Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.382
Filter
1.
Cell Commun Signal ; 22(1): 301, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822356

ABSTRACT

BACKGROUND: Intrauterine adhesion (IUA) is one of the most severe causes of infertility in women of childbearing age with injured endometrium secondary to uterine performance. Stem cell therapy is effective in treating damaged endometrium. The current reports mainly focus on the therapeutic effects of stem cells through paracrine or transdifferentiation, respectively. This study investigates whether paracrine or transdifferentiation occurs preferentially in treating IUA. METHODS: Human amniotic mesenchymal stem cells (hAMSCs) and transformed human endometrial stromal cells (THESCs) induced by transforming growth factor beta (TGF-ß1) were co-cultured in vitro. The mRNA and protein expression levels of Fibronectin (FN), Collagen I, Cytokeratin19 (CK19), E-cadherin (E-cad) and Vimentin were detected by Quantitative real-time polymerase chain reaction (qPCR), Western blotting (WB) and Immunohistochemical staining (IHC). The Sprague-Dawley (SD) rats were used to establish the IUA model. hAMSCs, hAMSCs-conditional medium (hAMSCs-CM), and GFP-labeled hAMSCs were injected into intrauterine, respectively. The fibrotic area of the endometrium was evaluated by Masson staining. The number of endometrium glands was detected by hematoxylin and eosin (H&E). GFP-labeled hAMSCs were traced by immunofluorescence (IF). hAMSCs, combined with PPCNg (hAMSCs/PPCNg), were injected into the vagina, which was compared with intrauterine injection. RESULTS: qPCR and WB revealed that FN and Collagen I levels in IUA-THESCs decreased significantly after co-culturing with hAMSCs. Moreover, CK19, E-cad, and Vimentin expressions in hAMSCs showed no significant difference after co-culture for 2 days. 6 days after co-culture, CK19, E-cad and Vimentin expressions in hAMSCs were significantly changed. Histological assays showed increased endometrial glands and a remarkable decrease in the fibrotic area in the hAMSCs and hAMSCs-CM groups. However, these changes were not statistically different between the two groups. In vivo, fluorescence imaging revealed that GFP-hAMSCs were localized in the endometrial stroma and gradually underwent apoptosis. The effect of hAMSCs by vaginal injection was comparable to that by intrauterine injection assessed by H&E staining, MASSON staining and IHC. CONCLUSIONS: Our data demonstrated that hAMSCs promoted endometrial repair via paracrine, preferentially than transdifferentiation.


IUA is the crucial cause of infertility in women of childbearing age, and no satisfactory treatment measures have been found in the clinic. hAMSCs can effectively treat intrauterine adhesions through paracrine and transdifferentiation mechanisms. This study confirmed in vitro and in vivo that amniotic mesenchymal stem cells preferentially inhibited endometrial fibrosis and promoted epithelial repair through paracrine, thus effectively treating intrauterine adhesions. The level of fibrosis marker proteins in IUA-THESCs decreased significantly after co-culturing with hAMSCs for 2 days in vitro. However, the level of epithelial marker proteins in hAMSCs increased significantly, requiring at least 6 days of co-culture. hAMSCs-CM had the same efficacy as hAMSCs in inhibiting fibrosis and promoting endometrial repair in IUA rats, supporting the idea that hAMSCs promoted endometrial remodeling through paracrine in vivo. In addition, GFP-labeled hAMSCs continuously colonized the endometrial stroma instead of the epithelium and gradually underwent apoptosis. These findings prove that hAMSCs ameliorate endometrial fibrosis of IUA via paracrine, preferentially than transdifferentiation, providing the latest insights into the precision treatment of IUA with hAMSCs and a theoretical basis for promoting the "cell-free therapy" of MSCs.


Subject(s)
Amnion , Cell Transdifferentiation , Endometrium , Mesenchymal Stem Cells , Paracrine Communication , Rats, Sprague-Dawley , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Endometrium/cytology , Endometrium/metabolism , Animals , Amnion/cytology , Amnion/metabolism , Rats , Mesenchymal Stem Cell Transplantation/methods , Coculture Techniques , Tissue Adhesions/pathology , Tissue Adhesions/metabolism
2.
Gynecol Endocrinol ; 40(1): 2360072, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38835267

