Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 439
Filter
1.
Biochem Biophys Res Commun ; 719: 150103, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38761636

ABSTRACT

The RNA-binding protein PKR serves as a crucial antiviral innate immune factor that globally suppresses translation by sensing viral double-stranded RNA (dsRNA) and by phosphorylating the translation initiation factor eIF2α. Recent findings have unveiled that single-stranded RNAs (ssRNAs), including in vitro transcribed (IVT) mRNA, can also bind to and activate PKR. However, the precise mechanism underlying PKR activation by ssRNAs, remains incompletely understood. Here, we developed a NanoLuc Binary Technology (NanoBiT)-based in vitro PKR dimerization assay to assess the impact of ssRNAs on PKR dimerization. Our findings demonstrate that, akin to double-stranded polyinosinic:polycytidylic acid (polyIC), an encephalomyocarditis virus (EMCV) RNA, as well as NanoLuc luciferase (Nluc) mRNA, can induce PKR dimerization. Conversely, homopolymeric RNA lacking secondary structure fails to promote PKR dimerization, underscoring the significance of secondary structure in this process. Furthermore, adenovirus VA RNA 1, another ssRNA, impedes PKR dimerization by competing with Nluc mRNA. Additionally, we observed structured ssRNAs capable of forming G-quadruplexes induce PKR dimerization. Collectively, our results indicate that ssRNAs have the ability to either induce or inhibit PKR dimerization, thus representing potential targets for the development of antiviral and anti-inflammatory agents.


Subject(s)
Encephalomyocarditis virus , Protein Multimerization , RNA, Double-Stranded , RNA, Viral , eIF-2 Kinase , eIF-2 Kinase/metabolism , eIF-2 Kinase/chemistry , Humans , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , Encephalomyocarditis virus/genetics , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , Poly I-C/pharmacology , Nucleic Acid Conformation
2.
Ecohealth ; 21(1): 112-122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38653850

ABSTRACT

The hazel dormouse (Muscardinus avellanarius) population in the UK continues to decline due to habitat loss, despite reintroductions of captive-bred individuals being conducted nationally for over 30 years. Disease surveillance of captive-bred and wild dormice is performed to identify novel and existing disease threats which could impact populations. In this study, we firstly investigated cause of death in seven hazel dormice found dead in England, through next-generation sequencing identifying a virus closely related to a wood mouse encephalomyocarditis virus-2 (EMCV-2). Subsequently, lung tissue samples from 35 out of 44 hazel dormice tested positive for EMCV-2 RNA using a reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Sanger sequencing methods developed in this study. Formalin-fixed tissues available for nine hazel dormice which tested positive for EMCV-2 RNA were examined microscopically. Three cases showed moderate interstitial pneumonia with minimal to mild lymphoplasmacytic myocarditis, but no evidence of encephalitis. However, the presence of possible alternative causes of death in these cases means that the lesions cannot be definitively attributed to EMCV-2. Here, we report the first detection of EMCV-2 in hazel dormice and conclude that EMCV-2 is likely to be endemic in the hazel dormouse population in England and may be associated with clinical disease.


Subject(s)
Cardiovirus Infections , Encephalomyocarditis virus , Animals , Encephalomyocarditis virus/isolation & purification , Encephalomyocarditis virus/genetics , Cardiovirus Infections/epidemiology , Cardiovirus Infections/virology , Cardiovirus Infections/veterinary , Prevalence , England/epidemiology , RNA, Viral/genetics , Female , Male
3.
Biochemistry ; 63(1): 107-115, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38081770

ABSTRACT

The encephalomyocarditis virus internal ribosome entry site (EMCV IRES) is a structured RNA sequence found in the 5' UTR of the genomic RNA of the encephalomyocarditis virus. The EMCV IRES structure facilitates efficient translation initiation without needing a 5' m7G cap or the cap-binding protein eIF4E. The secondary structure of IRES has been the subject of several previous studies, and a number of different structural models have been proposed. Though some domains of the IRES are conserved across the different secondary structure models, domain I of the IRES varies greatly across them. A literature comparison led to the identification of three regions of interest that display structural heterogeneity within past secondary structure models. To test the accuracy of the secondary structure models in these regions, we employed mutational analysis and SHAPE probing. Mutational analysis revealed that two helical regions within the identified regions of interest are important for IRES translation. These helical regions are consistent with only one of the structure predictions in the literature and do not form in EMCV IRES structures predicted using modern secondary structure prediction methods. The importance of these regions is further supported by multiple SHAPE protections when probing was performed after in vitro translation, indicating that these regions are involved in the IRES translation complex. This work validates a published structure and demonstrates the importance of domain I during EMCV IRES translation initiation.


