Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 712
Filter
1.
Sci Adv ; 10(22): eado0077, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38809980

ABSTRACT

While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.


Subject(s)
Receptor, Cannabinoid, CB1 , Signal Transduction , Synapses , Synaptic Transmission , Animals , Synaptic Transmission/drug effects , Receptor, Cannabinoid, CB1/metabolism , Synapses/metabolism , Presynaptic Terminals/metabolism , Mice , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Dronabinol/pharmacology
2.
FASEB J ; 38(10): e23675, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38801406

ABSTRACT

Resolution of inflammation is the cellular and molecular process that protects from widespread and uncontrolled inflammation and restores tissue function in the aftermath of acute immune events. This process is orchestrated by specialized pro-resolving mediators (SPM), a class of bioactive lipids able to reduce immune activation and promote removal of tissue debris and apoptotic cells by macrophages. Although SPMs are the lipid class that has been best studied for its role in facilitating the resolution of self-limited inflammation, a number of other lipid signals, including endocannabinoids, also exert protective immunomodulatory effects on immune cells, including macrophages. These observations suggest that endocannabinoids may also display pro-resolving actions. Interestingly, the endocannabinoid anandamide (AEA) is not only known to bind canonical type 1 and type 2 cannabinoid receptors (CB1 and CB2) but also to engage SPM-binding receptors such as GPR18. This suggests that AEA may also contribute to the governing of resolution processes. In order to interrogate this hypothesis, we investigated the ability of AEA to induce pro-resolving responses by classically-activated primary human monocyte-derived macrophages (MoDM). We found that AEA, at nanomolar concentration, enhances efferocytosis in MoDMs in a CB2- and GPR18-dependent manner. Using lipid mediator profiling, we also observed that AEA modulates SPM profiles in these cells, including levels of resolvin (Rv)D1, RvD6, maresin (MaR)2, and RvE1 in a CB2-dependent manner. AEA treatment also modulated the gene expression of SPM enzymes involved in both the formation and further metabolism of SPM such as 5-lipoxygenase and 15-Prostaglandin dehydrogenase. Our findings show, for the first time, a direct effect of AEA on the regulation of pro-resolving pathways in human macrophages. They also provide new insights into the complex interactions between different lipid pathways in activation of pro-resolving responses contributing to the reestablishment of homeostasis in the aftermath of acute inflammation.


Subject(s)
Arachidonic Acids , Endocannabinoids , Macrophages , Polyunsaturated Alkamides , Receptor, Cannabinoid, CB2 , Receptors, G-Protein-Coupled , Humans , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/metabolism , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism , Macrophages/metabolism , Macrophages/drug effects , Receptors, G-Protein-Coupled/metabolism , Inflammation/metabolism , Cells, Cultured , Signal Transduction/drug effects , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Arachidonate 5-Lipoxygenase/metabolism
3.
Biomolecules ; 14(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672512

ABSTRACT

In our previous study, we demonstrated the impact of overexpression of CB1 and CB2 cannabinoid receptors and the inhibitory effect of endocannabinoids (2-arachidonoylglycerol (2-AG) and Anandamide (AEA)) on canine (Canis lupus familiaris) and human (Homo sapiens) non-Hodgkin lymphoma (NHL) cell lines' viability compared to cells treated with a vehicle. The purpose of this study was to demonstrate the anti-cancer effects of the phytocannabinoids, cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), and the synthetic cannabinoid WIN 55-212-22 (WIN) in canine and human lymphoma cell lines and to compare their inhibitory effect to that of endocannabinoids. We used malignant canine B-cell lymphoma (BCL) (1771 and CLB-L1) and T-cell lymphoma (TCL) (CL-1) cell lines, and human BCL cell line (RAMOS). Our cell viability assay results demonstrated, compared to the controls, a biphasic effect (concentration range from 0.5 µM to 50 µM) with a significant reduction in cancer viability for both phytocannabinoids and the synthetic cannabinoid. However, the decrease in cell viability in the TCL CL-1 line was limited to CBD. The results of the biochemical analysis using the 1771 BCL cell line revealed a significant increase in markers of oxidative stress, inflammation, and apoptosis, and a decrease in markers of mitochondrial function in cells treated with the exogenous cannabinoids compared to the control. Based on the IC50 values, CBD was the most potent phytocannabinoid in reducing lymphoma cell viability in 1771, Ramos, and CL-1. Previously, we demonstrated the endocannabinoid AEA to be more potent than 2-AG. Our study suggests that future studies should use CBD and AEA for further cannabinoid testing as they might reduce tumor burden in malignant NHL of canines and humans.