ABSTRACT

OBEJECTIVE: To compare the effectiveness of endometrial receptivity and pregnancy outcomes of four common immunomodulatory therapies for patients with thin endometrium. METHOD: This systematic review and network meta-analysis using a literature search up to January 2024, to identify relevant trials comparing endometrial receptivity and pregnancy outcomes of human chorionic gonadotropin (hCG), platelet-rich plasma (PRP), infusion of granulocyte colony-stimulating factor (IG-CSF), and peripheral blood mononuclear cell (PBMC) for patients with thin endometrium. We used surface under the cumulative ranking (SUCRA) to ranked four common immunomodulatory therapies on endometrium thickness, implantation rate (IR), clinical pregnancy rate (CPR), and live birth rate (LBR). RoB2 and ROBINS-I were used to assess the certainty of evidence. RESULTS: The pooled results of 22 studies showed that hCG (mean difference [MD]: 3.05, 95% confidence interval [CI]: 1.46-4.64) and PRP (MD: 0.98, 95% CI: 0.20-1.76) significantly increase endometrium thickness. The hCG was the best among the IG-CSF (MD = -2.56, 95% CI = -4.30 to -0.82), PBMC (MD = -2.75, 95% CI = -5.49 to -0.01), and PRP (MD = -2.07, 95% CI = -3.84 to -0.30) in increasing endometrium thickness. However, IG-CSF and PRP significantly improved IR (IG-CSF: risk ratio (RR; IG-CSF: RR = 1.33, 95% CI = 1.06-1.67; PRP: RR = 1.63, 95% CI = 1.19-2.23), and LBR (IG-CSF: RR = 1.53, 95% CI = 1.16-2.02; PRP: RR = 1.59, 95% CI = 1.08-2.36). CONCLUSIONS: Available evidence reveals that hCG and subcutaneous or intrauterine CSF (SG-CSF) may be the best treatment options for current thin endometrium patients. However, future high-quality and large-scale studies are necessary to validate our findings.


Subject(s)
Chorionic Gonadotropin , Endometrium , Network Meta-Analysis , Humans , Female , Endometrium/pathology , Endometrium/drug effects , Pregnancy , Chorionic Gonadotropin/therapeutic use , Chorionic Gonadotropin/administration & dosage , Platelet-Rich Plasma , Granulocyte Colony-Stimulating Factor/therapeutic use , Granulocyte Colony-Stimulating Factor/administration & dosage , Pregnancy Rate , Leukocytes, Mononuclear , Embryo Implantation
3.
Front Endocrinol (Lausanne) ; 15: 1365327, 2024.
Article in English | MEDLINE | ID: mdl-38737555

ABSTRACT

Endometriosis is a chronic inflammatory gynecological disease, which profoundly jeopardizes women's quality of life and places a significant medical burden on society. The pathogenesis of endometriosis remains unclear, posing major clinical challenges in diagnosis and treatment. There is an urgent demand for the development of innovative non-invasive diagnostic techniques and the identification of therapeutic targets. Extracellular vesicles, recognized for transporting a diverse array of signaling molecules, have garnered extensive attention as a novel mode of intercellular communication. A burgeoning body of research indicates that extracellular vesicles play a pivotal role in the pathogenesis of endometriosis, which may provide possibility and prospect for both diagnosis and treatment. In light of this context, this article focuses on the involvement of extracellular vesicles in the pathogenesis of endometriosis, which deliver information among endometrial stromal cells, macrophages, mesenchymal stem cells, and other cells, and explores their potential applications in the diagnosis and treatment, conducing to the emergence of new strategies for clinical diagnosis and treatment.


Subject(s)
Endometriosis , Extracellular Vesicles , Endometriosis/pathology , Endometriosis/metabolism , Endometriosis/therapy , Endometriosis/diagnosis , Humans , Extracellular Vesicles/metabolism , Female , Endometrium/pathology , Endometrium/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Cell Communication/physiology
4.
Front Immunol ; 15: 1378863, 2024.
Article in English | MEDLINE | ID: mdl-38765018