Subject(s)
Encephalomyocarditis virus , Internal Ribosome Entry Sites , Encephalomyocarditis virus/genetics , Encephalomyocarditis virus/metabolism , Base Sequence , Protein Biosynthesis , RNA, Viral/genetics , RNA, Viral/metabolism
4.
Vopr Virusol ; 68(5): 428-444, 2023 Nov 07.
Article in Russian | MEDLINE | ID: mdl-38156577

ABSTRACT

INTRODUCTION: Infection of cells with encephalomyocarditis virus type 1 (EMCV-1, Cardiovirus A: Picornaviridae) is accompanied by suppression of cellular protein synthesis. The main role in the inhibition of cellular translation is assigned to the L and 2A «security¼ proteins. The mechanism of the possible influence of the L protein on cellular translation is unknown. There are hypotheses about the mechanism of influence of 2A protein on the efficiency of cap-dependent translation, which are based on interaction with translation factors and ribosome subunits. However, the available experimental data are contradictory, obtained using different approaches, and do not form a unified model of the interaction between the L and 2A proteins and the cellular translation machinery. AIM: To study the role of L and 2A «security¼ proteins in the suppression of translation of cellular proteins and the efficiency of translation and processing of viral proteins in infected cells. MATERIALS AND METHODS: Mutant variants of EMCV-1 were obtained to study the properties of L and 2A viral proteins: Zfmut, which has a defective L; Δ2A encoding a partially deleted 2A; Zfmut&Δ2A containing mutations in both proteins. Translational processes in infected cells were studied by Western-blot and the pulse method of incorporating radioactively labeled amino acids (14C) into newly synthesized proteins, followed by radioautography. RESULTS: The functional inactivation of the 2A protein does not affect the inhibition of cellular protein synthesis. A direct correlation was found between the presence of active L protein and specific inactivation of cellular protein synthesis at an early stage of viral infection. Nonspecific suppression of the translational processes of the infected cell, accompanied by phosphorylation of eIF2α, occurs at the late stage of infection. Partial removal of the 2A protein from the EMCV-1 genome does not affect the development of this process, while inactivation of the L protein accelerates the onset of complete inhibition of protein synthesis. Partial deletion of the 2A disrupts the processing of viral capsid proteins. Suppression of L protein functions leads to a decrease in the efficiency of viral translation. CONCLUSION: A study of the role of EMCV-1 L and 2A proteins during the translational processes of an infected cell, first performed using infectious viral pathogens lacking active L and 2A proteins in one experiment, showed that 2A protein is not implicated in the inhibition of cellular translation in HeLa cells; L protein seems to play an important role not only in the specific inhibition of cellular translation but also in maintaining the efficient synthesis of viral proteins; 2A protein is involved not only in primary but also in secondary processing of EMCV-1 capsid proteins.


Subject(s)
Encephalomyocarditis virus , Viral Proteins , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , HeLa Cells , Encephalomyocarditis virus/genetics , Encephalomyocarditis virus/metabolism , Capsid Proteins/genetics , Mutation
5.
Nat Commun ; 14(1): 6429, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833274

ABSTRACT

RNA-binding proteins (RBPs) are crucial regulators of gene expression, often composed of defined domains interspersed with flexible, intrinsically disordered regions. Determining the structure of ribonucleoprotein (RNP) complexes involving such RBPs necessitates integrative structural modeling due to their lack of a single stable state. In this study, we integrate magnetic resonance, mass spectrometry, and small-angle scattering data to determine the solution structure of the polypyrimidine-tract binding protein 1 (PTBP1/hnRNP I) bound to an RNA fragment from the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV). This binding, essential for enhancing the translation of viral RNA, leads to a complex structure that demonstrates RNA and protein compaction, while maintaining pronounced conformational flexibility. Acting as an RNA chaperone, PTBP1 orchestrates the IRES RNA into a few distinct conformations, exposing the RNA stems outward. This conformational diversity is likely common among RNP structures and functionally important. Our approach enables atomic-level characterization of heterogeneous RNP structures.


