Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 810
Filter
1.
Arch Microbiol ; 206(6): 261, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753095

ABSTRACT

The search for affordable enzymes with exceptional characteristics is fundamental to overcoming industrial and environmental constraints. In this study, a recombinant GH10 xylanase (Xyn10-HB) from the extremely alkaliphilic bacterium Halalkalibacterium halodurans C-125 cultivated at pH 10 was cloned and expressed in E. coli BL21(DE3). Removal of the signal peptide improved the expression, and an overall activity of 8 U/mL was obtained in the cell-free supernatant. The molecular weight of purified Xyn10-HB was estimated to be 42.6 kDa by SDS-PAGE. The enzyme was active across a wide pH range (5-10) with optimal activity recorded at pH 8.5 and 60 °C. It also presented good stability with a half-life of 3 h under these conditions. Substrate specificity studies showed that Xyn10-HB is a cellulase-free enzyme that conventionally hydrolyse birchwood and oat spelts xylans (Apparent Km of 0.46 mg/mL and 0.54 mg/mL, respectively). HPLC analysis showed that both xylans hydrolysis produced xylooligosaccharides (XOS) with a degree of polymerization (DP) ranging from 2 to 9. The conversion yield was 77% after 24 h with xylobiose and xylotriose as the main end-reaction products. When assayed on alkali-extracted wheat straw heteroxylan, the Xyn10-HB produced active XOS with antioxidant activity determined by the DPPH radical scavenging method (IC50 of 0.54 mg/mL after 4 h). Owing to its various characteristics, Xyn10-HB xylanase is a promising candidate for multiple biotechnological applications.


Subject(s)
Endo-1,4-beta Xylanases , Recombinant Proteins , Xylans , Substrate Specificity , Hydrolysis , Xylans/metabolism , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Cloning, Molecular , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Glucuronates/metabolism , Enzyme Stability , Kinetics , Molecular Weight , Oligosaccharides/metabolism , Disaccharides
2.
Appl Microbiol Biotechnol ; 108(1): 329, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727750

ABSTRACT

Xylanases are key biocatalysts in the degradation of the ß-1,4-glycosidic linkages in the xylan backbone of hemicellulose. These enzymes are potentially applied in a wide range of bioprocessing industries under harsh conditions. Metagenomics has emerged as powerful tools for the bioprospection and discovery of interesting bioactive molecules from extreme ecosystems with unique features, such as high temperatures. In this study, an innovative combination of function-driven screening of a compost metagenomic library and automatic extraction of halo areas with in-house MATLAB functions resulted in the identification of a promising clone with xylanase activity (LP4). The LP4 clone proved to be an effective xylanase producer under submerged fermentation conditions. Sequence and phylogenetic analyses revealed that the xylanase, Xyl4, corresponded to an endo-1,4-ß-xylanase belonging to glycosyl hydrolase family 10 (GH10). When xyl4 was expressed in Escherichia coli BL21(DE3), the enzyme activity increased about 2-fold compared to the LP4 clone. To get insight on the interaction of the enzyme with the substrate and establish possible strategies to improve its activity, the structure of Xyl4 was predicted, refined, and docked with xylohexaose. Our data unveiled, for the first time, the relevance of the amino acids Glu133 and Glu238 for catalysis, and a close inspection of the catalytic site suggested that the replacement of Phe316 by a bulkier Trp may improve Xyl4 activity. Our current findings contribute to enhancing the catalytic performance of Xyl4 towards industrial applications. KEY POINTS: • A GH10 endo-1,4-ß-xylanase (Xyl4) was isolated from a compost metagenomic library • MATLAB's in-house functions were developed to identify the xylanase-producing clones • Computational analysis showed that Glu133 and Glu238 are crucial residues for catalysis.