ABSTRACT

Background: At menstruation, the functional layer of the human endometrium sheds off due to the trigger of the release of inflammatory factors, including interleukin 6 (IL-6), as a result of a sharp decline in progesterone levels, leading to tissue breakdown and bleeding. The endometrial mesenchymal stem-like cells (CD140b+CD146+ eMSC) located in the basalis are responsible for the cyclical regeneration of the endometrium after menstruation. Endometrial cells from the menstruation phase have been proven to secrete a higher amount of IL-6 and further enhance the self-renewal and clonogenic activity of eMSC. However, the IL-6-responsive mechanism remains unknown. Thus, we hypothesized that IL-6 secreted from niche cells during menstruation regulates the proliferation and self-renewal of eMSC through the WNT/ß-catenin signaling pathway. Methods: In this study, the content of IL-6 across the menstrual phases was first evaluated. Coexpression of stem cell markers (CD140b and CD146) with interleukin 6 receptor (IL-6R) was confirmed by immunofluorescent staining. In vitro functional assays were conducted to investigate the effect of IL-6 on the cell activities of eMSC, and the therapeutic role of these IL-6- and WNT5A-pretreated eMSC on the repair of injured endometrium was observed using an established mouse model. Results: The endometrial cells secrete a high amount of IL-6 under hypoxic conditions, which mimic the physiological microenvironment in the menstruation phase. Also, the expression of IL-6 receptors was confirmed in our eMSC, indicating their capacity to respond to IL-6 in the microenvironment. Exogenous IL-6 can significantly enhance the self-renewal, proliferation, and migrating capacity of eMSC. Activation of the WNT/ß-catenin signaling pathway was observed upon IL-6 treatment, while suppression of the WNT/ß-catenin signaling impaired the stimulatory role of IL-6 on eMSC activities. IL-6- and WNT5A-pretreated eMSC showed better performance during the regeneration of the injured mouse endometrium. Conclusion: We demonstrate that the high level of IL-6 produced by endometrial cells at menstruation can induce the stem cells in the human endometrium to proliferate and migrate through the activation of the WNT/ß-catenin pathway. Treatment of eMSC with IL-6 and WNT5A might enhance their therapeutic potential in the regeneration of injured endometrium.


Subject(s)
Cell Proliferation , Endometrium , Interleukin-6 , Menstruation , Mesenchymal Stem Cells , Wnt Signaling Pathway , Female , Mesenchymal Stem Cells/metabolism , Humans , Interleukin-6/metabolism , Endometrium/metabolism , Endometrium/cytology , Animals , Mice , Adult , Cells, Cultured , Cell Self Renewal
5.
Commun Biol ; 7(1): 530, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704457

ABSTRACT

Cell stiffness is regulated by dynamic interaction between ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1) proteins, besides other biochemical and molecular regulators. In this study, we investigated how the Placental Growth Factor (PlGF) changes endometrial mechanics by modifying the actin cytoskeleton at the maternal interface. We explored the global effects of PlGF in endometrial stromal cells (EnSCs) using the concerted approach of proteomics, atomic force microscopy (AFM), and electrical impedance spectroscopy (EIS). Proteomic analysis shows PlGF upregulated RhoGTPases activating proteins and extracellular matrix organization-associated proteins in EnSCs. Rac1 and PAK1 transcript levels, activity, and actin polymerization were significantly increased with PlGF treatment. AFM further revealed an increase in cell stiffness with PlGF treatment. The additive effect of PlGF on actin polymerization was suppressed with siRNA-mediated inhibition of Rac1, PAK1, and WAVE2. Interestingly, the increase in cell stiffness by PlGF treatment was pharmacologically reversed with pravastatin, resulting in improved trophoblast cell invasion. Taken together, aberrant PlGF levels in the endometrium can contribute to an altered pre-pregnancy maternal microenvironment and offer a unifying explanation for the pathological changes observed in conditions such as pre-eclampsia (PE).


Subject(s)
Endometrium , Placenta Growth Factor , Pre-Eclampsia , Signal Transduction , rac1 GTP-Binding Protein , Female , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Humans , Pre-Eclampsia/metabolism , Pregnancy , Endometrium/metabolism , Endometrium/pathology , Placenta Growth Factor/metabolism , Placenta Growth Factor/genetics , Stromal Cells/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Microscopy, Atomic Force
6.
Mol Metab ; 84: 101953, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710444

ABSTRACT

OBJECTIVE: Lipid metabolism plays an important role in early pregnancy, but its effects on decidualization are poorly understood. Fatty acids (FAs) must be esterified by fatty acyl-CoA synthetases to form biologically active acyl-CoA in order to enter the anabolic and/or catabolic pathway. Long-chain acyl-CoA synthetase 4 (ACSL4) is associated with female reproduction. However, whether it is involved in decidualization is unknown. METHODS: The expression of ACSL4 in human and mouse endometrium was detected by immunohistochemistry. ACSL4 levels were regulated by the overexpression of ACSL4 plasmid or ACSL4 siRNA, and the effects of ACSL4 on decidualization markers and morphology of endometrial stromal cells (ESCs) were clarified. A pregnant mouse model was established to determine the effect of ACSL4 on the implantation efficiency of mouse embryos. Modulation of ACSL4 detects lipid anabolism and catabolism. RESULTS: Through examining the expression level of ACSL4 in human endometrial tissues during proliferative and secretory phases, we found that ACSL4 was highly expressed during the secretory phase. Knockdown of ACSL4 suppressed decidualization and inhibited the mesenchymal-to-epithelial transition induced by MPA and db-cAMP in ESCs. Further, the knockdown of ACSL4 reduced the efficiency of embryo implantation in pregnant mice. Downregulation of ACSL4 inhibited FA ß-oxidation and lipid droplet accumulation during decidualization. Interestingly, pharmacological and genetic inhibition of lipid droplet synthesis did not affect FA ß-oxidation and decidualization, while the pharmacological and genetic inhibition of FA ß-oxidation increased lipid droplet accumulation and inhibited decidualization. In addition, inhibition of ß-oxidation was found to attenuate the promotion of decidualization by the upregulation of ACSL4. The decidualization damage caused by ACSL4 knockdown could be reversed by activating ß-oxidation. CONCLUSIONS: Our findings suggest that ACSL4 promotes endometrial decidualization by activating the ß-oxidation pathway. This study provides interesting insights into our understanding of the mechanisms regulating lipid metabolism during decidualization.