Subject(s)
Internal Ribosome Entry Sites , RNA-Binding Proteins , RNA-Binding Proteins/metabolism , Encephalomyocarditis virus/genetics , RNA, Viral/metabolism , Nucleic Acid Conformation , Protein Biosynthesis
6.
Nat Commun ; 14(1): 4977, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640715

ABSTRACT

Many RNA viruses employ internal ribosome entry sites (IRESs) in their genomic RNA to commandeer the host's translational machinery for replication. The IRES from encephalomyocarditis virus (EMCV) interacts with eukaryotic translation initiation factor 4 G (eIF4G), recruiting the ribosomal subunit for translation. Here, we analyze the three-dimensional structure of the complex composed of EMCV IRES, the HEAT1 domain fragment of eIF4G, and eIF4A, by cryo-electron microscopy. Two distinct eIF4G-interacting domains on the IRES are identified, and complex formation changes the angle therebetween. Further, we explore the dynamics of these domains by using solution NMR spectroscopy, revealing conformational equilibria in the microsecond to millisecond timescale. In the lowly-populated conformations, the base-pairing register of one domain is shifted with the structural transition of the three-way junction, as in the complex structure. Our study provides insights into the viral RNA's sophisticated strategy for optimal docking to hijack the host protein.


Subject(s)
Eukaryotic Initiation Factor-4G , RNA, Viral , RNA, Viral/genetics , Cryoelectron Microscopy , Encephalomyocarditis virus/genetics , Genomics , Internal Ribosome Entry Sites
7.
Vet Microbiol ; 281: 109729, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37023504

ABSTRACT

Tripartite motif-containing protein 7 (TRIM7), the member of tripartite motif (TRIM) family, plays an important role in innate immune responses against viral infection. Among them, the function of TRIM7 in Encephalomyocarditis virus (EMCV) infection has not been reported. Here, we found that TRIM7 inhibited the replication of EMCV through the type I interferon (IFN) signaling pathway. Interestingly, TRIM7 was down-regulated after EMCV infection in HEK293T cells. Further, overexpression of TRIM7 suppressed the replication of EMCV in HEK293T cells and enhanced the activity of IFN-ß promoter. On the other hand, knockdown of the endogenous TRIM7 promoted EMCV infection and impaired the activity of IFN-ß promoter. TRIM7 could regulate retinoic acid-inducible gene I (RIG-I)/ melanoma differentiation-associated gene 5 (MDA5)/ mitochondrial antiviral-signaling protein (MAVS) mediated IFN-ß signaling pathway. Moreover, TRIM7 interacted with MAVS and they were co-located in HEK293T cells. We demonstrate that TRIM7 plays a positive role in IFN-ß signaling pathway during EMCV infection and suppresses EMCV replication. Taken together, the presented results suggest that TRIM7 has a pivotal function in anti-EMCV infection, thereby providing a potential target for further development of anti-EMCV inhibitors.


Subject(s)
Encephalomyocarditis virus , Interferon-beta , Animals , Humans , Encephalomyocarditis virus/genetics , HEK293 Cells , Immunity, Innate , Interferon-beta/metabolism , Signal Transduction , Virus Replication
8.
Biosci Rep ; 43(5)2023 05 05.
Article in English | MEDLINE | ID: mdl-37078499

ABSTRACT

Retinoic acid inducible gene (RIG)-I-like receptors (RLRs), including RIG-I, melanoma differentiation associated-5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), play pivotal roles in viral RNA sensing to initiate antiviral interferon (IFN) responses. We previously reported that an RNA-silencing regulator, transactivation response RNA-binding protein (TRBP), up-regulates MDA5/LGP2-mediated IFN responses through interaction with LGP2. Here, we aimed to investigate the mechanism underlying the TRBP-mediated up-regulation of IFN response. Data indicated that phosphomimetic TRBP showed a modest effect, whereas the nonphosphorylated form exhibited hyperactivity in enhancing Cardiovirus-triggered IFN responses. These results suggest that encephalomyocarditis virus (EMCV) attenuates the TRBP-mediated IFN response via TRBP phosphorylation, since EMCV infection activates the kinase responsible for TRBP phosphorylation for virus replication. Furthermore, we found that TRBP-mediated up-regulation of IFN response required the ATP hydrolysis and RNA binding of LGP2. TRBP enhanced RNA-dependent ATP hydrolysis by LGP2 but not that by RIG-I or MDA5. Nonphosphorylated TRBP exhibited higher levels of activity than phosphomimetic TRBP did, suggesting its possible involvement in the mechanism underlying the up-regulation of IFN response. TRBP activated the ATP hydrolysis of LGP2 and RIG-I, but not that of MDA5, in the absence of RNA. Collectively, we showed that TRBP differentially regulated RLR-mediated ATP hydrolysis. Further elucidation of the mechanism underlying the regulation of ATP hydrolysis leading to IFN response and self- and non-self-RNA discrimination could advance the development of effective therapeutic agents against autoimmune diseases.