Subject(s)
Composting , Endo-1,4-beta Xylanases , Escherichia coli , Metagenomics , Phylogeny , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Metagenome , Gene Library , Soil Microbiology , Xylans/metabolism , Cloning, Molecular , Fermentation , Gene Expression , Molecular Docking Simulation
3.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791210

ABSTRACT

Functional microexons have not previously been described in filamentous fungi. Here, we describe a novel mechanism of transcriptional regulation in Trichoderma requiring the inclusion of a microexon from the Xlr2 gene. In low-glucose environments, a long mRNA including the microexon encodes a protein with a GAL4-like DNA-binding domain (Xlr2-α), whereas in high-glucose environments, a short mRNA that is produced encodes a protein lacking this DNA-binding domain (Xlr2-ß). Interestingly, the protein isoforms differ in their impact on cellulase and xylanase activity. Deleting the Xlr2 gene reduced both xylanase and cellulase activity and growth on different carbon sources, such as carboxymethylcellulose, xylan, glucose, and arabinose. The overexpression of either Xlr2-α or Xlr2-ß in T. virens showed that the short isoform (Xlr2-ß) caused higher xylanase activity than the wild types or the long isoform (Xlr2-α). Conversely, cellulase activity did not increase when overexpressing Xlr2-ß but was increased with the overexpression of Xlr2-α. This is the first report of a novel transcriptional regulation mechanism of plant-cell-wall-degrading enzyme activity in T. virens. This involves the differential expression of a microexon from a gene encoding a transcriptional regulator.


Subject(s)
Cellulases , Fungal Proteins , Gene Expression Regulation, Fungal , Trichoderma , Fungal Proteins/metabolism , Fungal Proteins/genetics , Trichoderma/genetics , Trichoderma/metabolism , Trichoderma/enzymology , Cellulases/metabolism , Cellulases/genetics , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/genetics , Cell Wall/metabolism , Sugars/metabolism
4.
Protein Expr Purif ; 219: 106482, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583789

ABSTRACT

GH11 enzyme is known to be specific and efficient for the hydrolysis of xylan. It has been isolated from many microorganisms, and its enzymatic characteristics and thermostability vary between species. In this study, a GH11 enzyme PphXyn11 from a novel xylan-degrading strain of Paenibacillus physcomitrellae XB was characterized, and five mutants were constructed to try to improve the enzyme's thermostability. The results showed that PphXyn11 was an acidophilic endo-ß-1,4-xylanase with the optimal reaction pH of 3.0-4.0, and it could deconstruct different kinds of xylan substrates efficiently, such as beechwood xylan, wheat arabinoxylan and xylo-oligosaccharides, to produce xylobiose and xylotriose as the main products at the optimal reaction temperature of 40 °C. Improvement of the thermal stability of PphXyn11 using site-directed mutagenesis revealed that three mutants, W33C/N47C, S127C/N174C and S49E, designed by adding the disulfide bonds at the N-terminal, C-terminal and increasing the charged residues on the surface of PphXyn11 respectively, could increase the enzymatic activity and thermal stablility significantly and make the optimal reaction temperature reach 50 °C. Molecular dynamics simulations as well as computed the numbers of salt bridges and hydrogen bonds indicated that the protein structures of these three mutants were more stable than the wild type, which provided theoretical support for their improved thermal stability. Certainly, further research is necessary to improve the enzymatic characteristics of PphXyn11 to achieve the bioconversion of hemicellulosic biomass on an applicable scale.


Subject(s)
Endo-1,4-beta Xylanases , Enzyme Stability , Paenibacillus , Paenibacillus/enzymology , Paenibacillus/genetics , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Xylans/metabolism , Xylans/chemistry , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Temperature , Substrate Specificity
5.
Int J Biol Macromol ; 268(Pt 1): 131857, 2024 May.
Article in English | MEDLINE | ID: mdl-38670187

ABSTRACT

The utilization of xylanase in juice clarification is contingent upon its stability within acidic environments. We generated a mutant xynA-1 by substituting the N-terminal segment of the recombinant xylanase xynA to investigate the correlation between the N-terminal region of xylanase and its acid stability. The enzymatic activity of xynA-1 was found to be superior under acidic conditions (pH 5.0). It exhibited enhanced acid stability, surpassing the residual enzyme activity values of xynA at pH 4.0 (53.07 %), pH 4.5 (69.8 %), and pH 5.0 (82.4 %), with values of 60.16 %, 77.74 %, and 87.3 %, respectively. Additionally, the catalytic efficiency of xynA was concurrently improved. Through molecular dynamics simulation, we observed that N-terminal shortening induced a reduction in motility across most regions of the protein structure while enhancing its stability, particularly Lys131-Phe146 and Leu176-Gly206. Furthermore, the application of treated xynA-1 in the process of apple juice clarification led to a significant increase in clarity within a short duration of 20 min at 35 °C while ensuring the quality of the apple juice. This study not only enhances the understanding of the N-terminal region of xylanase but also establishes a theoretical basis for augmenting xylanase resources employed in fruit juice clarification.