Subject(s)
Coenzyme A Ligases , Endometrium , Fatty Acids , Lipid Droplets , Oxidation-Reduction , Female , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Animals , Mice , Humans , Endometrium/metabolism , Fatty Acids/metabolism , Pregnancy , Lipid Droplets/metabolism , Decidua/metabolism , Adult , Lipid Metabolism , Embryo Implantation , Stromal Cells/metabolism
7.
J Reprod Immunol ; 163: 104251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718429

ABSTRACT

Recurrent pregnancy loss (RPL) is a troubling condition that affects couples worldwide. Despite extensive research efforts, many RPL cases remain unexplained, highlighting the need for novel approaches to unravel its underlying mechanisms. Recent advances in microbiome research have shed light on the potential role of the microbiome in reproductive health and outcomes. Based on a systematic literature research, this review aims to comprehensively explore the current understanding of the microbiome's involvement in RPL, focusing on the vaginal, endometrial, and gut microbiomes. Evidence from the available studies is examined to explain the relationship between the microbiome and RPL. Furthermore, we discuss the diagnostic potential of the microbiome, therapeutic interventions, and future directions in microbiome research for RPL. Understanding the complex interactions between the microbiome and reproductive health holds promise for developing targeted interventions to help patients today diagnosed as unexplained.


Subject(s)
Abortion, Habitual , Microbiota , Humans , Abortion, Habitual/microbiology , Abortion, Habitual/immunology , Abortion, Habitual/diagnosis , Female , Pregnancy , Microbiota/immunology , Gastrointestinal Microbiome/immunology , Endometrium/microbiology , Endometrium/immunology , Endometrium/pathology , Vagina/microbiology , Vagina/immunology
8.
Stem Cell Res Ther ; 15(1): 129, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693588

ABSTRACT

BACKGROUND: Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF). METHODS: Extracellular vesicles (EVs) are isolated from hBMDSCs, characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) techniques. Extracted total RNA from EVs was subjected to RNA seq analysis. Transfection and decidualization studies were carried out in endometrial stromal fibroblasts (eSF). Gene expression was analyzed by qRTPCR. Unpaired t-test with Welch's correction was used for data analysis between two groups. RESULTS: We identified several microRNAs (miRNAs) that were highly expressed, including miR-21-5p, miR-100-5p, miR-143-3p and let7. MiR-21 is associated with several signaling pathways involved in tissue regeneration, quiescence, cellular senescence, and fibrosis. Both miR-100-5p and miR-143-3p promoted cell proliferation. MiR-100-5p specifically promoted regenerative processes by upregulating TGF-ß3, VEGFA, MMP7, and HGF. MiR-100-5p blocked differentiation or decidualization as evidenced by morphologic changes and downregulation of decidualization mediators including HOXA10, IGFBP1, PRL, PR-B, and PR. CONCLUSION: EVs delivered to tissues by hBMDSCs contain specific miRNAs that prevent terminal differentiation and drive repair and regeneration. Delivery of microRNAs is a novel treatment paradigm with the potential to replace BMDSCs in cell-free regenerative therapies.


Subject(s)
Cell Differentiation , Cell Proliferation , Endometrium , Exosomes , Fibroblasts , Mesenchymal Stem Cells , MicroRNAs , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Exosomes/metabolism , Endometrium/metabolism , Endometrium/cytology , Fibroblasts/metabolism , Fibroblasts/cytology , Regeneration/genetics , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology
9.
Eur Rev Med Pharmacol Sci ; 28(8): 3241-3250, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38708482

