Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 449
Filter
1.
J Reprod Immunol ; 163: 104251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718429

ABSTRACT

Recurrent pregnancy loss (RPL) is a troubling condition that affects couples worldwide. Despite extensive research efforts, many RPL cases remain unexplained, highlighting the need for novel approaches to unravel its underlying mechanisms. Recent advances in microbiome research have shed light on the potential role of the microbiome in reproductive health and outcomes. Based on a systematic literature research, this review aims to comprehensively explore the current understanding of the microbiome's involvement in RPL, focusing on the vaginal, endometrial, and gut microbiomes. Evidence from the available studies is examined to explain the relationship between the microbiome and RPL. Furthermore, we discuss the diagnostic potential of the microbiome, therapeutic interventions, and future directions in microbiome research for RPL. Understanding the complex interactions between the microbiome and reproductive health holds promise for developing targeted interventions to help patients today diagnosed as unexplained.


Subject(s)
Abortion, Habitual , Microbiota , Humans , Abortion, Habitual/microbiology , Abortion, Habitual/immunology , Abortion, Habitual/diagnosis , Female , Pregnancy , Microbiota/immunology , Gastrointestinal Microbiome/immunology , Endometrium/microbiology , Endometrium/immunology , Endometrium/pathology , Vagina/microbiology , Vagina/immunology
2.
Sci Rep ; 14(1): 12455, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816643

ABSTRACT

Chronic endometritis is associated with the imbalance of female reproductive tract microbiota and pathogenic microbial infection. This study aimed to identify the specific changes in the endometrial microbiome in patients with endometritis and to explore how Clostridium tyrobutyricum (C.t) influences the progression of endometritis in mice for further elucidating endometritis pathogenesis. For this purpose, endometrial tissues from 100 participants were collected and divided into positive, weakly positive, and negative groups based on CD138 levels, while endometrial microbiome differences were detected and analyzed using 16S rRNA gene sequencing. Staphylococcus aureus (S. aureus)-induced endometritis mouse model was established, followed by treatment with C.t, and inflammatory response, epithelial barrier, and TLR4/NF-κB pathway were evaluated. Results showed that α- and ß-diversity was significantly lower in the positive group compared with the weakly positive or negative groups, where the negative group had more unique operational taxonomic units. The abundance of Proteobacteria was found to be increased, while that of Actinobacteria, Firmicutes, and Bacteroidetes was found to be reduced in the positive group, while the area under the curve value was found to be 0.664. Furthermore, C.t treatment resulted in the alleviation of S. aureus-induced inflammatory response, epithelial barrier damage, and activation of the TLR4/NF-κB pathway in mice. Clinical samples analysis revealed that the diversity and abundance of microbiota were altered in patients with endometritis having positive CD138 levels, while mechanistic investigations revealed C.t alleviated S. aureus-induced endometritis by inactivating TLR4/NF-κB pathway. The findings of this study are envisaged to provide a diagnostic and therapeutic potential of microbiota in endometritis.


Subject(s)
Dysbiosis , Endometritis , Animals , Endometritis/microbiology , Endometritis/pathology , Female , Dysbiosis/microbiology , Humans , Mice , Microbiota , Adult , Staphylococcus aureus , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , RNA, Ribosomal, 16S/genetics , Chronic Disease , Disease Models, Animal , NF-kappa B/metabolism , Endometrium/microbiology , Endometrium/pathology , Middle Aged
3.
Ann Clin Microbiol Antimicrob ; 23(1): 49, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816832

ABSTRACT

BACKGROUND: Chronic endometritis (CE) is associated with poor reproductive outcomes, yet the role of endometrial microbiota in patients with recurrent implantation failure (RIF) and CE remains unclear. This study aims to characterize endometrial microbiota in RIF patients with CE and assess its implications for reproductive outcomes. METHODS: In this prospective study, we enrolled RIF patients both with and without CE. Endometrial and cervical samples were collected for 16 S rRNA gene sequencing. Microbiota composition was compared between groups using diversity indices, phylum, and genus-level analysis. Canonical correlation analysis (CCA) and Spearman's correlation coefficients were used to assess relationships between CE, reproductive outcomes, and microbiota. Predictive functional profiling was performed to evaluate metabolic pathways associated with CE. RESULTS: Endometrial microbiota in CE patients exhibited greater diversity and evenness compared to non-CE patients. Principal coordinates analysis (PCoA) revealed distinct clustering between CE and non-CE groups. Linear discriminant analysis (LDA) identified Proteobacteria, Aminicenantales, and Chloroflexaceae as characteristic of CE, while Lactobacillus, Acinetobacter, Herbaspirillum, Ralstonia, Shewanela, and Micrococcaceae were associated with non-CE. CCA demonstrated associations between CE, adverse reproductive outcomes, and specific bacterial taxa. Microbial metabolic pathways significantly differed between CE and non-CE groups, with enrichment in pathways related to cofactors, vitamins, secondary metabolites, and the immune system in CE patients. CONCLUSION: RIF patients with CE exhibit distinct endometrial microbiota compositions associated with adverse reproductive outcomes. The increased microbial diversity and altered metabolic pathways in CE suggest a potential correlation with reproductive outcomes, although further studies are necessary to elucidate the causal relationship between microbiota alterations and fertility. Modulating the endometrial microbiome may represent a novel therapeutic strategy to improve IVF outcomes in patients with CE.