Subject(s)
Benzoxazines , Cannabidiol , Cell Survival , Dronabinol , Lymphoma, Non-Hodgkin , Morpholines , Naphthalenes , Humans , Dogs , Cannabidiol/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dronabinol/pharmacology , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma, Non-Hodgkin/metabolism , Lymphoma, Non-Hodgkin/pathology , Benzoxazines/pharmacology , Naphthalenes/pharmacology , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Endocannabinoids/pharmacology , Endocannabinoids/metabolism
4.
Adv Nutr ; 15(4): 100196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432590

ABSTRACT

Cannabis use has increased sharply in the last 20 y among adults, including reproductive-aged women. Its recent widespread legalization is associated with a decrease in risk perception of cannabis use during breastfeeding. However, the effect of cannabis use (if any) on milk production and milk composition is not known. This narrative review summarizes current knowledge related to maternal cannabis use during breastfeeding and provides an overview of possible pathways whereby cannabis might affect milk composition and production. Several studies have demonstrated that cannabinoids and their metabolites are detectable in human milk produced by mothers who use cannabis. Due to their physicochemical properties, cannabinoids are stored in adipose tissue, can easily reach the mammary gland, and can be secreted in milk. Moreover, cannabinoid receptors are present in adipocytes and mammary epithelial cells. The activation of these receptors directly modulates fatty acid metabolism, potentially causing changes in milk fatty acid profiles. Additionally, the endocannabinoid system is intimately connected to the endocrine system. As such, it is probable that interactions of exogenous cannabinoids with the endocannabinoid system might modify release of critical hormones (e.g., prolactin and dopamine) that regulate milk production and secretion. Nonetheless, few studies have investigated effects of cannabis use (including on milk production and composition) in lactating women. Additional research utilizing robust methodologies are needed to elucidate whether and how cannabis use affects human milk production and composition.


Subject(s)
Cannabinoids , Cannabis , Adult , Female , Humans , Animals , Lactation , Milk, Human/chemistry , Breast Feeding , Endocannabinoids/analysis , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Milk/chemistry , Cannabinoids/pharmacology , Cannabinoids/analysis , Cannabinoids/metabolism , Fatty Acids/pharmacology
5.
Pharmacol Rep ; 76(2): 223-234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457018

ABSTRACT

Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. While the treatment of other neoplasms is increasingly more efficacious the median survival rate of GBM patients remains low and equals about 14 months. Due to this fact, there are intensive efforts to find drugs that would help combat GBM. Nowadays cannabinoids are becoming more and more important in the field of cancer and not only because of their properties of antiemetic drugs during chemotherapy. These compounds may have a direct cytotoxic effect on cancer cells. Studies indicate GBM has disturbances in the endocannabinoid system-changes in cannabinoid metabolism as well as in the cannabinoid receptor expression. The GBM cells show expression of cannabinoid receptors 1 and 2 (CB1R and CB2R), which mediate various actions of cannabinoids. Through these receptors, cannabinoids inhibit the proliferation and invasion of GBM cells, along with changing their morphology. Cannabinoids also induce an intrinsic pathway of apoptosis in the tumor. Hence the use of cannabinoids in the treatment of GBM may be beneficial to the patients. So far, studies focusing on using cannabinoids in GBM therapy are mainly preclinical and involve cell lines and mice. The results are promising and show cannabinoids inhibit GBM growth. Several clinical studies are also being carried out. The preliminary results show good tolerance of cannabinoids and prolonged survival after administration of these drugs. In this review, we describe the impact of cannabinoids on GBM and glioma cells in vitro and in animal studies. We also provide overview of clinical trials on using cannabinoids in the treatment of GBM.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Cannabinoids , Glioblastoma , Glioma , Humans , Mice , Animals , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabinoids/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Endocannabinoids/pharmacology , Antineoplastic Agents/pharmacology , Brain Neoplasms/pathology
6.
Reprod Toxicol ; 125: 108575, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462211