Subject(s)
Encephalomyocarditis virus , RNA Helicases , RNA Helicases/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Transcriptional Activation , Hydrolysis , Encephalomyocarditis virus/genetics , Encephalomyocarditis virus/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Viral/genetics , Adenosine Triphosphate , Immunity, Innate
9.
Sci Rep ; 13(1): 592, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631510

ABSTRACT

Encephalomyocarditis virus (Picornaviridae, Cardiovirus A) is the causative agent of the homonymous disease, which may induce myocarditis, encephalitis and reproductive disorders in various mammals, especially in swine. Despite the disease occurred endemically in pig farms since 1997, the recent increase of death experimented in Northern Italy prompted to furtherly investigate the evolution of the virus and the actual spread of the infection. Italian EMC viruses, collected between 2013 and 2019, showed an overall antigenic stability. The in-house ELISA Monoclonal Antibodies based, able to reveal changes in seven different antigenic sites, showed only sporadic and occasional mutations in considered samples and the subsequent phylogenetic analysis confirmed antigenic panel's remarks. All the isolates could be classified within a unique lineage, which comprise other European strains and confirm that the viruses currently circulating in Italy developed from a unique common ancestor. Despite the demonstrated stability of virus, some putative newly emerged variants were detected through antigenic profile analysis and phylogenesis. Finally, the serosurvey proved that spread of EMCV is greater than the diffusion of fatal infections would suggest, due to subclinical circulation of EMCV. It demonstrated an increase in the proportion of seropositive farms, if compared with previous data with no remarkable differences between farms with and without clinical evidence of disease.


Subject(s)
Animal Population Groups , Cardiovirus Infections , Swine Diseases , Animals , Swine , Encephalomyocarditis virus/genetics , Phylogeny , Cardiovirus Infections/epidemiology , Cardiovirus Infections/veterinary , Italy/epidemiology , Mammals
10.
J Virol Methods ; 309: 114592, 2022 11.
Article in English | MEDLINE | ID: mdl-35905814

ABSTRACT

The Encephalomyocarditis virus (EMCV) is one of the major zoonosis pathogens, and it can cause acute myocarditis in young pigs or reproductive failure in sows. EMCV has been recognized as a pathogen infecting many species and causes substantial economic losses worldwide. Therefore, the development of a rapid, sensitive, and accurate detection of this virus is essential for the diagnosis and control of the EMCV-induced disease. The RNA-guiding, RNA-targeting CRISPR effector CRISPR/Cas13a (Cas13a, previously known as C2c2) exhibits a "collateral effect" of promiscuous RNase activity upon the target recognition. When the crRNA of LwCas13a binds to the target RNA, the collateral cleavage activity of LwCas13a is activated to degrade the non-targeted RNA. In this study, we developed an efficient, sensitive, and specific EMCV detection method based on the collateral cleavage activity of LwCas13a by combining recombinase-aided amplification (RAA) and a lateral flow strip. This method was an isothermal detection at 37 °C, which allowed visual observation by the naked eyes. We also optimized the reaction conditions of this method, and the detection result could be obtained within 60 min. The sensitivity of our method reached up to 101 copies/µL. Furthermore, no cross-reactions with other 8 major swine viruses were observed, indicating the excellent specificity of this method. At the same time, the assay had a 100 % coincidence rate with qPCR detection of the EMCV in 37 clinical samples. In addition, our developed method requires only 2-step operations and basic equipment, and thus it is simple and inexpensive. Overall, CRISPR/Cas13a-based detection has a great application potential for the EMCV detection.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Encephalomyocarditis virus , Animals , Encephalomyocarditis virus/genetics , Female , RNA , Recombinases/genetics , Ribonucleases/genetics , Swine
11.
Viruses ; 14(7)2022 06 22.
Article in English | MEDLINE | ID: mdl-35891342