Subject(s)
Endo-1,4-beta Xylanases , Enzyme Stability , Fruit and Vegetable Juices , Malus , Recombinant Proteins , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Hydrogen-Ion Concentration , Malus/chemistry , Malus/enzymology , Molecular Dynamics Simulation
6.
Protein Expr Purif ; 219: 106478, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570105

ABSTRACT

Xylanases are the main enzymes to hydrolyze xylan, the major hemicellulose found in lignocellulose. Xylanases also have a wide range of industrial applications. Therefore, the discovery of new xylanases has the potential to enhance efficiency and sustainability in many industries. Here, we report a xylanase with thermophilic character and superior biochemical properties for industrial use. The new xylanase is discovered in Anoxybacillus ayderensis as an intracellular xylanase (AAyXYN329) and recombinantly produced. While AAyXYN329 shows significant activity over a wide pH and temperature range, optimum activity conditions were determined as pH 6.5 and 65 °C. The half-life of the enzyme was calculated as 72 h at 65 °C. The enzyme did not lose activity between pH 6.0-9.0 at +4 °C for 75 days. Km, kcat and kcat/Km values of AAyXYN329 were calculated as 4.09824 ± 0.2245 µg/µL, 96.75 1/sec, and 23.61/L/g.s -1, respectively. In conclusion, the xylanase of A. ayderensis has an excellent potential to be utilized in many industrial processes.


Subject(s)
Anoxybacillus , Bacterial Proteins , Endo-1,4-beta Xylanases , Enzyme Stability , Recombinant Proteins , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Anoxybacillus/enzymology , Anoxybacillus/genetics , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Cloning, Molecular , Temperature , Escherichia coli/genetics , Xylans/metabolism , Xylans/chemistry , Substrate Specificity , Kinetics
7.
Appl Microbiol Biotechnol ; 108(1): 312, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683242

ABSTRACT

The xylanolytic enzymes Clocl_1795 and Clocl_2746 from glycoside hydrolase (GH) family 30 are highly abundant in the hemicellulolytic system of Acetivibrio clariflavus (Hungateiclostridium, Clostridium clariflavum). Clocl_1795 has been shown to be a xylobiohydrolase AcXbh30A releasing xylobiose from the non-reducing end of xylan and xylooligosaccharides. In this work, biochemical characterization of Clocl_2746 is presented. The protein, designated AcXyn30B, shows low sequence similarity to other GH30 members and phylogenetic analysis revealed that AcXyn30B and related proteins form a separate clade that is proposed to be a new subfamily GH30_12. AcXyn30B exhibits similar specific activity on glucuronoxylan, arabinoxylan, and aryl glycosides of linear xylooligosaccharides suggesting that it is a non-specific xylanase. From polymeric substrates, it releases the fragments of degrees of polymerization (DP) 2-6. Hydrolysis of different xylooligosaccharides indicates that AcXyn30B requires at least four occupied catalytic subsites for effective cleavage. The ability of the enzyme to hydrolyze a wide range of substrates is interesting for biotechnological applications. In addition to subfamilies GH30_7, GH30_8, and GH30_10, the newly proposed subfamily GH30_12 further widens the spectrum of GH30 subfamilies containing xylanolytic enzymes. KEY POINTS: Bacterial GH30 endoxylanase from A. clariflavus (AcXyn30B) has been characterized AcXyn30B is non-specific xylanase hydrolyzing various xylans and xylooligosaccharides Phylogenetic analysis placed AcXyn30B in a new GH30_12 subfamily.