ABSTRACT

The generally undesired effects of exocannabinoids on male reproduction include alterations in testicular cell proliferation and function, as well as apoptosis induction. However, this paradigm has been challenged by the ability of endocannabinoids to regulate reproductive function. The present study addresses these paradoxical facts by investigating the effects of the endocannabinoid 2-arachidonoyl glycerol (2-AG) on mouse Sertoli cells' survival and apoptosis, with a mechanistic insight into Sertoli cell-based growth factors' production. The Mus musculus Sertoli cell line (TM4) was exposed to different concentrations of 2-AG, and cell viability was evaluated using MTT assay. Growth factors' gene and protein expressions were analyzed through RT-PCR and western blotting. 2-AG concentration dependently increased TM4 viability, with a slight increase starting at 0.0001 µM, a peak of 190% of the control level at 1 µM, and a decrease at 3 µM. Moreover, 2-AG paradoxically altered mRNA expression of caspase-3 and growth factors. Caspase-3 mRNA expression was down-regulated, and growth factors mRNA and protein expression were up-regulated when using a low concentration of 2-AG (1 µM). Opposite effects were observed by a higher concentration of 2-AG (3 µM). These paradoxical effects of 2-AG can be explained through the concept of hormesis. The results indicate the pivotal role of 2-AG in mediating Sertoli cell viability and apoptosis, at least in part, through altering growth factors secretion. Furthermore, they suggest the involvement of endocannabinoids in Sertoli cell-based physiological and pathological conditions and reflect the ability of abnormally elevated 2-AG to mimic the actions of exocannabinoids in reproductive dysfunction.


Subject(s)
Cannabinoids , Endocannabinoids , Mice , Animals , Male , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Sertoli Cells , Caspase 3/metabolism , Glycerol/metabolism , Glycerol/pharmacology , Hormesis , Cell Survival , Apoptosis , RNA, Messenger/metabolism , Fertility , Cells, Cultured
7.
Biomed Pharmacother ; 173: 116369, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452657

ABSTRACT

Anandamide (AEA) is an important modulator of nociception in the spinal dorsal horn, acting presynaptically through Cannabinoid (CB1) and Transient receptor potential vanilloid (TRPV1) receptors. The role of AEA (1 µM, 10 µM, and 30 µM) application on the modulation of nociceptive synaptic transmission under control and inflammatory conditions was studied by recording miniature excitatory postsynaptic currents (mEPSCs) from neurons in spinal cord slices. Inhibition of the CB1 receptors by PF514273, TRPV1 by SB366791, and the fatty acid amide hydrolase (FAAH) by URB597 was used. Under naïve conditions, the AEA application did not affect the mEPSCs frequency (1.43±0.12 Hz) when all the recorded neurons were considered. The mEPSC frequency increased (180.0±39.2%) only when AEA (30 µM) was applied with PF514273 and URB597. Analysis showed that one sub-population of neurons had synaptic input inhibited (39.1% of neurons), the second excited (43.5%), whereas 8.7% showed a mixed effect and 8.7% did not respond to the AEA. With inflammation, the AEA effect was highly inhibitory (72.7%), while the excitation was negligible (9.1%), and 18.2% were not modulated. After inflammation, more neurons (45.0%) responded even to low AEA by mEPSC frequency increase with PF514273/URB597 present. AEA-induced dual (excitatory/inhibitory) effects at the 1st nociceptive synapse should be considered when developing analgesics targeting the endocannabinoid system. These findings contrast the clear inhibitory effects of the AEA precursor 20:4-NAPE application described previously and suggest that modulation of endogenous AEA production may be more favorable for analgesic treatments.


Subject(s)
Arachidonic Acids , Benzamides , Carbamates , Endocannabinoids , Nociception , Humans , Endocannabinoids/pharmacology , Polyunsaturated Alkamides/pharmacology , Spinal Cord Dorsal Horn , Analgesics/pharmacology , Inflammation/drug therapy , Amidohydrolases
8.
Braz J Med Biol Res ; 57: e12857, 2024.
Article in English | MEDLINE | ID: mdl-38381881

ABSTRACT

MCH1 is a synthetic macamide that has shown in vitro inhibitory activity on fatty acid amide hydrolase (FAAH), an enzyme responsible for endocannabinoid metabolism. This inhibition can modulate endocannabinoid and dopamine signaling in the nucleus accumbens (NAc), potentially having an antidepressant-like effect. The present study aimed to evaluate the effect of the in vivo administration of MCH1 (3, 10, and 30 mg/kg, ip) in 2-month-old BALB/c male mice (n=97) on forced swimming test (FST), light-dark box (LDB), and open field test (OFT) and on early gene expression changes 2 h after drug injection related to the endocannabinoid system (Cnr1 and Faah) and dopaminergic signaling (Drd1 and Drd2) in the NAc core. We found that the 10 mg/kg MCH1 dose reduced the immobility time compared to the vehicle group in the FST with no effect on anxiety-like behaviors measured in the LDB or OFT. However, a 10 mg/kg MCH1 dose increased locomotor activity in the OFT compared to the vehicle. Moreover, RT-qPCR results showed that the 30 mg/kg MCH1 dose increased Faah gene expression by 2.8-fold, and 10 mg/kg MCH1 increased the Cnr1 gene expression by 4.3-fold compared to the vehicle. No changes were observed in the expression of the Drd1 and Drd2 genes in the NAc at either MCH1 dose. These results indicated that MCH1 might have an antidepressant-like effect without an anxiogenic effect and induces significant changes in endocannabinoid-related genes but not in genes of the dopaminergic signaling system in the NAc of mice.