ABSTRACT

OBJECTIVE: This study aimed to analyze the clinical data and pathologic aspects of endometrial polyps (EMPs) excised completely during surgical hysteroscopy and assess the connection between premalignant and malignant EMPs. PATIENTS AND METHODS: This retrospective study includes 489 participants who underwent hysteroscopy due to endometrial polyps, and the clinical features and histological findings of the resected polyps analyzed. RESULTS: Participants with EMPs were divided into six groups according to histologic findings. The histologic finding of most cases was simple benign endometrial polyp [397 patients (81.2%)]. Malignant polyp was detected in 3 patients (0.6%). The histologic findings according to age, menopausal status, and menstrual bleeding patterns at the time of presentation to the outpatient clinic were compared; however, no significant difference was observed. 237 patients were observed to have menometrorrhagia, which was the most prevalent symptom reported. The distribution of polyp sizes observed at hysteroscopy according to histologic findings was compared, but no significant difference was observed. CONCLUSIONS: EMPs are often benign but can include premalignant or malignant tissue changes. Hysteroscopy is used for direct observation of the uterine cervix and resection of existing polyps, considering the increasing frequency of its use as a diagnostic and treatment tool.


Subject(s)
Hysteroscopy , Polyps , Humans , Female , Hysteroscopy/methods , Polyps/surgery , Polyps/pathology , Polyps/diagnosis , Retrospective Studies , Middle Aged , Adult , Uterine Diseases/pathology , Uterine Diseases/surgery , Uterine Diseases/diagnosis , Endometrium/pathology , Endometrium/surgery , Endometrial Neoplasms/surgery , Endometrial Neoplasms/pathology , Endometrial Neoplasms/diagnosis , Aged
10.
Front Immunol ; 15: 1385762, 2024.
Article in English | MEDLINE | ID: mdl-38707901

ABSTRACT

The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.


Subject(s)
Placenta , Humans , Pregnancy , Female , Placenta/immunology , Placenta/metabolism , Animals , Placentation , Endometrium/immunology , Endometrium/metabolism , Neoplasms/immunology , Neoplasms/etiology , Embryo Implantation/immunology
11.
Front Endocrinol (Lausanne) ; 15: 1343176, 2024.
Article in English | MEDLINE | ID: mdl-38742200

ABSTRACT

Study objective: To investigate whether different timings of GnRH-a downregulation affected assisted reproductive outcomes in infertile women with moderate-to-severe intrauterine adhesions (IUAs) accompanied by adenomyosis. Design: A retrospective case series. Setting: An assisted reproductive technology center. Patients: The study reviewed 123 infertile women with moderate-to-severe IUAs accompanied by adenomyosis undergoing their first frozen-thawed embryo transfer (FET) cycles between January 2019 and December 2021. Measurements and main results: The majority of patients had moderate IUA (n=116, 94.31%). The average Basal uterine volume was 73.58 ± 36.50 cm3. The mean interval from operation to the first downregulation was 21.07 ± 18.02 days (range, 1-79 days). The mean duration of hormone replacement therapy (HRT) was 16.93 ± 6.29 days. The average endometrial thickness on the day before transfer was 10.83 ± 1.75 mm. A total of 70 women achieved clinical pregnancy (56.91%). Perinatal outcomes included live birth (n=47, 67.14%), early miscarriage (n=18, 25.71%), and late miscarriage (n=5, 7.14%). The time interval between uterine operation and the first downregulation was not a significant variable affecting live birth. Maternal age was the only risk factor associated with live birth (OR:0.89; 95% CI: 0.79-0.99, P=0.041). Conclusions: The earlier initiation of GnRH-a to suppress adenomyosis prior to endometrial preparation for frozen embryo transfer did not negatively impact repair of the endometrium after resection.


Subject(s)
Adenomyosis , Embryo Transfer , Endometrium , Gonadotropin-Releasing Hormone , Infertility, Female , Live Birth , Humans , Female , Gonadotropin-Releasing Hormone/agonists , Adult , Retrospective Studies , Pregnancy , Endometrium/drug effects , Endometrium/pathology , Live Birth/epidemiology , Infertility, Female/therapy , Embryo Transfer/methods , Pregnancy Rate , Birth Rate , Tissue Adhesions , Fertilization in Vitro/methods
12.
FASEB J ; 38(10): e23639, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38742798

ABSTRACT

We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.


Subject(s)
Endometrium , Extracellular Vesicles , MicroRNAs , Female , Endometrium/metabolism , Endometrium/cytology , Animals , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Cattle , Pregnancy , Biosensing Techniques/methods , Embryo Implantation/physiology , Embryo, Mammalian/metabolism
13.
Front Endocrinol (Lausanne) ; 15: 1368494, 2024.
Article in English | MEDLINE | ID: mdl-38745948

ABSTRACT

Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.