Subject(s)
Clostridiales , Endo-1,4-beta Xylanases , Xylans , Disaccharides/metabolism , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Glucuronates/metabolism , Hydrolysis , Oligosaccharides/metabolism , Phylogeny , Substrate Specificity , Xylans/metabolism , Clostridiales/enzymology , Clostridiales/genetics
8.
Biotechnol Bioeng ; 121(7): 2067-2078, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678481

ABSTRACT

Glycoside hydrolase (GH) 30 family xylanases are enzymes of biotechnological interest due to their capacity to degrade recalcitrant hemicelluloses, such as glucuronoxylan (GX). This study focuses on a subfamily 7 GH30, TtXyn30A from Thermothelomyces thermophilus, which acts on GX in an "endo" and "exo" mode, releasing methyl-glucuronic acid branched xylooligosaccharides (XOs) and xylobiose, respectively. The crystal structure of inactive TtXyn30A in complex with 23-(4-O-methyl-α-D-glucuronosyl)-xylotriose (UXX), along with biochemical analyses, corroborate the implication of E233, previously identified as alternative catalytic residue, in the hydrolysis of decorated xylan. At the -1 subsite, the xylose adopts a distorted conformation, indicative of the Michaelis complex of TtXyn30AEE with UXX trapped in the semi-functional active site. The most significant structural rearrangements upon substrate binding are observed at residues W127 and E233. The structures with neutral XOs, representing the "exo" function, clearly show the nonspecific binding at aglycon subsites, contrary to glycon sites, where the xylose molecules are accommodated via multiple interactions. Last, an unproductive ligand binding site is found at the interface between the catalytic and the secondary ß-domain which is present in all GH30 enzymes. These findings improve current understanding of the mechanism of bifunctional GH30s, with potential applications in the field of enzyme engineering.


Subject(s)
Xylans , Xylans/metabolism , Xylans/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Sordariales/enzymology , Sordariales/genetics , Catalytic Domain , Eurotiales/enzymology , Substrate Specificity , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/genetics
9.
J Struct Biol ; 216(2): 108082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438058

ABSTRACT

While protein activity is traditionally studied with a major focus on the active site, the activity of enzymes has been hypothesized to be linked to the flexibility of adjacent regions, warranting more exploration into how the dynamics in these regions affects catalytic turnover. One such enzyme is Xylanase A (XylA), which cleaves hemicellulose xylan polymers by hydrolysis at internal ß-1,4-xylosidic linkages. It contains a "thumb" region whose flexibility has been suggested to affect the activity. The double mutation D11F/R122D was previously found to affect activity and potentially bias the thumb region to a more open conformation. We find that the D11F/R122D double mutation shows substrate-dependent effects, increasing activity on the non-native substrate ONPX2 but decreasing activity on its native xylan substrate. To characterize how the double mutant causes these kinetics changes, nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations were used to probe structural and flexibility changes. NMR chemical shift perturbations revealed structural changes in the double mutant relative to the wild-type, specifically in the thumb and fingers regions. Increased slow-timescale dynamics in the fingers region was observed as intermediate-exchange line broadening. Lipari-Szabo order parameters show negligible changes in flexibility in the thumb region in the presence of the double mutation. To help understand if there is increased energetic accessibility to the open state upon mutation, alchemical free energy simulations were employed that indicated thumb opening is more favorable in the double mutant. These studies aid in further characterizing how flexibility in adjacent regions affects the function of XylA.


Subject(s)
Endo-1,4-beta Xylanases , Molecular Dynamics Simulation , Mutation , Xylans , Substrate Specificity/genetics , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Mutation/genetics , Xylans/metabolism , Xylans/chemistry , Catalytic Domain/genetics , Kinetics , Protein Conformation , Magnetic Resonance Spectroscopy
10.
FEBS Lett ; 598(3): 363-376, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253842

ABSTRACT

Xylanases are of significant interest for biomass conversion technologies. Here, we investigated the allosteric regulation of xylan hydrolysis by the Bacillus subtilis GH11 endoxylanase. Molecular dynamics simulations (MDS) in the presence of xylobiose identified binding to the active site and two potential secondary binding sites (SBS) around surface residues Asn54 and Asn151. Arabinoxylan titration experiments with single cysteine mutants N54C and N151C labeled with the thiol-reactive fluorophore acrylodan or the ESR spin-label MTSSL validated the MDS results. Ligand binding at the SBS around Asn54 confirms previous reports, and analysis of the second SBS around N151C discovered in the present study includes residues Val98/Ala192/Ser155/His156. Understanding the regulation of xylanases contributes to efforts for industrial decarbonization and to establishing a sustainable energy matrix.