Subject(s)
Amidohydrolases , Endocannabinoids , Nucleus Accumbens , Mice , Male , Animals , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Nucleus Accumbens/metabolism , Dopamine/metabolism , Dopamine/pharmacology , Antidepressive Agents/pharmacology , Gene Expression
9.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396948

ABSTRACT

Endocannabinoid anandamide (AEA) and paracannabinoid lysophosphatidylinositol (LPI) play a significant role in cancer cell proliferation regulation. While anandamide inhibits the proliferation of cancer cells, LPI is known as a cancer stimulant. Despite the known endocannabinoid receptor crosstalk and simultaneous presence in the cancer microenvironment of both molecules, their combined activity has never been studied. We evaluated the effect of LPI on the AEA activity in six human breast cancer cell lines of different carcinogenicity (MCF-10A, MCF-7, BT-474, BT-20, SK-BR-3, MDA-MB-231) using resazurin and LDH tests after a 72 h incubation. AEA exerted both anti-proliferative and cytotoxic activity with EC50 in the range from 31 to 80 µM. LPI did not significantly affect the cell viability. Depending on the cell line, the response to the LPI-AEA combination varied from a decrease in AEA cytotoxicity to an increase in it. Based on the inhibitor analysis of the endocannabinoid receptor panel, we showed that for the former effect, an active GPR18 receptor was required and for the latter, an active CB2 receptor. The data obtained for the first time are important for the understanding the manner by which endocannabinoid receptor ligands acting simultaneously can modulate cancer growth at different stages.


Subject(s)
Arachidonic Acids , Breast Neoplasms , Endocannabinoids , Lysophospholipids , Humans , Female , Endocannabinoids/pharmacology , Breast Neoplasms/drug therapy , Polyunsaturated Alkamides/pharmacology , Cell Death , Receptor, Cannabinoid, CB1 , Tumor Microenvironment
10.
Reproduction ; 167(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38271800

ABSTRACT

In brief: The cervix plays a crucial role not only in the maintenance of pregnancy but also during delivery, when it undergoes extensive changes. This study highlights the involvement of the endocannabinoidome in cervical remodeling, emphasizing its relevance in the shift from a nonpregnant to pregnant state and its potential contribution to preterm delivery in inflammatory contexts. Abstract: During pregnancy, the main role of the cervix is to isolate the fetus from outside pathogens and maintain the relatively closed system of uterine gestation. Conversely, toward the end of pregnancy, the cervix must be remodeled to increase flexibility and allow the delivery. This process is called cervical remodeling and dysregulation of the process plays a role in premature delivery. The endocannabinoidome plays an important role in several reproductive events; however, its function on cervical tissue throughout pregnancy is poorly understood. The goal of this study was to evaluate the presence and participation of the endocannabinoidome in lipopolysaccharide (LPS)-induced cervical changes. Therefore, we evaluated key components of the endocannabinoidome in cervical tissue from nonpregnant mice and pregnant mice with and without LPS treatment. Using mass spectrometric analysis, we found an increase in anandamide and 2-arachidonoylglycerol in the cervix of pregnant mice when compared to nonpregnant mice. We have also found a reduction in FAAH protein expression in these tissues. Furthermore, when treated with LPS, we observed a reduction in the cervical immunostaining with anti-CB1 and anti-CB2 antibodies. Likewise, using cervix explants from pregnant mice, we found that LPS significantly increased cervical metalloprotease activity and cyclooxygenase 2, which were subsequently modulated by cannabinoid receptor antagonists. Collectively, our findings suggest that an LPS-induced imbalance of cervix endocannabinoidome likely contributes to premature cervical remodeling, which is part of the key components that contribute to premature delivery.


Subject(s)
Obstetric Labor, Premature , Premature Birth , Pregnancy , Humans , Female , Mice , Animals , Cervix Uteri/physiology , Endocannabinoids/pharmacology , Lipopolysaccharides/pharmacology , Uterus/metabolism , Obstetric Labor, Premature/metabolism , Premature Birth/metabolism
11.
Mol Pharmacol ; 105(2): 75-83, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195158