Subject(s)
Bacteria , Embryo Implantation , Endometritis , Endometrium , Microbiota , RNA, Ribosomal, 16S , Humans , Female , Endometritis/microbiology , Endometrium/microbiology , Adult , Prospective Studies , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Pregnancy , Chronic Disease , Infertility, Female/microbiology
4.
Acta Obstet Gynecol Scand ; 103(7): 1271-1282, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38661227

ABSTRACT

INTRODUCTION: Alterations in microbiota composition have been implicated in a variety of human diseases. Patients with adenomyosis present immune dysregulation leading to a persistent chronic inflammatory response. In this context, the hypothesis that alterations in the microbiota may be involved in the pathogenesis of adenomyosis, by affecting the epigenetic, immunologic, and biochemical functions of the host, has recently been postulated. The aim of the present study was to compare the microbiota composition in the vagina, endometrium, and gut of individuals with and without adenomyosis. MATERIAL AND METHODS: Cross-sectional study including 38 adenomyosis patients and 46 controls, performed between September 2021 and October 2022 in a university hospital-based research center. The diagnosis of adenomyosis was based on sonographic criteria. Fecal, vaginal, and endometrial samples were collected. Study of the microbiota using 16S rRNA gene sequencing. RESULTS: Patients with adenomyosis exhibited a significant reduction in the gut microbial alpha diversity compared with healthy controls (Chao1 p = 0.012, Fisher p = 0.005, Observed species p = 0.005). Beta-diversity analysis showed significant differences in the compositions of both gut and vaginal microbiota between adenomyosis patients and the control group (Adonis p-value = 0.001; R2 = 0.03 and Adonis p-value = 0.034; R2 = 0.04 respectively). Specific bacterial taxa were found to be either overrepresented (Rhodospirillales, Ruminococcus gauvreauii group, Ruminococcaceae, and Actinomyces) or underrepresented in the gut and endometrial microbiota of adenomyosis patients compared with controls. Distinct microbiota profiles were identified among patients with internal and external adenomyosis phenotypes. CONCLUSIONS: The study revealed reduced gut microbiota diversity in adenomyosis patients, accompanied by distinct compositions in gut and vaginal microbiota compared with controls. Overrepresented or underrepresented bacterial taxa were noted in the gut and endometrial microbiota of adenomyosis patients, with variations in microbiota profiles among those with internal and external adenomyosis phenotypes. These findings suggest a potential association between microbiota and adenomyosis, indicating the need for further research to comprehensively understand the implications of these differences.


Subject(s)
Adenomyosis , Endometrium , Gastrointestinal Microbiome , Vagina , Humans , Female , Adenomyosis/microbiology , Cross-Sectional Studies , Adult , Vagina/microbiology , Endometrium/microbiology , Middle Aged , Case-Control Studies , RNA, Ribosomal, 16S/genetics
5.
Front Cell Infect Microbiol ; 14: 1351329, 2024.
Article in English | MEDLINE | ID: mdl-38655283

ABSTRACT

Introduction: The potential role of the endometrial microbiota in the pathogenesis of endometrial polyps (EPs) warrants further investigation, given the current landscape of limited and inconclusive research findings. We aimed to explore the microecological characteristics of the uterine cavity in patients with EPs and investigate the potential of endometrial microbiota species as novel biomarkers for identifying EPs. Methods: Endometrial samples were collected from 225 patients who underwent hysteroscopies, of whom 167 had EPs, whereas 58 had non- hyperproliferative endometrium status. The endometrial microbiota was assessed using 16S rRNA gene sequencing. We characterized the endometrial microbiota and identified microbial biomarkers for predicting EPs. Results: The endometrial microbial diversity and composition were significantly different between the EP and control groups. Predictive functional analyses of the endometrial microbiota demonstrated significant alterations in pathways involved in sphingolipid metabolism, steroid hormone biosynthesis, and apoptosis between the two groups. Moreover, a classification model based on endometrial microbial ASV-based biomarkers along with the presence of abnormal uterine bleeding symptoms achieved powerful classification potential in identifying EPs in both the discovery and validation cohorts. Conclusion: Our study indicates a potential association between altered endometrial microbiota and EPs. Endometrial microbiota-based biomarkers may prove valuable for the diagnosis of EPs. Clinical trial registration: Chinese Clinical Trial Registry (ChiCTR2100052746).