Subject(s)
Bacillus subtilis , Molecular Dynamics Simulation , Bacillus subtilis/genetics , Binding Sites , Catalytic Domain , Xylans/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Substrate Specificity
11.
J Agric Food Chem ; 72(2): 1213-1227, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38183306

ABSTRACT

ß-1,4-Endoxylanase is the most critical hydrolase for xylan degradation during lignocellulosic biomass utilization. However, its poor stability and activity in hot and alkaline environments hinder its widespread application. In this study, BhS7Xyl from Bacillus halodurans S7 was improved using a computer-aided design through isothermal compressibility (ßT) perturbation engineering and by combining three thermostability prediction algorithms (ICPE-TPA). The best variant with remarkable improvement in specific activity, heat resistance (70 °C), and alkaline resistance (both pH 9.0 and 70 °C), R69F/E137M/E145L, exhibited a 4.9-fold increase by wild-type in specific activity (1368.6 U/mg), a 39.4-fold increase in temperature half-life (458.1 min), and a 57.6-fold increase in pH half-life (383.1 min). Furthermore, R69F/E137M/E145L was applied to the hydrolysis of agricultural waste (corncob and hardwood pulp) to efficiently obtain a higher yield of high-value xylooligosaccharides. Overall, the ICPE-TPA strategy has the potential to improve the functional performance of enzymes under extreme conditions for the high-value utilization of lignocellulosic biomass.


Subject(s)
Bacillus , Hot Temperature , Alkalies , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Hydrolysis , Enzyme Stability , Hydrogen-Ion Concentration
12.
Int J Biol Macromol ; 257(Pt 2): 128679, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072346

ABSTRACT

The glycoside hydrolase family 39 (GH39) proteins are renowned for their extremophilic and multifunctional enzymatic properties, yet the molecular mechanisms underpinning these unique characteristics continue to be an active subject of research. In this study, we introduce WsuXyn, a GH39 protein with a molecular weight of 58 kDa, originating from the thermophilic Geobacillus sp. WSUCF1. Previously reported for its exceptional thermostable ß-xylosidase activity, WsuXyn has recently demonstrated a significant endoxylanase activity (3752 U·mg-1) against beechwood xylan, indicating towards its bifunctional nature. Physicochemical characterization revealed that WsuXyn exhibits optimal endoxylanase activity at 70 °C and pH 7.0. Thermal stability assessments revealed that the enzyme is resilient to elevated temperatures, with a half-life of 168 h. Key kinetic parameters highlight the exceptional catalytic efficiency and strong affinity of the protein for xylan substrate. Moreover, WsuXyn-mediated hydrolysis of beechwood xylan has achieved 77 % xylan conversion, with xylose as the primary product. Structural analysis, amalgamated with docking simulations, has revealed strong binding forces between xylotetraose and the protein, with key amino acid residues, including Glu278, Tyr230, Glu160, Gly202, Cys201, Glu324, and Tyr283, playing pivotal roles in these interactions. Therefore, WsuXyn holds a strong promise for biodegradation and value-added product generation through lignocellulosic biomass conversion.


Subject(s)
Geobacillus , Xylosidases , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Xylosidases/chemistry , Xylans/metabolism , Substrate Specificity
13.
Braz J Microbiol ; 55(1): 155-168, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37957443