ABSTRACT

The mechanisms of ß-caryophyllene (BCP)-induced analgesia are not well studied. Here, we tested the efficacy of BCP in an acute postsurgical pain model and evaluated its effect on the endocannabinoid system. Rats were treated with vehicle and 10, 25, 50, and 75 mg/kg BCP. Paw withdrawal responses to mechanical stimuli were evaluated using an electronic von Frey anesthesiometer. Endocannabinoids, including 2-arachidonoylglycerol (2-AG), were also evaluated in plasma and tissues using high-performance liquid chromatography-tandem mass spectrometry. Monoacylglycerol lipase (MAGL) activity was evaluated in vitro as well as ex vivo. We observed a dose-dependent and time-dependent alleviation of hyperalgesia in incised paws up to 85% of the baseline value at 30 minutes after administration of BCP. We also observed dose-dependent increases in the 2-AG levels of about threefold after administration of BCP as compared with vehicle controls. Incubations of spinal cord tissue homogenates from BCP-treated rats with isotope-labeled 2-arachidonoylglycerol-d8 revealed a reduced formation of the isotope-labeled MAGL product 2-AG-d8 as compared with vehicle controls, indicating MAGL enzyme inhibition. In vitro MAGL enzyme activity assessment using 2-AG as the substrate revealed an IC50 of 15.8 µM for MAGL inhibition using BCP. These data showed that BCP inhibits MAGL activity in vitro and in vivo, causing 2-AG levels to rise. Since the endocannabinoid 2-AG is a CB1 and CB2 receptor agonist, we propose that 2-AG-mediated cannabinoid receptor activation contributes to BCP's mechanism of analgesia. SIGNIFICANCE STATEMENT: ß-Caryophyllene (BCP) consumption is relatively safe and is approved by the Food and Drug Administration as a flavoring agent, which can be used in cosmetic and food additives. BCP is a potent anti-inflammatory agent that showed substantial antihyperalgesic properties in this study of acute pain suggesting that BCP might be an alternative to opioids. This study shows an additive mechanism (monoacylglycerol lipase inhibition) by which BCP might indirectly alter CB1 and CB2 receptor activity and exhibit its pharmacological properties.


Subject(s)
Analgesia , Arachidonic Acids , Endocannabinoids , Glycerides , Polycyclic Sesquiterpenes , Animals , Rats , Endocannabinoids/pharmacology , Glycerol , Isotopes , Monoacylglycerol Lipases , Receptor, Cannabinoid, CB2
12.
Int J Mol Sci ; 25(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255931

ABSTRACT

We studied whether the function of presynaptic inhibitory cannabinoid CB1 receptors on the sympathetic nerve fibres innervating resistance vessels is increased in spontaneously hypertensive rats (SHR) like in deoxycorticosterone (DOCA)-salt hypertension. An increase in diastolic blood pressure (DBP) was induced by electrical stimulation of the preganglionic sympathetic neurons or by phenylephrine injection in pithed SHR and normotensive Wistar-Kyoto rats (WKY). The electrically (but not the phenylephrine) induced increase in DBP was inhibited by the cannabinoid receptor agonist CP55940, similarly in both groups, and by the endocannabinoid reuptake inhibitor AM404 in SHR only. The effect of CP55940 was abolished/reduced by the CB1 receptor antagonist AM251 (in both groups) and in WKY by endocannabinoid degradation blockade, i.e., the monoacylglycerol lipase (MAGL) inhibitor MJN110 and the dual fatty acid amide hydrolase (FAAH)/MAGL inhibitor JZL195 but not the FAAH inhibitor URB597. MJN110 and JZL195 tended to enhance the effect of CP55940 in SHR. In conclusion, the function of presynaptic inhibitory CB1 receptors depends on the hypertension model. Although no differences occurred between SHR and WKY under basal experimental conditions, the CB1 receptor function was better preserved in SHR when the endocannabinoid tone was increased by the inhibition of MAGL or the endocannabinoid transporter.


Subject(s)
Cannabinoids , Carbamates , Cyclohexanols , Hypertension , Piperazines , Succinimides , Rats , Animals , Rats, Inbred WKY , Endocannabinoids/pharmacology , Rats, Inbred SHR , Phenylephrine
13.
Int J Mol Sci ; 25(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38203752