ABSTRACT

Enterovirus 2Apro is a protease that proteolytically processes the viral polyprotein and cleaves several host proteins to antagonize host responses during enteroviral infection. Recently, the host protein actin histidine methyltransferase SET domain containing 3 (SETD3) was identified to interact with 2Apro and to be essential for virus replication. The role of SETD3 and its interaction with 2Apro remain unclear. In this study, we investigated the potential involvement of SETD3 in several functions of 2Apro. For this, we introduced the 2Apro from coxsackievirus B3 (CVB3) in a mutant of encephalomyocarditis virus (EMCV) containing an inactivated Leader protein (EMCV-Lzn) that is unable to shut down host mRNA translation, to trigger nucleocytoplasmic transport disorder (NCTD), and to suppress stress granule (SG) formation and type I interferon (IFN) induction. Both in wt HeLa cells and in HeLa SETD3 knockout (SETD3KO) cells, the virus containing active 2Apro (EMCV-2Apro) efficiently cleaved eukaryotic translation initiation factor 4 gamma (eIF4G) to shut off host mRNA translation, cleaved nucleoporins to trigger NCTD, and actively suppressed SG formation and IFN gene transcription, arguing against a role of SETD3 in these 2Apro-mediated functions. Surprisingly, we observed that the catalytic activity of enteroviral 2A is not crucial for triggering NCTD, as a virus containing an inactive 2Apro (EMCV-2Am) induced NCTD in both wt and SETD3KO cells, albeit delayed, challenging the idea that the NCTD critically depends on nucleoporin cleavage by this protease. Taken together, our results do not support a role of SETD3 in the proteolytic activities of enterovirus 2Apro.


Subject(s)
Enterovirus Infections , Enterovirus , Antigens, Viral/metabolism , Encephalomyocarditis virus/genetics , Enterovirus/genetics , HeLa Cells , Histone Methyltransferases/metabolism , Humans , Peptide Hydrolases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
12.
J Virol Methods ; 306: 114544, 2022 08.
Article in English | MEDLINE | ID: mdl-35595156

ABSTRACT

In this study, we combined reverse transcription recombinase polymerase amplification assay with the fluorescence detection platform (qRT-RPA) and lateral flow biosensor (LFB RT-RPA) to allow for rapid detection of porcine encephalomyocarditis virus (EMCV). Primers and probes were designed to target the highly conserved region of 3D gene of porcine EMCV. The optimal reaction condition of qRT-RPA and LFB RT-RPA was set as 42 °C for 20 min. The assays were highly specific to EMCV and no cross-reactions were observed with seven other porcine viruses. With a 10-fold serially diluted EMCV genomic RNA as template, the limit of detection was 1.0 × 102 and 1.0 × 101 copies for qRT-RPA assay and LFB RT-RPA assay, respectively. A total of 92 samples from different sources were examined using qRT-RPA, LFB RT-RPA and qRT-PCR. We found 100% diagnostic agreement between qRT-RPA (23/92) and qRT-PCR (23/92), and 97.83% diagnostic agreement between LFB RT-RPA (25/92) and qRT-PCR (23/92). There was no significant difference in performance between the RT-RPA assays developed in this study and a previously described qRT-PCR. However, RT-RPA assays were rapid and easy to perform while LFB RT-RPA exhibited higher sensitivity for EMCV than qRT-PCR. Therefore, the developed EMCV RT-RPA assays provide an attractive and promising tool for effective detection of EMCV in low-resource settings.


Subject(s)
Recombinases , Reverse Transcription , Animals , Encephalomyocarditis virus/genetics , Encephalomyocarditis virus/metabolism , Nucleic Acid Amplification Techniques , Recombinases/genetics , Sensitivity and Specificity , Swine
13.
Biomacromolecules ; 23(3): 789-797, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35034439

ABSTRACT

Antiviral lignin was produced by acidic microwave glycerolysis of sugarcane bagasse. The lignin exhibited antiviral activity against nonenveloped (encephalomyocarditis virus (EMCV) and Theiler's murine encephalomyelitis virus (TMEV)) and enveloped (vesicular stomatitis virus (VSV), Sindbis virus (SINV), and Newcastle disease virus (NDV)) viruses. A series of lignins with different antiviral activities were prepared by reacting bagasse at 140, 160, 180, and 200 °C to analyze the antiviral mechanism. No difference in ζ-potential was observed among the lignin preparations; however, the lignin prepared at 200 °C (FR200) showed the strongest anti-EMCV activity, smallest hydrodynamic diameter, highest hydrophilicity, and highest affinity for EMCV. FR200 inhibited viral propagation through contact with the virion at the attachment stage to host cells, and the EMCV RNA was intact after treatment. Therefore, the lignin inhibits viral entry to host cells through interactions with the capsid surface. The nonvolatile antiviral substance is potentially useful for preventing the spread of viruses in human living and livestock breeding environments.