ABSTRACT

Enzymatic compounds can be found abundantly and provide numerous advantages in microbial organisms. Xylanases are used in various pharmaceutical, food, livestock, poultry, and paper industries. This study aimed to investigate xylanase-producing yeasts, xylose concentration curve and their enzymatic activity under various factors including carbon and nitrogen sources, temperature, and pH. Enzyme activity was evaluated under different conditions before, during, and after purification. The yeast strains were obtained from the wood product workshop and were subsequently cultivated on YPD (yeast extract peptone dextrose) medium. Additionally, the growth curve of the yeast and its molecular identification were conducted. The optimization and design process of xylan isolated from corn wood involved the use of Taguchi software to test different parameters like carbon and nitrogen sources, temperature, and pH, with the goal of determining the most optimal conditions for enzyme production. In addition, the Taguchi method was utilized to conduct a multifactorial optimization of xylanase enzyme activity. The isolated species were partially purified using ammonium sulfate precipitation and dialysis bag techniques. The results indicated that 3 species (8S, 18S, and 16W) after molecular identification based on 18S rRNA gene sequencing were identified as Candida tropicalis SBN-IAUF-1, Candida tropicalis SBN-IAUF-3, and Pichia kudriavzevii SBN-IAUF-2, respectively. The optimal parameters for wheat carbon source and peptone nitrogen source were found at 50 °C and pH 9.0 through single-factor optimization. By using the Taguchi approach, the best combination for highest activity was rice-derived carbon source and peptone nitrogen source at 50 °C and pH 6.0. The best conditions for xylanase enzyme production in single-factor optimization of wheat bran were 2135.6 U/mL, peptone 4475.25 U/mL, temperature 50 °C 1868 U/mL, and pH 9.0 2002.4 U/mL. Among the tested yeast, Candida tropicalis strain SBN-IAUF-1 to the access number MZ816946.1 in NCBI was found to be the best xylanase product. The highest ratio of enzyme production at the end of the delayed phase and the beginning of the logarithmic phase was concluded by comparing the growth ratio of 8S, 16W, and 18S yeasts with the level of enzymatic activity. This is the first report on the production of xylan polymer with a relative purity of 80% in Iran. The extracellular xylanases purified from the yeast species of C. tropicalis were introduced as a desirable biocatalyst due to their high enzymatic activity for the degradation of xylan polymers.


Subject(s)
Pichia , Wood , Xylans , Wood/microbiology , Xylans/metabolism , Candida tropicalis/genetics , Candida tropicalis/metabolism , Peptones/metabolism , Fermentation , Yeasts , Carbon/metabolism , Nitrogen/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism
14.
J Microbiol Biotechnol ; 34(1): 176-184, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38037397

ABSTRACT

A xylan-degrading bacterial strain, MS9, was recently isolated from soil samples collected in Namhae, Gyeongsangnam-do, Republic of Korea. This strain was identified as a variant of Streptomyces viridodiastaticus NBRC13106T based on 16S rRNA gene sequencing, DNA-DNA hybridization analysis, and other chemotaxonomic characteristics, and was named S. viridodiastaticus MS9 (=KCTC29014= DSM42055). In this study, we aimed to investigate the molecular and biochemical characteristics of a xylanase (XynCvir) identified from S. viridodiastaticus MS9. XynCvir (molecular weight ≍ 21 kDa) was purified from a modified Luria-Bertani medium, in which cell growth and xylanase production considerably increased after addition of xylan. Thin layer chromatography of xylan-hydrolysate showed that XynCvir is an endo-(1,4)-ß-xylanase that degrades xylan into a series of xylooligosaccharides, ultimately converting it to xylobiose. The Km and Vmax values of XynCvir for beechwood xylan were 1.13 mg/ml and 270.3 U/mg, respectively. Only one protein (GHF93985.1, 242 amino acids) containing an amino acid sequence identical to the amino-terminal sequence of XynCvir was identified in the genome of S. viridodiastaticus. GHF93985.1 with the twin-arginine translocation signal peptide is cleaved between Ala-50 and Ala-51 to form the mature protein (21.1 kDa; 192 amino acids), which has the same amino-terminal sequence (ATTITTNQT) and molecular weight as XynCvir, indicating GHF93985.1 corresponds to XynCvir. Since none of the 100 open reading frames most homologous to GHF93985.1 listed in GenBank have been identified for their biochemical functions, our findings greatly contribute to the understanding of their biochemical characteristics.