ABSTRACT

Astrocytes are pivotal for synaptic transmission and may also play a role in the induction and expression of synaptic plasticity, including endocannabinoid-mediated long-term depression (eCB-LTD). In the dorsolateral striatum (DLS), eCB signaling plays a major role in balancing excitation and inhibition and promoting habitual learning. The aim of this study was to outline the role of astrocytes in regulating eCB signaling in the DLS. To this end, we employed electrophysiological slice recordings combined with metabolic, chemogenetic and pharmacological approaches in an attempt to selectively suppress astrocyte function. High-frequency stimulation induced eCB-mediated LTD (HFS-LTD) in brain slices from both male and female rats. The metabolic uncoupler fluorocitrate (FC) reduced the probability of transmitter release and depressed synaptic output in a manner that was independent on cannabinoid 1 receptor (CB1R) activation. Fluorocitrate did not affect the LTD induced by the CB1R agonist WIN55,212-2, but enhanced CB1R-dependent HFS-LTD. Reduced neurotransmission and facilitated HFS-LTD were also observed during chemogenetic manipulation using Gi-coupled DREADDs targeting glial fibrillary acidic protein (GFAP)-expressing cells, during the pharmacological inhibition of connexins using carbenoxolone disodium, or during astrocytic glutamate uptake using TFB-TBOA. While pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) failed to prevent synaptic depression induced by FC, it blocked the facilitation of HFS-LTD. While the lack of tools to disentangle astrocytes from neurons is a major limitation of this study, our data collectively support a role for astrocytes in modulating basal neurotransmission and eCB-mediated synaptic plasticity.


Subject(s)
Astrocytes , Citrates , Endocannabinoids , Female , Male , Animals , Rats , Endocannabinoids/pharmacology , Corpus Striatum , Neostriatum
14.
Exp Cell Res ; 435(1): 113908, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38163565

ABSTRACT

The endocannabinoid anandamide (AEA) stimulates adipogenesis via the cannabinoid receptor CB1 in adipose stromal cells (ASCs). However, AEA interacts also with nonclassical cannabinoid receptors, including transient receptor potential cation channel (TRPV)1 and G protein-coupled receptor (GPR)55. Their roles in AEA mediated adipogenesis of human ASCs have not been investigated. We examined the receptor-expressions by immunostaining on human ASCs and tested their functionality by measuring the expression of immediate early genes (IEGs) related to the transcription factor-complex AP-1 upon exposition to receptor agonists. Cells were stimulated with increasing concentrations of specific ligands to investigate the effects on ASC viability (proliferation and metabolic activity), secretory activity, and AEA mediated differentiation. ASCs expressed both receptors, and their activation suppressed IEG expression. TRPV1 did not affect viability or cytokine secretion. GPR55 decreased proliferation, and it inhibited the release of hepatocyte growth factor. Blocking GPR55 increased the pro-adipogenic activity of AEA. These data suggest that GPR55 functions as negative regulator of cannabinoid mediated pro-adipogenic capacity in ASCs.


Subject(s)
Adipogenesis , Arachidonic Acids , Endocannabinoids , Humans , Endocannabinoids/pharmacology , Receptors, Cannabinoid , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/metabolism , Stromal Cells/metabolism
15.
Cannabis Cannabinoid Res ; 9(2): 591-600, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36749133

ABSTRACT

Objective: The present study aimed to demonstrate the possible effects of increased 2-arachidonoylglycerol (2-AG) by applying the monoacylglycerol lipase inhibitor KML-29 on rats with ovarian ischemia-reperfusion (IR) model. Methods: Forty-eight female Wistar albino rats were divided into six groups. Group 1: Sham, Group 2: Ischemia, Group 3: IR, Group 4: IR + KML-29 (2 mg/kg), Group 5: IR + KML-29 (20 mg/kg), and Group 6: IR + vehicle (dimethyl sulfoxide). Three hours of ischemia followed by 3 h of reperfusion. Two different doses of KML-29 (2 and 10 mg/kg) were administered intraperitoneally in Groups 4 and 5, 30 min before reperfusion. Ovarian IR injury and ovarian reserve were evaluated histopathological and by using nuclear factor (NF)-κB, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-ß1, superoxide dismutase, glutathione peroxidase pre-/postoperative blood antimullerian hormone, and inhibin B. Results: In the KML-1 and KML-2 groups, this damage was significantly reduced compared to the ischemia group. NF-κB, IL-1ß, TNF-α, and TGF-ß1 immunoreactivities increased statistically significantly in the ischemia group compared to the control group (p<0.001). Immunoreactivities of these proteins were significantly decreased in the KML-1 and KML-2 groups (p<0.001). It was observed that the number of these apoptotic cells decreased significantly in the KML-1 and KML-2 groups compared to the ischemia group (p<0.001). The postoperative inhibin level showed a significant decrease in the ischemia group compared to the sham group, while a significant increase was observed in the KML-1 and KML-2 groups compared to the ischemia group. Conclusion: It was seen that anti-inflammatory, antioxidant, and antiapoptotic activity was formed, and the ovarian reserve was preserved with 2-AG in ovarian IR damage. The protective effect of endocannabinoids on the ovaries may create a promising new treatment strategy for many pathologies that will affect the ovarian reserve.


