female , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , STAT3 Transcription Factor/metabolism , Cell Line , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Signal Transduction/drug effects
13.
Cells ; 13(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38607051

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) featuring numerous neuropathologies, including optic neuritis (ON) in some patients. However, the molecular mechanisms of ON remain unknown. Galectins, ß-galactoside-binding lectins, are involved in various pathophysiological processes. We previously showed that galectin-3 (gal-3) is associated with the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the current study, we investigated the expression of gal-3 in the visual pathway in EAE mice to clarify its role in the pathogenesis of ON. Immunohistochemical analysis revealed upregulation of gal-3 in the visual pathway of the EAE mice during the peak stage of the disease, compared with naïve and EAE mice during the chronic stage. Gal-3 was detected mainly in microglia/macrophages and astrocytes in the visual pathway in EAE mice. In addition, gal-3+/Iba-1+ cells, identified as phagocytic by immunostaining for cathepsin D, accumulated in demyelinating lesions in the visual pathway during the peak disease stage of EAE. Moreover, NLRP3 expression was detected in most gal-3+/Iba-1+ cells. These results strongly suggest that gal-3 regulates NLRP3 signaling in microglia/macrophages and neuroinflammatory demyelination in ON. In astrocytes, gal-3 was expressed from the peak to the chronic disease stages. Taken together, our findings suggest a critical role of gal-3 in the pathogenesis of ON. Thus, gal-3 in glial cells may serve as a potential therapeutic target for ON.


Subject(s)
Galectin 3 , Optic Neuritis , Animals , Humans , Mice , Encephalomyelitis, Autoimmune, Experimental/pathology , Galectin 3/metabolism , Galectins/metabolism , Multiple Sclerosis/pathology , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein , Optic Neuritis/pathology , Visual Pathways/pathology
14.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543019

ABSTRACT

The exact mechanisms of MS (multiple sclerosis) evolution are still unknown. However, the development of EAE (experimental autoimmune encephalomyelitis simulating human MS) in C57BL/6 mice occurs due to the violation of bone marrow hematopoietic stem cell differentiation profiles, leading to the production of toxic for human autoantibody splitting MBP (myelin basic protein), MOG (mouse oligodendrocyte glycoprotein), five histones, DNA, and RNA. Here, we first analyzed the changes in the relative phosphatase activity of IgGs from C57BL/6 mice blood over time, corresponding to three stages of EAE: onset, acute, and remission. Antibodies have been shown to catalyze the hydrolysis of p-nitrophenyl phosphate at several optimal pH values, mainly in the range of 6.5-7.0 and 8.5-9.5. During the spontaneous development of EAE, the most optimal value is pH 6.5. At 50 days after the birth of mice, the phosphatase activity of IgGs at pH 8.8 is 1.6-fold higher than at pH 6.5. During spontaneous development of EAE from 50 to 100 days, an increase in phosphatase activity is observed at pH 6.5 but a decrease at pH 8.8. After mice were immunized with DNA-histone complex by 20 and 60 days, phosphatase activity increased respectively by 65.3 and 109.5 fold (pH 6.5) and 128.4 and 233.6 fold (pH 8.8). Treatment of mice with MOG at the acute phase of EAE development (20 days) leads to a maximal increase in the phosphatase activity of 117.6 fold (pH 6.5) and 494.7 fold (pH 8.8). The acceleration of EAE development after mice treatment with MOG and DNA-histone complex results in increased production of lymphocytes synthesizing antibodies with phosphatase activity. All data show that IgG phosphatase activity could be essential in EAE pathogenesis.


Subject(s)
Antibodies, Catalytic , Encephalomyelitis, Autoimmune, Experimental , Mice , Humans , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Autoantibodies , Myelin-Oligodendrocyte Glycoprotein , Histones , Mice, Inbred C57BL , DNA , Phosphoric Monoester Hydrolases
15.
Parasitology ; 151(4): 412-420, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443998