Subject(s)
Endometrium , Polycystic Ovary Syndrome , Receptors, Androgen , WT1 Proteins , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Endometrium/metabolism , Endometrium/pathology , WT1 Proteins/metabolism , WT1 Proteins/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Adult , Regulatory Sequences, Nucleic Acid
14.
Front Endocrinol (Lausanne) ; 15: 1379109, 2024.
Article in English | MEDLINE | ID: mdl-38737557

ABSTRACT

Introduction: The impact of the obesity pandemic on female reproductive capability is a factor that needs to be investigated. In addition, the link between endometrial thickness and in vitro fertilization (IVF) outcomes is contentious. Goal: Our goal was to analyze the association among endometrium development, hormone levels, embryo quality, clinical pregnancy, anamnestic parameters, and body mass index (BMI) in women receiving IVF treatment. Patients and methods: 537 participants undergoing IVF/ICSI cycles with successful oocyte retrieval were enrolled. Subjects were divided into four BMI based groups: underweight (UW; n=32), normal weight (NW; n=324), overweight (OW; n= 115), obesity (OB; n=66). Anthropometric and anamnestic parameters, characteristics of stimulation, endometrial thickness on the day of hCG injection, at puncture, at embryo transfer, FSH, LH, AMH, partner's age and the semen analysis indicators, embryo quality, clinical pregnancy, were recorded and analyzed. Support Vector Machine (SVM) was built to predict potential pregnancies based on medical data using 22 dimensions. Results: In accordance with BMI categories, when examining pregnant/non-pregnant division, the average age of pregnant women was significantly lower in the UW (30.9 ± 4.48 vs. 35.3 ± 5.49 years, p=0.022), NW (34.2 ± 4.25 vs. 36.3 ± 4.84 years, p<0.001), and OW (33.8 ± 4.89 vs. 36.3 ± 5.31 years, p=0.009) groups. Considering FSH, LH, and AMH levels in each BMI category, a statistically significant difference was observed only in the NW category FSH was significantly lower (7.8 ± 2.99 vs. 8.6 ± 3.50 IU/L, p=0.032) and AMH (2.87 ± 2.40 vs. 2.28 ± 2.01 pmol/L, p=0.021) was higher in pregnant women. There were no further statistically significant differences observed between the pregnant and non-pregnant groups across any BMI categories, especially concerning endometrial development. Surprisingly, BMI and weight correlated negatively with FSH (r=-0.252, p<0.001; r=-0.206, p<0.001, respectively) and LH (r= -0.213, p<0.001; r= -0.195, p<0.001) in the whole population. SVM model average accuracy on predictions was 61.71%. Discussion: A convincing correlation between endometrial thickness development and patients' BMI could not be substantiated. However, FSH and LH levels exhibited a surprising decreasing trend with increasing BMI, supporting the evolutionary selective role of nutritional status. Our SVM model outperforms previous models; however, to confidently predict the outcome of embryo transfer, further optimization is necessary.


Subject(s)
Body Mass Index , Endometrium , Fertilization in Vitro , Pregnancy Rate , Humans , Female , Fertilization in Vitro/methods , Pregnancy , Adult , Endometrium/pathology , Prognosis , Obesity , Infertility, Female/therapy , Embryo Transfer/methods , Sperm Injections, Intracytoplasmic , Thinness
15.
Front Endocrinol (Lausanne) ; 15: 1269382, 2024.
Article in English | MEDLINE | ID: mdl-38745960

ABSTRACT

Thin endometrium (TE) is defined as a mid-luteal endometrial thickness ≤7mm. TE can affect endometrial tolerance, leading to lower embryo implantation rates and clinical pregnancy rates, and is also associated with impaired outcomes from assisted reproductive treatment. Herein, we systematically review TE causes, mechanisms, and treatments. TE pathogenesis has multiple causes, with the endometrium becoming thinner with age under hormonal influence. In addition, uterine cavity factors are important, as the inflammatory environment may affect expressions of certain genes thereby inhibiting endometrial stromal cell proliferation and promoting apoptosis. Long-term oral contraceptive use or the use of ovulation-promoting drugs are also definite factors contributing to endometrial thinning. Other patients have primary factors, for which the clinical etiology remains unknown. The main therapeutic strategies available for TE are pharmacological (including hormonal and vasoactive drugs), regenerative medicine, intrauterine infusion of growth factor-granulocyte colony-stimulating factor, autologous platelet-rich plasma, and complementary alternative therapies (including traditional Chinese herbal medicine and acupuncture). However, the associated mechanisms of action are currently unclear. Clinical scholars have proposed various approaches to improve treatment outcomes in patients with TE, and are exploring the principles of efficacy, offering potentials for novel treatments. It is hoped that this will improve TE tolerance, increase embryo implantation rates, and help more couples with infertility with effective treatments.