Subject(s)
Cardiovirus , Saccharum , Animals , Antiviral Agents/pharmacology , Cellulose/pharmacology , Encephalomyocarditis virus/genetics , Humans , Lignin/pharmacology , Mice , Microwaves
14.
J Virol ; 96(4): e0190321, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34908444

ABSTRACT

A liver-specific microRNA, miR-122, anneals to the hepatitis C virus (HCV) genomic 5' terminus and is essential for virus replication in cell culture. However, bicistronic HCV replicons and full-length RNAs with specific mutations in the 5' untranslated region (UTR) can replicate, albeit to low levels, without miR-122. In this study, we have identified that HCV RNAs lacking the structural gene region or having encephalomyocarditis virus internal ribosomal entry site (EMCV IRES)-regulated translation had reduced requirements for miR-122. In addition, we found that a smaller proportion of cells supported miR-122-independent replication compared a population of cells supporting miR-122-dependent replication, while viral protein levels per positive cell were similar. Further, the proportion of cells supporting miR-122-independent replication increased with the amount of viral RNA delivered, suggesting that establishment of miR-122-independent replication in a cell is affected by the amount of viral RNA delivered. HCV RNAs replicating independently of miR-122 were not affected by supplementation with miR-122, suggesting that miR-122 is not essential for maintenance of an miR-122-independent HCV infection. However, miR-122 supplementation had a small positive impact on miR-122-dependent replication, suggesting a minor role in enhancing ongoing virus RNA accumulation. We suggest that miR-122 functions primarily to initiate an HCV infection but has a minor influence on its maintenance, and we present a model in which miR-122 is required for replication complex formation at the beginning of an infection and also supports new replication complex formation during ongoing infection and after infected cell division. IMPORTANCE The mechanism by which miR-122 promotes the HCV life cycle is not well understood, and a role in directly promoting genome amplification is still debated. In this study, we have shown that miR-122 increases the rate of viral RNA accumulation and promotes the establishment of an HCV infection in a greater number of cells than in the absence of miR-122. However, we also confirm a minor role in promoting ongoing virus replication and propose a role in the initiation of new replication complexes throughout a virus infection. This study has implications for the use of anti-miR-122 as a potential HCV therapy.


Subject(s)
Hepacivirus/physiology , MicroRNAs/genetics , Virus Replication , Cell Line , Encephalomyocarditis virus/genetics , Genome, Viral/genetics , Hepacivirus/genetics , Hepacivirus/growth & development , Humans , Internal Ribosome Entry Sites/genetics , Mutation , RNA Stability , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Nonstructural Proteins/biosynthesis , Viral Replication Compartments/metabolism , Viral Structural Proteins/genetics
15.
Biochem Biophys Res Commun ; 587: 63-68, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34864548

ABSTRACT

The concept of tRNA recycling has recently emerged from the studies of ribosome-associated quality control. Therein tRNase ZS removes the 2', 3'>p from the ANKZF1-cleaved tRNA and the subsequent TRNT1 action re-generates the intact tRNA. To know the roles of the tRNA recycling in vivo, we investigated how viral infection affects the tRNA recycling system by analyzing the mRNA levels of tRNase ZS and TRNT1. We found that both genes in HeLa cells are upregulated in response to infection of Theiler's mouse encephalitis virus but not to that of an influenza A virus. Upregulation was also observed in cells infected with encephalomyocarditis virus with reduced efficiency. The levels of the IFN-ß mRNA appeared to positively correlate with those of the tRNase ZS and TRNT1 mRNAs. The tRNase ZS gene may be regulated post-transcriptionally in the cells infected with Theiler's mouse encephalitis virus.


Subject(s)
Endoribonucleases/genetics , Host-Pathogen Interactions/genetics , Nucleotidyltransferases/genetics , RNA Processing, Post-Transcriptional , RNA, Transfer/genetics , Theilovirus/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Encephalomyocarditis virus/genetics , Encephalomyocarditis virus/growth & development , Encephalomyocarditis virus/metabolism , Endoribonucleases/metabolism , HeLa Cells , Humans , Influenza A virus/genetics , Influenza A virus/growth & development , Influenza A virus/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Nucleotidyltransferases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Theilovirus/growth & development , Theilovirus/metabolism , Viral Load
16.
Nat Commun ; 12(1): 7166, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34887415