Subject(s)
Arachidonic Acids , Glycerides , Ovarian Reserve , Reperfusion Injury , Rats , Female , Animals , Rats, Wistar , Endocannabinoids/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Ischemia/drug therapy , NF-kappa B/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
16.
Pharmacol Rep ; 76(1): 154-170, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38019413

ABSTRACT

BACKGROUND: Despite great advances in our understanding of the impact of cannabinoids on human organism, many of their properties still remain undetermined, including their potential antineoplastic effects. This study was designed to assess the anti-proliferative and cytotoxic effects of AM1172 (a hydrolysis-resistant endocannabinoid analog that inhibits anandamide cellular uptake) administered alone and in combinations with docetaxel (DOCX), paclitaxel (PACX), mitoxantrone (MTX) and cisplatin (CDDP) on various human malignant melanoma A375, FM55P, SK-MEL 28 and FM55M2 cell lines. MATERIALS: In the MTT, LDH, and BrdU assays, the potency and safety of AM1172 when administered alone and in combinations with DOCX, PACX, MTX, and CDDP were determined. RESULTS: The isobolographic analysis revealed that combinations of AM1172 with PACX, DOCX, MTX, and CDDP exerted additive interactions, except for a combination of AM1172 with PACX in primary melanoma A375 cell line, for which synergy was observed (*p<0.05). Nevertheless, AM1172 when administered alone produced cytotoxic effects on healthy human melanocytes (HEMa-LP) and human keratinocytes (HaCaT), which unfortunately limits its potential therapeutic utility. CONCLUSIONS: AM1172 cannot be used separately as a chemotherapeutic drug, but it can be combined with PACX, DOCX, MTX, and CDDP, offering additive interactions in terms of the anti-proliferative effects in various malignant melanoma cell lines.


Subject(s)
Antineoplastic Agents , Arachidonic Acids , Benzamides , Melanoma , Polyunsaturated Alkamides , Humans , Endocannabinoids/pharmacology , Melanoma/drug therapy , Hydrolysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cisplatin/pharmacology , Paclitaxel , Mitoxantrone/therapeutic use , Cell Line, Tumor
17.
Synapse ; 78(1): e22281, 2024 01.
Article in English | MEDLINE | ID: mdl-37694983

ABSTRACT

In mouse motor synapses, the exogenous application of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG) increases acetylcholine (ACh) quantal size due to the activation of CB1 receptors and the stimulation of ACh vesicular uptake. In the present study, microelectrode recordings of miniature endplate potentials (MEPP) revealed that this effect of 2-AG is independent of brain-derived neurotrophic factor (BDNF) signaling but involves the activation of calcitonin gene-related peptide (CGRP) receptors along with CB1 receptors. Potentiation of MEPP amplitude in the presence of 2-AG was prevented by blockers of CGRP receptors and ryanodine receptors (RyR) and by inhibitors of phospholipase C (PLC) and Ca2+ /calmodulin-dependent protein kinase II (CaMKII). Therefore, we suggest a hypothetical chain of events, which starts from the activation of presynaptic CB1 receptors, involves PLC, RyR, and CaMKII, and results in CGRP release with the subsequent activation of presynaptic CGRP receptors. Activation of CGRP receptors is probably a part of a complex molecular cascade leading to the 2-AG-induced increase in ACh quantal size and MEPP amplitude. We propose that the same chain of events may also take place if 2-AG is endogenously produced in mouse motor synapses, because the increase in MEPP amplitude that follows after prolonged tetanic muscle contractions (30 Hz, 2 min) was prevented by the blocking of CB1 receptors. This work may help to unveil the previously unknown aspects of the functional interaction between ECs and peptide modulators aimed at the regulation of quantal size and synaptic transmission.


Subject(s)
Arachidonic Acids , Endocannabinoids , Glycerides , Neuromuscular Junction , Mice , Animals , Neuromuscular Junction/metabolism , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Receptors, Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Synapses/metabolism
18.
Shock ; 61(2): 294-303, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38150372