Subject(s)
Endometrium , Female , Humans , Pregnancy , Embryo Implantation , Endometrium/pathology , Infertility, Female/therapy
16.
Eur J Obstet Gynecol Reprod Biol ; 297: 249-253, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703449

ABSTRACT

OBJECTIVE(S): Chronic endometritis (CE) is a localized mucosal inflammatory disorder associated with female infertility of unknown etiology, endometriosis, tubal factors, repeated implantation failure, and recurrent pregnancy loss, along with atypical uterine bleeding and iron deficiency anemia. Diagnosis of CE has traditionally relied on endometrial biopsy and detection of CD138(+) endometrial stromal plasmacytes. To develop a less invasive diagnostic system for CE, we aimed to construct a deep learning-based convolutional neural network (CNN) model for the automatic detection of endometrial micropolyps (EMiP), a fluid hysteroscopy (F-HSC) finding recognized as tiny protrusive lesions that are closely related to this disease. STUDY DESIGN: This is an in silico study using archival images of F-HSC performed at an infertility center in a private clinic. A total of 244 infertile women undergoing F-HSC on the days 6-12 of the menstrual cycle between April 2019 and December 2021 with histopathologically-confirmed CE with the aid of immunohistochemistry for CD138 were utilized. RESULTS: The archival F-HSC images of 208 women (78 with EMiP and 130 without EMiP) who met the inclusion criteria were finally subjected to analysis. Following preprocessing of the images, half a set was input into a CNN architecture for training, whereas the remaining images were utilized as the test set to evaluate the performance of the model, which was compared with that of the experienced gynecologists. The sensitivity, specificity, accuracy, precision, and F1-score of the CNN model-aided diagnosis were 93.6 %, 92.3 %, 92.8 %, 88.0 %, and 0.907, respectively. The area under the receiver operating characteristic curves of the CNN model-aided diagnosis (0.930) was at a similar level (p > .05) to the value of conventional diagnosis by three experienced gynecologists (0.927, 0.948, and 0.906). CONCLUSION: These findings indicate that our deep learning-based CNN is capable of recognizing EMiP in F-HSC images and holds promise for further development of the computer-aided diagnostic system for CE.


Subject(s)
Deep Learning , Endometritis , Hysteroscopy , Infertility, Female , Neural Networks, Computer , Humans , Female , Endometritis/diagnosis , Endometritis/complications , Infertility, Female/etiology , Infertility, Female/diagnosis , Hysteroscopy/methods , Adult , Endometrium/pathology , Chronic Disease
17.
Sci Rep ; 14(1): 11062, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745005

ABSTRACT

To evaluate gene expression associated with unfavorable vaginal bleeding in users of the Etonogestrel (ENG) contraceptive implant. Prospective study involving 100 women who intended to use the ENG implant. Exclusion criteria included abnormal uterine bleeding, inability to attend a 1-year follow-up, and implant removal for reasons unrelated to vaginal bleeding or loss of follow-up. We obtained endometrial biopsies before implant placement and assessed the expression of 20 selected genes. Users maintained a uterine bleeding diary for 12 months post-implant placement. For statistical analysis, we categorized women into those with or without favorable vaginal bleeding at 3 and 12 months. Women with lower CXCL1 expression had a 6.8-fold increased risk of unfavorable vaginal bleeding at 3 months (OR 6.8, 95% CI 2.21-20.79, p < 0.001), while those with higher BCL6 and BMP6 expression had 6- and 5.1-fold increased risks, respectively. By the 12-month follow-up, women with lower CXCL1 expression had a 5.37-fold increased risk of unfavorable vaginal bleeding (OR 5.37, 95% CI 1.63-17.73, p = 0.006). Women with CXCL1 expression < 0.0675, BCL6 > 0.65, and BMP6 > 3.4 had a higher likelihood of experiencing unfavorable vaginal bleeding at 3 months, and CXCL1 < 0.158 at 12 months. Users of ENG contraceptive implants with elevated BCL6 and BMP6 expression exhibited a higher risk of breakthrough bleeding at the 3-month follow-up. Conversely, reduced CXCL1 expression was associated with an elevated risk of bleeding at both the 3 and 12-month follow-ups.