Subject(s)
Streptomyces , Xylans , Xylans/metabolism , RNA, Ribosomal, 16S/genetics , Streptomyces/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Amino Acids , Cloning, Molecular , Hydrogen-Ion Concentration
15.
Bioresour Technol ; 394: 130249, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154735

ABSTRACT

Effective production of xylooligosaccharides (XOS) with lower proportion of xylose entails unique and robust xylanases. In this study, two novel xylanases from Trichoderma asperellum ND-1 belonging to glycoside hydrolase families 10 (XynTR10) and 11 (XynTR11) were over-expressed in Komagataella phaffii X-33 and characterized to be robust enzymes with high halotolerance and ethanol tolerant. Both enzymes displayed strict substrate specificity towards beechwood xylan and wheat arabinoxylan. (Glu153/Glu258) and (Glu161/Glu252) were key catalytic sites for XynTR10 and XynTR11. Notably, XynTR11 could rapidly degrade xylan/XOS into xylobiose without xylose via transglycosylation. Direct degradation of corncob using XynTR10 and XynTR111 displayed that while XynTR10 yielded 77% xylobiose and 25% xylose, XynTR11 yielded much less xylose (11%) and comparable amounts of xylobiose (63%). XynTR10 or XynTR111 has great potential as a catalyst for bioconversion of xylan-containing agricultural waste into high-value products (biofuel or XOS), which is of significant benefit for the economy and environment.


Subject(s)
Glucuronates , Glycoside Hydrolases , Hypocreales , Xylans , Humans , Xylans/metabolism , Glycoside Hydrolases/metabolism , Zea mays/metabolism , Xylose/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Oligosaccharides/metabolism , Hydrolysis , Substrate Specificity
16.
Braz J Microbiol ; 54(4): 2951-2959, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37843795

ABSTRACT

Xylanase is widely used in various industries such as food processing, paper, textiles, and leather tanning. In this study, Bacillus cereus L-1 strain was isolated and identified as capable of producing low molecular weight xylanase through 16 s rRNA sequencing. Maximum xylanase yield of 15.51 ± 2.08 U/mL was achieved under optimal fermentation conditions (5% inoculum, 20 g/L xylan, pH 6.0, for 24 h). After purification via ammonium sulfate precipitation and High-S ion exchange chromatography, electrophoretic purity xylanase was obtained with a 28-fold purification and specific activity of 244.97 U/mg. Xylanase had an optimal pH of 6.5 and temperature of 60 °C and displayed thermostability at 30 °C and 40 °C with 48.56% and 45.97% remaining activity after 180 min, respectively. The xylanase retained more than 82.97% of its activity after incubation for 24 h at pH 5.0 and was sensitive to metal ions, especially Mg2+ and Li+. Purified xylanase showed a molecular weight of 23 kDa on SDS-PAGE, and partial peptide sequencing revealed homology to the endo-1,4-beta-xylanase with a molecular weight of 23.3 kDa through LC/MS-MS (liquid chromatography-tandem mass spectrometry). This study suggests that the purified xylanase is easier to purify and enriches low molecular weight xylanases from bacteria source.


Subject(s)
Bacillus cereus , Endo-1,4-beta Xylanases , Bacillus cereus/genetics , Bacillus cereus/metabolism , Molecular Weight , Enzyme Stability , Temperature , Fermentation , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Hydrogen-Ion Concentration
17.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569374

ABSTRACT

α-l-arabinofuranosidases are glycosyl hydrolases that catalyze the break between α-l-arabinofuranosyl substituents or between α-l-arabinofuranosides and xylose from xylan or xylooligosaccharide backbones. While they belong to several glycosyl hydrolase (GH) families, there are only 24 characterized GH62 arabinofuranosidases, making them a small and underrepresented group, with many of their features remaining unknown. Aside from their applications in the food industry, arabinofuranosidases can also aid in the processing of complex lignocellulosic materials, where cellulose, hemicelluloses, and lignin are closely linked. These materials can be fully converted into sugar monomers to produce secondary products like second-generation bioethanol. Alternatively, they can be partially hydrolyzed to release xylooligosaccharides, which have prebiotic properties. While endoxylanases and ß-xylosidases are also necessary to fully break down the xylose backbone from xylan, these enzymes are limited when it comes to branched polysaccharides. In this article, two new GH62 α-l-arabinofuranosidases from Talaromyces amestolkiae (named ARA1 and ARA-2) have been heterologously expressed and characterized. ARA-1 is more sensitive to changes in pH and temperature, whereas ARA-2 is a robust enzyme with wide pH and temperature tolerance. Both enzymes preferentially act on arabinoxylan over arabinan, although ARA-1 has twice the catalytic efficiency of ARA-2 on this substrate. The production of xylooligosaccharides from arabinoxylan catalyzed by a T. amestolkiae endoxylanase was significantly increased upon pretreatment of the polysaccharide with ARA-1 or ARA-2, with the highest synergism values reported to date. Finally, both enzymes (ARA-1 or ARA-2 and endoxylanase) were successfully applied to enhance saccharification by combining them with a ß-xylosidase already characterized from the same fungus.