ABSTRACT

Programmed -1 ribosomal frameshifting (PRF) in cardioviruses is activated by the 2A protein, a multi-functional virulence factor that also inhibits cap-dependent translational initiation. Here we present the X-ray crystal structure of 2A and show that it selectively binds to a pseudoknot-like conformation of the PRF stimulatory RNA element in the viral genome. Using optical tweezers, we demonstrate that 2A stabilises this RNA element, likely explaining the increase in PRF efficiency in the presence of 2A. Next, we demonstrate a strong interaction between 2A and the small ribosomal subunit and present a cryo-EM structure of 2A bound to initiated 70S ribosomes. Multiple copies of 2A bind to the 16S rRNA where they may compete for binding with initiation and elongation factors. Together, these results define the structural basis for RNA recognition by 2A, show how 2A-mediated stabilisation of an RNA pseudoknot promotes PRF, and reveal how 2A accumulation may shut down translation during virus infection.


Subject(s)
Cardiovirus Infections/virology , Encephalomyocarditis virus/metabolism , Gene Expression Regulation, Viral , Viral Proteins/chemistry , Viral Proteins/metabolism , Cardiovirus Infections/genetics , Cardiovirus Infections/metabolism , Crystallography, X-Ray , Encephalomyocarditis virus/chemistry , Encephalomyocarditis virus/genetics , Frameshifting, Ribosomal , Humans , Ribosomes/genetics , Ribosomes/metabolism , Viral Proteins/genetics
17.
Virus Res ; 305: 198547, 2021 11.
Article in English | MEDLINE | ID: mdl-34425163

ABSTRACT

Encephalomyocarditis virus (EMCV) is a small, non-enveloped, single stranded RNA virus which infects a wide variety of mammalian species, and has zoonotic importance. Many host proteins are known to regulate EMCV proliferation by interacting with its structural or nonstructural proteins, but the regulatory role and mechanism of heat shock protein 90ß (HSP90ß), in EMCV infection has not been reported yet. Here, we report that overexpression of HSP90ß significantly promotes the growth and proliferation of EMCV in vitro. On the contrary, down-regulation of HSP90ß by RNAi or geldanamycin inhibits EMCV replication. HSP90ß suppresses IFN-ß responses in the RLRs pathway by targeting the expression of the key adaptor molecules MAVS, TBK1, and IRF3, but not MDA5. This study demonstrates the firsthand information that HSP90ß plays a positive role in viral proliferation by inhibiting EMCV induced IFN-ß production. Collectively, the results reveal new insights into HSP90ß-assisted progression of EMCV infection.


Subject(s)
Encephalomyocarditis virus , Interferon-beta , Animals , Cell Proliferation , Encephalomyocarditis virus/genetics , Interferon-beta/metabolism , Mammals/metabolism , Signal Transduction
18.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33533710

ABSTRACT

Encephalomyocarditis virus (EMCV) infects a wide range of hosts and can cause encephalitis, myocarditis, reproductive disorders and diabetes mellitus in selected mammalian species. As for humans, EMCV infection seems to occur by the contact with animals and can cause febrile illnesses in some infected patients. Here we isolated EMCV strain ZM12/14 from a natal multimammate mouse (Mastomys natalensis: M. natalensis) in Zambia. Pairwise sequence similarity of the ZM12/14 P1 region consisting of antigenic capsid proteins showed the highest similarity of nucleotide (80.7 %) and amino acid (96.2%) sequence with EMCV serotype 1 (EMCV-1). Phylogenetic analysis revealed that ZM12/14 clustered into EMCV-1 at the P1 and P3 regions but segregated from known EMCV strains at the P2 region, suggesting a unique evolutionary history. Reverse transcription PCR (RT-PCR) screening and neutralizing antibody assays for EMCV were performed using collected tissues and serum from various rodents (n=179) captured in different areas in Zambia. We detected the EMCV genome in 19 M. natalensis (19/179=10.6 %) and neutralizing antibody for EMCV in 33 M. natalensis (33/179=18.4 %). However, we did not detect either the genome or neutralizing antibody in other rodent species. High neutralizing antibody litres (≧320) were observed in both RT-PCR-negative and -positive animals. Inoculation of ZM12/14 caused asymptomatic persistent infection in BALB/c mice with high antibody titres and high viral loads in some organs, consistent with the above epidemiological results. This study is the first report of the isolation of EMCV in Zambia, suggesting that M. natalensis may play a role as a natural reservoir of infection.