ABSTRACT

ABSTRACT: We evaluated the participation of the endocannabinoid system in the paraventricular nucleus of the hypothalamus (PVN) on the cardiovascular, autonomic, and plasma vasopressin (AVP) responses evoked by hemorrhagic shock in rats. For this, the PVN was bilaterally treated with either vehicle, the selective cannabinoid receptor type 1 antagonist AM251, the selective fatty acid amide hydrolase amide enzyme inhibitor URB597, the selective monoacylglycerol-lipase enzyme inhibitor JZL184, or the selective transient receptor potential vanilloid type 1 antagonist capsazepine. We evaluated changes on arterial pressure, heart rate, tail skin temperature (ST), and plasma AVP responses induced by bleeding, which started 10 min after PVN treatment. We observed that bilateral microinjection of AM251 into the PVN reduced the hypotension during the hemorrhage and prevented the return of blood pressure to baseline values in the posthemorrhagic period. Inhibition of local 2-arachidonoylglycerol metabolism by PVN treatment with JZL184 induced similar effects in relation to those observed in AM251-treated animals. Inhibition of local anandamide metabolism via PVN treatment with URB597 decreased the depressor effect and ST drop induced by the hemorrhagic stimulus. Bilateral microinjection of capsazepine mitigated the fall in blood pressure and ST. None of the PVN treatments altered the increased plasma concentration of AVP and tachycardia induced by hemorrhage. Taken together, present results suggest that endocannabinoid neurotransmission within the PVN plays a prominent role in cardiovascular and autonomic, but not neuroendocrine, responses evoked by hemorrhage.


Subject(s)
Benzamides , Capsaicin/analogs & derivatives , Carbamates , Endocannabinoids , Shock, Hemorrhagic , Animals , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Paraventricular Hypothalamic Nucleus/metabolism , Shock, Hemorrhagic/metabolism , Enzyme Inhibitors , Vasopressins/pharmacology
19.
Neurosci Lett ; 818: 137519, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37852528

ABSTRACT

Repeated exposure to psychosocial stress modulates the endocannabinoid system, particularly anandamide (AEA) signaling in brain regions associated with emotional distress. The mTOR protein regulates various neuroplastic processes in the brain disrupted by stress, including adult hippocampal neurogenesis. This kinase has been implicated in multiple effects of cannabinoid drugs and the anti-stress behavioral effects of psychoactive drugs. Therefore, our hypothesis is that enhancing AEA signaling via pharmacological inhibition of the fatty acid amide hydrolase (FAAH) enzyme induces an anti-stress behavioral effect through an mTOR-dependent mechanism. To test this hypothesis, male C57Bl6 mice were exposed to social defeat stress (SDS) for 7 days and received daily treatment with either vehicle or different doses of the FAAH inhibitor, URB597 (0.1; 0.3; 1 mg/Kg), alone or combined with rapamycin. The results suggested that URB597 induced an inverted U-shaped dose-response curve in mice subjected to SDS (with the intermediate dose of 0.3 mg/kg being anxiolytic, and the higher tested dose of 1 mg/Kg being anxiogenic). In a second independent experiment, rapamycin treatment induced an anxiogenic-like response in control mice. However, in the presence of rapamycin, the anxiolytic dose of URB597 treatment failed to reduce stress-induced anxiety behaviors in mice. SDS exposure altered the hippocampal expression of the mTOR scaffold protein Raptor. Furthermore, the anxiogenic dose of URB597 decreased the absolute number of migrating doublecortin (DCX)-positive cells in the dentate gyrus, suggesting an anti-anxiety effect independent of newly generated/immature neurons. Therefore, our results indicate that in mice exposed to repeated psychosocial stress, URB597 fails to counteract the anxiogenic-like response induced by the pharmacological dampening of mTOR signaling.


Subject(s)
Anti-Anxiety Agents , Mice , Male , Animals , Anti-Anxiety Agents/pharmacology , Sirolimus , Mice, Inbred C57BL , Endocannabinoids/pharmacology , TOR Serine-Threonine Kinases , Amidohydrolases , Receptor, Cannabinoid, CB1
20.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139209

ABSTRACT

The endocannabinoid system regulates physiological processes, and the modulation of endogenous endocannabinoid (eCB) levels is an attractive tool to contrast the development of pathological skin conditions including cancers. Inhibiting FAAH (fatty acid amide hydrolase), the degradation enzyme of the endocannabinoid anandamide (AEA) leads to the increase in AEA levels, thus enhancing its biological effects. Here, we evaluated the anticancer property of the FAAH inhibitor URB597, investigating its potential to counteract epithelial-to-mesenchymal transition (EMT), a process crucially involved in tumor progression. The effects of the compound were determined in primary human keratinocytes, ex vivo skin explants, and the squamous carcinoma cell line A431. Our results demonstrate that URB597 is able to hinder the EMT process by downregulating mesenchymal markers and reducing migratory potential. These effects are associated with the dampening of the AKT/STAT3 signal pathways and reduced release of pro-inflammatory cytokines and tumorigenic lipid species. The ability of URB597 to contrast the EMT process provides insight into effective approaches that may also include the use of FAAH inhibitors for the treatment of skin cancers.


Subject(s)
Endocannabinoids , Neoplasms , Humans , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/metabolism , Amidohydrolases/metabolism , Keratinocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...