Subject(s)
Contraceptive Agents, Female , Desogestrel , Uterine Hemorrhage , Humans , Female , Desogestrel/administration & dosage , Desogestrel/adverse effects , Adult , Prospective Studies , Uterine Hemorrhage/genetics , Contraceptive Agents, Female/adverse effects , Contraceptive Agents, Female/administration & dosage , Endometrium/metabolism , Endometrium/drug effects , Endometrium/pathology , Drug Implants , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Young Adult
18.
Mol Biol Rep ; 51(1): 680, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796595

ABSTRACT

Menstrual blood-derived endometrial stem cells (MenSCs) have attracted increasing interest due to their excellent safety, and lack of ethical dilemma as well as their ability to be periodically obtained in a noninvasive manner. However, although preclinical research as shown the therapeutic potential of MenSCs in several diseases, their poor cell survival and low engraftment at disease sites reduce their clinical efficacy. Flotillins (including Flot1 and Flot2) are implicated in various cellular processes, such as vesicular trafficking, signal transduction, cell proliferation, migration and apoptosis. In this study, we aimed to determine the effects of Flotillins on MenSCs survival, proliferation and migration. Our experimental results show that MenSCs were modified to overexpress Flot1 and/or Flot2 without altering their intrinsic characteristics. Flot1 and Flot2 co-overexpression promoted MenSC viability and proliferation capacity. Moreover, Flot1 or Flot2 overexpression significantly promoted the migration and inhibited the apoptosis of MenSCs compared with the negative control group, and these effects were stronger in the Flot1 and Flot2 gene co-overexpression group. However, these effects were significantly reversed after Flot1 and/or Flot2 knockdown. In conclusion, our results indicate that Flot1 and Flot2 overexpression in MenSCs improved their proliferation and migration and inhibited their apoptosis, and this might be an effective approach to improve the efficiency of cell-based therapies.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Cell Survival , Membrane Proteins , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Endometrium/cytology , Endometrium/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Cells, Cultured , Signal Transduction
19.
Biomolecules ; 14(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38785956

ABSTRACT

BACKGROUND: There has been considerable progress in our understanding of endometriosis, but its pathophysiology remains uncertain. Uncovering the underlying mechanism of the rare instances of endometriosis reported in early postmenarcheal years and in girls before menarche can have wide implications. METHODS: We conducted a literature review of all relevant articles on Medline. RESULTS: In the review, we explore the pathogenetic theories of premenarcheal endometriosis, the role of retrograde menstruation in the adult and its potential role in early-onset disease, as well as the factors that argue against the existence of a link between early-onset endometriosis (EOE) and neonatal uterine bleeding (NUB). CONCLUSIONS: As with endometriosis in adult women, the pathogenesis of early-onset disease remains unclear. A link between NUB and EOE is plausible, but there are considerable challenges to collating supporting evidence. The state of our understanding of early uterine development and of the pathophysiology of NUB leaves many unknowns that need exploration. These include proof of the existence of viable endometrial cells or endometrial mesenchymal stem cells in NUB, their passage to the pelvic cavity, their possible response to steroids, and whether they can reside within the pelvic cavity and remain dormant till menarche.


Subject(s)
Endometriosis , Uterine Hemorrhage , Humans , Female , Endometriosis/complications , Endometriosis/pathology , Uterine Hemorrhage/etiology , Infant, Newborn , Uterus/pathology , Endometrium/pathology , Endometrium/metabolism , Age of Onset
20.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786035

ABSTRACT

There are fewer investigations conducted on human primary endometrial epithelial cells (HPEECs) compared to human primary endometrial stromal cells (HPESCs). One of the main reasons is the scarcity of protocols enabling prolonged epithelial cell culture. Even though it is possible to culture HPEECs in 3D over a longer period of time, it is technically demanding. In this study, we successfully established a highly pure, stable, and long-term viable human conditionally reprogrammed endometrial epithelial cell line, designated as eCRC560. These cells stained positive for epithelial markers, estrogen and progesterone receptors, and epithelial cell-cell contacts but negative for stromal and endothelial cell markers. Estradiol (ES) reduced the abundance of ZO-1 in a time- and dose-dependent manner, in contrast to the dose-dependent increase with the progestin dienogest (DNG) when co-cultured with HPESCs. Moreover, ES significantly increased cell viability, cell migration, and invasion of the eCRC560 cells; all these effects were inhibited by pretreatment with DNG. DNG withdrawal led to a significantly disrupted monolayer of eCRC560 cells in co-culture with HPESCs, yet it markedly increased the adhesion of eCRC560 to the human mesothelial MeT-5A cells. The long-term viable eCRC560 cells are suitable for in vitro analysis of HPEECs to study the epithelial compartment of the human endometrium and endometrial pathologies.


Subject(s)
Cell Survival , Endometrium , Epithelial Cells , Estrogens , Progestins , Humans , Female , Endometrium/cytology , Endometrium/drug effects , Endometrium/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Progestins/pharmacology , Estrogens/pharmacology , Cell Survival/drug effects , Cell Movement/drug effects , Cell Line , Estradiol/pharmacology , Stromal Cells/drug effects , Stromal Cells/metabolism , Stromal Cells/cytology , Coculture Techniques , Time Factors , Cell Adhesion/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...