ABSTRACT

The incidences of multiple sclerosis have risen worldwide, yet neither the trigger nor efficient treatment is known. Some research is dedicated to looking for treatment by parasites, mainly by helminths. However, little is known about the effect of helminths that infect the nervous system. Therefore, we chose the neurotropic avian schistosome Trichobilharzia regenti, which strongly promotes M2 polarization and tissue repair in the central nervous system, and we tested its effect on the course of experimental autoimmune encephalomyelitis (EAE) in mice. Surprisingly, the symptoms of EAE tended to worsen after the infection with T. regenti. The infection did not stimulate tissue repair, as indicated by the similar level of demyelination. Eosinophils heavily infiltrated the infected tissue, and the microglia number increased as well. Furthermore, splenocytes from T. regenti-infected EAE mice produced more interferon (IFN)-γ than splenocytes from EAE mice after stimulation with myelin oligodendrocyte glycoprotein. Our research indicates that the combination of increased eosinophil numbers and production of IFN-γ tends to worsen the EAE symptoms. Moreover, the data highlight the importance of considering the direct effect of the parasite on the tissue, as the migrating parasite may further tissue damage and make tissue repair even more difficult.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Interferon-gamma , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Female , Interferon-gamma/metabolism , Spleen/pathology , Spleen/parasitology , Spleen/immunology , Schistosomatidae/physiology , Eosinophils/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology
16.
Cell ; 187(8): 1990-2009.e19, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38513664

ABSTRACT

Multiple sclerosis (MS) is a neurological disease characterized by multifocal lesions and smoldering pathology. Although single-cell analyses provided insights into cytopathology, evolving cellular processes underlying MS remain poorly understood. We investigated the cellular dynamics of MS by modeling temporal and regional rates of disease progression in mouse experimental autoimmune encephalomyelitis (EAE). By performing single-cell spatial expression profiling using in situ sequencing (ISS), we annotated disease neighborhoods and found centrifugal evolution of active lesions. We demonstrated that disease-associated (DA)-glia arise independently of lesions and are dynamically induced and resolved over the disease course. Single-cell spatial mapping of human archival MS spinal cords confirmed the differential distribution of homeostatic and DA-glia, enabled deconvolution of active and inactive lesions into sub-compartments, and identified new lesion areas. By establishing a spatial resource of mouse and human MS neuropathology at a single-cell resolution, our study unveils the intricate cellular dynamics underlying MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Spinal Cord , Animals , Humans , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Spinal Cord/metabolism , Spinal Cord/pathology , Mice , Single-Cell Gene Expression Analysis , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroglia/metabolism , Neuroglia/pathology
17.
Nat Neurosci ; 27(5): 901-912, 2024 May.
Article in English | MEDLINE | ID: mdl-38514857

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination of the central nervous system (CNS). Autologous hematopoietic cell transplantation (HCT) shows promising benefits for relapsing-remitting MS in open-label clinical studies, but the cellular mechanisms underlying its therapeutic effects remain unclear. Using single-nucleus RNA sequencing, we identify a reactive myeloid cell state in chronic experimental autoimmune encephalitis (EAE) associated with neuroprotection and immune suppression. HCT in EAE mice results in an increase of the neuroprotective myeloid state, improvement of neurological deficits, reduced number of demyelinated lesions, decreased number of effector T cells and amelioration of reactive astrogliosis. Enhancing myeloid cell incorporation after a modified HCT further improved these neuroprotective effects. These data suggest that myeloid cell manipulation or replacement may be an effective therapeutic strategy for chronic inflammatory conditions of the CNS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Myeloid Cells , Animals , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Female , Hematopoietic Stem Cell Transplantation/methods , Neuroprotection/physiology
18.
Brain Connect ; 14(4): 209-225, 2024 May.
Article in English | MEDLINE | ID: mdl-38534961

ABSTRACT

Introduction: The subventricular zone promotes remyelination through activation differentiation of oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) into mature oligodendrocytes and thus in the adult brain. In multiple sclerosis (MS) this regenerative capability is halted resulting in neurodegeneration. We aimed to systematically search and synthesize evidence on mechanisms and phenomena associated with subventricular zone (SVZ) dysfunction in MS. Materials and Methods: Our systematic review was reported according to the PRISMA-ScR statement. MEDLINE, SCOPUS, ProQuest, and Google Scholar were searched using the terms "subventricular zone" and "multiple sclerosis," including English-written in vivo and postmortem studies. Results: Twenty studies were included. Thirteen studies on models of experimental autoimmune encephalomyelitis (EAE) reported among others strong stathmin immunoreactivity in the SVZ of EAE models, the role of MOG immunization in neurogenesis impairment, the effect of parenchymal OPCs and NSCs in myelin repair, and the importance of ependymal cells (E1/E2) and ciliated B1 cells in SVZ stem cell signaling. CXCR4 signaling and transcriptional profiles of SVZ microglia, Gli1 pathway, and galactin-3 were also explored. Studies in humans demonstrated microstructural SVZ damage in progressive MS and the persistence of black holes near the SVZ, whereas postmortem confirmed the generation of polysialic acid-neural cell adhesion molecule and NG2-positive progenitors through SVZ activation, SVZ stathmin immunoreactivity, Shh pathway, and Gal-3 upregulation. Discussion: Oligodendrogenesis defects translate to reduced remyelination, a hallmark of MS that determines its end-phenotype and disease course. Conclusion: The role of inflammation and subsequent SVZ microenvironment disruption is evident in MS pathology.