Subject(s)
Endo-1,4-beta Xylanases , Xylans , Humans , Xylans/chemistry , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Xylose , Biomass , Substrate Specificity , Glycoside Hydrolases/metabolism , Hydrolysis
18.
Biotechnol Adv ; 65: 108148, 2023.
Article in English | MEDLINE | ID: mdl-37030552

ABSTRACT

Endo-1,4-ß-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal ß-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-ß-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-ß-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-ß-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.


Subject(s)
Endo-1,4-beta Xylanases , Glycoside Hydrolases , Humans , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Glycoside Hydrolases/metabolism , Xylans/chemistry , Substrate Specificity , Bacterial Proteins/metabolism
19.
Biotechnol Bioeng ; 120(5): 1171-1188, 2023 05.
Article in English | MEDLINE | ID: mdl-36715367

ABSTRACT

Xylanases are the main biocatalysts used for the reduction of the xylan backbone from hemicellulose, randomly splitting off ß-1,4-glycosidic linkages between xylopyranosyl residues. Xylanase market has been annually estimated at 500 million US Dollars and they are potentially used in broad industrial process ranges such as paper pulp biobleaching, xylo-oligosaccharide production, and biofuel manufacture from lignocellulose. The highly stable xylanases are preferred in the downstream procedure of industrial processes because they can tolerate severe conditions. Almost all native xylanases can not endure adverse conditions thus they are industrially not proper to be utilized. Protein engineering is a powerful technology for developing xylanases, which can effectively work in adverse conditions and can meet requirements for industrial processes. This study considered state-of-the-art strategies of protein engineering for creating the xylanase gene diversity, high-throughput screening systems toward upgraded traits of the xylanases, and the prediction and comprehensive analysis of the target mutations in xylanases by in silico methods. Also, key molecular factors have been elucidated for industrial characteristics (alkaliphilic enhancement, thermal stability, and catalytic performance) of GH11 family xylanases. The present review explores industrial characteristics improved by directed evolution, rational design, and semi-rational design as protein engineering approaches for pulp bleaching process, xylooligosaccharides production, and biorefinery & bioenergy production.


Subject(s)
Endo-1,4-beta Xylanases , Protein Engineering , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Protein Engineering/methods
20.
Mol Biotechnol ; 65(7): 1109-1118, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36445609

ABSTRACT

A copper activated xylanase produced by E. coli BL21 was expressed in Pichia pastoris using the pGAPZαB expression vector. Two recombinant GH11 xylanase forms were obtained (N-His-rXAn11 and N-C-His-rXAn11). The findings revealed that the two recombinant xylanases displayed different behaviors toward the copper. In the presence of 3-mM Cu2+, the relative activity of the N-His-rXAn11 was enhanced by about 52%. However, the xylanase activity of the N- and C-terminal tagged one (N-C-His-rXAn11) was strongly inhibited by copper. In the presence of 3-mM Cu2+, the N-His-rXAn11 revealed to be thermostable at 60 °C with a half-life of 10 min. However, the N-C-His-rXAn11 was noted to be unstable since it was inactivated after 15 min of incubation at 55 °C. 3D models of the two recombinant forms showed that the created copper site in the N-His-rXAn11 was loosed in the C-terminal tagged protein. The C-terminal tag could trigger some structural changes with a notable displacement of secondary structures leading to great hindrance of the active site due to high fluctuations and probably new interactions among the N- and C-terminal amino acids.


Subject(s)
Copper , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Pichia/genetics , Pichia/metabolism , Enzyme Stability , Recombinant Proteins/chemistry , Hydrogen-Ion Concentration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...