Subject(s)
Cardiovirus Infections/veterinary , Disease Reservoirs/virology , Encephalomyocarditis virus/isolation & purification , Murinae/virology , Rodent Diseases/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cardiovirus Infections/epidemiology , Cardiovirus Infections/virology , Encephalomyocarditis virus/genetics , Encephalomyocarditis virus/immunology , Encephalomyocarditis virus/pathogenicity , Evolution, Molecular , Genome, Viral , Mice, Inbred BALB C , Phylogeny , Prevalence , Rodent Diseases/epidemiology , Shrews/virology , Zambia/epidemiology
19.
Biomed J ; 44(6 Suppl 1): S54-S62, 2021 12.
Article in English | MEDLINE | ID: mdl-35747995

ABSTRACT

BACKGROUND: Internal ribosome entry sites (IRESs) allow the translation of a transcript independent of its cap structure. They are distributed in some viruses and cellular RNA. The element is applied in dual gene expression in a single vector. Although it appears the lower efficiency of IRES-mediated translation than that of cap-dependent translation, it is with the crucial needs to know the precise differences in translational efficacy between upstream cistrons (cap-dependent) and downstream cistrons (IRES-mediate, cap-independent) before applying the bicistronic vector in biomedical applications. METHODS: This study aimed to provide real examples and showed the precise differences for translational efficiency dependent upon target gene locations. We generated various bicistronic constructs with quantifiable reporter genes as upstream and downstream cistrons of the encephalomyocarditis virus (EMCV) IRES to precisely evaluate the efficacy of IRES-mediated translation in mammalian cells. RESULTS: There was no significant difference in protein production when the reporter gene was cloned as an upstream cistron. However, lower levels of protein production were obtained when the reporter gene was located downstream of the IRES. Moreover, in the presence of an upstream cistron, a markedly reduced level of protein production was observed. CONCLUSION: Our findings demonstrate the version of the EMCV IRES that is provided in many commercial vectors is relatively less efficient than cap-dependent translation and provide valuable information regarding the utilization of IRES to facilitate the expression of more than one protein from a transcript.


Subject(s)
Encephalomyocarditis virus , Internal Ribosome Entry Sites , Peptide Chain Initiation, Translational , Animals , Encephalomyocarditis virus/genetics , Genes, Reporter , Internal Ribosome Entry Sites/genetics , Mice , Ribosomes/genetics , Ribosomes/metabolism
20.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33328314

ABSTRACT

Type I interferon (IFN)-mediated antiviral responses are critical for modulating host-virus responses, and indeed, viruses have evolved strategies to antagonize this pathway. Encephalomyocarditis virus (EMCV) is an important zoonotic pathogen, which causes myocarditis, encephalitis, neurological disease, reproductive disorders, and diabetes in pigs. This study aims to understand how EMCV interacts with the IFN pathway. EMCV circumvents the type I IFN response by expressing proteins that antagonize cellular innate immunity. Here, we show that EMCV VP2 is a negative regulator of the IFN-ß pathway. This occurs via the degradation of the MDA5-mediated cytoplasmic double-stranded RNA (dsRNA) antiviral sensing RIG-I-like receptor (RLR) pathway. We show that structural protein VP2 of EMCV interacts with MDA5, MAVS, and TBK1 through its C terminus. In addition, we found that EMCV VP2 could significantly degrade RLRs by the proteasomal and lysosomal pathways. For the first time, EMCV VP2 was shown to play an important role in EMCV evasion of the type I IFN signaling pathway. This study expands our understanding that EMCV utilizes its capsid protein VP2 to evade the host antiviral response.IMPORTANCE Encephalomyocarditis virus is an important pathogen that can cause encephalitis, myocarditis, neurological diseases, and reproductive disorders. It also causes huge economic losses for the swine industry worldwide. Innate immunity plays an important role in defending the host from pathogen infection. Understanding pathogen microorganisms evading the host immune system is of great importance. Currently, whether EMCV evades cytosolic RNA sensing and signaling is still poorly understood. In the present study, we found that viral protein VP2 antagonized the RLR signaling pathway by degrading MDA5, MAVS, and TBK1 protein expression to facilitate viral replication in HEK293 cells. The findings in this study identify a new mechanism for EMCV evading the host's innate immune response, which provide new insights into the virus-host interaction and help develop new antiviral approaches against EMCV.


Subject(s)
Capsid Proteins/metabolism , Encephalomyocarditis virus/physiology , Interferon-beta/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cardiovirus Infections/immunology , Cardiovirus Infections/virology , DEAD Box Protein 58/antagonists & inhibitors , DEAD Box Protein 58/metabolism , Encephalomyocarditis virus/genetics , Encephalomyocarditis virus/metabolism , HEK293 Cells , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Mutation , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...