Subject(s)
Multiple Sclerosis , Neural Stem Cells , Neurogenesis , Oligodendroglia , Animals , Humans , Cell Differentiation/physiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Lateral Ventricles/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Neural Stem Cells/pathology , Neurogenesis/physiology , Oligodendroglia/pathology , Oligodendroglia/metabolism
19.
Immunol Lett ; 267: 106852, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508497

ABSTRACT

We have recently characterized experimental autoimmune encephalomyelitis (EAE) induced in DA rats with spinal cord homogenate without complete Freund's adjuvant (CFA). The main advantage of this multiple sclerosis model is the lack of CFA-related confounding effects which represent the major obstacles in translating findings from EAE to multiple sclerosis. Here, antigen specificity of the cellular and humoral immune response directed against the central nervous system was explored. The reactivity of T and B cells to myelin basic protein, myelin oligodendrocyte glycoprotein, and ß-synuclein was detected. Having in mind that reactivity against ß-synuclein was previously associated with autoimmunity against the brain, the infiltration of immune cells into different brain compartments, i.e. pons, cerebellum, hippocampus, and cortex was determined. T cell infiltration was observed in all structures examined. This finding stimulated investigation of the effects of immunization on DA rat behavior using the elevated plus maze and the open field test. Rats recovered from EAE displayed increased anxiety-like behavior. These data support CFA-free EAE in DA rats as a useful model for multiple sclerosis research.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Spinal Cord , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Rats , Spinal Cord/immunology , Spinal Cord/metabolism , Spinal Cord/pathology , Disease Models, Animal , Myelin-Oligodendrocyte Glycoprotein/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Myelin Basic Protein/immunology , Myelin Basic Protein/metabolism , Brain/pathology , Brain/immunology , Brain/metabolism , Female , Encephalitis/immunology , Encephalitis/etiology , Encephalitis/pathology , Encephalitis/metabolism , Freund's Adjuvant/immunology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology
20.
Nanoscale ; 16(15): 7515-7531, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38498071

ABSTRACT

Despite the pharmacological arsenal approved for Multiple Sclerosis (MS), there are treatment-reluctant patients for whom cell therapy appears as the only therapeutic alternative. Myeloid-derived suppressor cells (MDSCs) are immature cells of the innate immunity able to control the immune response and to promote oligodendroglial differentiation in the MS animal model experimental autoimmune encephalomyelitis (EAE). However, when isolated and cultured for cell therapy purposes, MDSCs lose their beneficial immunomodulatory properties. To prevent this important drawback, culture devices need to be designed so that MDSCs maintain a state of immaturity and immunosuppressive function similar to that exerted in the donor organism. With this aim, we select graphene oxide (GO) as a promising candidate as it has been described as a biocompatible nanomaterial with the capacity to biologically modulate different cell types, yet its immunoactive potential has been poorly explored to date. In this work, we have fabricated GO films with two distintive redox and roughness properties and explore their impact in MDSC culture right after isolation. Our results show that MDSCs isolated from immune organs of EAE mice maintain an immature phenotype and highly immunosuppressive activity on T lymphocytes after being cultured on highly-reduced GO films (rGO200) compared to those grown on conventional glass coverslips. This immunomodulation effect is depleted when MDSCs are exposed to slightly rougher and more oxidized GO substrates (rGO90), in which cells experience a significant reduction in cell size associated with the activation of apoptosis. Taken together, the exposure of MDSCs to GO substrates with different redox state and roughness is presented as a good strategy to control MDSC activity in vitro. The versatility of GO nanomaterials in regards to the impact of their physico-chemical properties in immunomodulation opens the door to their selective therapeutic potential for pathologies where MDSCs need to be enhanced (MS) or inhibited (cancer).


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Graphite , Multiple Sclerosis , Myeloid-Derived Suppressor Cells , Humans , Mice , Animals , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Graphite/pharmacology , Immunosuppressive Agents , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...