Subject(s)
Endometrium , Microbiota , Polyps , RNA, Ribosomal, 16S , Humans , Female , RNA, Ribosomal, 16S/genetics , Endometrium/microbiology , Endometrium/pathology , Microbiota/genetics , Polyps/microbiology , Middle Aged , Adult , Biomarkers , Uterine Diseases/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
6.
J Assist Reprod Genet ; 41(4): 929-938, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38386120

ABSTRACT

PURPOSE: This prospective study investigates the correlation between vaginal microecology and pregnancy outcomes and explores their impact on endometrial microbiota composition during frozen embryo transfer (FET) cycles. Additionally, the impact of transvaginal Lactobacillus supplementation on reproductive outcomes in patients with previous failed cycles was assessed. METHODS: A total of 379 patients undergoing FET at a reproductive medicine center were categorized into clinical pregnancy (CP), miscarriage (MISC), and non-pregnant (NP) groups. Vaginal specimens were collected for microecological evaluation prior to embryo transfer. Endometrial microbiota samples were obtained during embryo transfer for 16S rRNA gene sequencing analysis to assess endometrial microbiota composition. Vaginal microecological indicators, including pH, Lactobacillus dominance, and leukocyte esterase activity, were measured. Transvaginal Lactobacillus supplementation was investigated in 60 patients with previous failed cycles. RESULTS: Vaginal microecology significantly correlated with pregnancy outcomes, with normal microecology associated with a higher clinical pregnancy rate. Vaginal pH and leukocyte esterase activity were significantly associated with clinical pregnancy. Furthermore, vaginal microecological differences significantly impacted endometrial microbiota composition. However, no significant differences were observed in endometrial microbiota composition among the CP, MISC, and NP groups. Notably, transvaginal Lactobacillus supplementation increased the clinical pregnancy rate without affecting the miscarriage rate. CONCLUSION: This study highlights that normal vaginal microecology, characterized by lower pH and leukocyte esterase negativity, is associated with a higher likelihood of clinical pregnancy following FET. Importantly, vaginal microecological differences influence endometrial microbiota composition. Moreover, transvaginal Lactobacillus supplementation appears promising in improving clinical pregnancy rates in patients with previous failed cycles. These findings contribute to a better understanding of the interplay between vaginal and endometrial microbiota and offer potential interventions to enhance reproductive success in assisted reproductive technologies.


Subject(s)
Embryo Transfer , Endometrium , Microbiota , Pregnancy Outcome , Vagina , Humans , Female , Pregnancy , Adult , Embryo Transfer/methods , Microbiota/genetics , Vagina/microbiology , Endometrium/microbiology , Endometrium/pathology , Pregnancy Rate , Prospective Studies , Cryopreservation/methods , Lactobacillus/isolation & purification , Lactobacillus/genetics , Abortion, Spontaneous/microbiology , Fertilization in Vitro/methods
7.
J Reprod Immunol ; 162: 104192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215650

ABSTRACT

There is a suggested pathophysiology associated with endometrial microbiota in cases where repeated implantation failure of high-quality embryos is observed. However, there is a suspected association between endometrial microbiota and the pathogenesis of implantation failure. However, there is still a lack of agreement on the fundamental composition of the physiological microbiome within the uterine cavity. This is primarily due to various limitations in the studies conducted, including small sample sizes and variations in experimental designs. As a result, the impact of bacterial communities in the endometrium on human reproduction is still a subject of debate. In this discourse, we undertake a comprehensive examination of the existing body of research pertaining to the uterine microbiota and its intricate interplay with the process of embryo implantation.


Subject(s)
Embryo Implantation , Microbiota , Female , Humans , Embryo Implantation/physiology , Endometrium/microbiology , Uterus/physiology , Research Design
8.
Front Cell Infect Microbiol ; 13: 1125640, 2023.
Article in English | MEDLINE | ID: mdl-37284497

ABSTRACT

Background: The previous researches show that infertile patients have a higher incidence of endometritis and endometrial polyps, and the occurrence of these two diseases is related to changes in the microbiota of the genital tract. We aim to determine the composition and changing characteristics of the microbiota in the genital tract (especially the endometrium) of infertile patients with chronic endometritis or endometrial polyps, and find the correlation between it and the occurrence of diseases. Methods: This is a prospective study. We collected genital tract biopsy samples from 134 asymptomatic infertile patients receiving assisted reproductive therapy before embryo transfer. Through pathological examination and 16S ribosomal RNA(16S rRNA) sequencing, we determined the distribution of chronic endometritis and endometrial polyps in these patients, as well as their distribution of reproductive tract microorganisms. Results: Compared with the normal control group, the microbial group of reproductive tract in patients with chronic endometritis and endometrial polyps is changed, and there are significant species differences and relative abundance differences in the vagina, cervix and uterine cavity. Lactobacillus, the dominant flora of female genital tract, showed a change in abundance in patients with endometrial diseases. Endometrial microbiota composed of Staphylococcus, Gardnerella, Atopobium, Streptococcus, Peptostreptococcus, Chlamydia, Fusobacterium, Acinetobacter, etc. are related to chronic endometritis and endometrial polyps. Conclusion: The results showed that, compared with the normal control group, the endometrial microbiota of infertile patients with chronic endometritis or endometrial polyps did have significant changes in the relative abundance distribution of species, suggesting that changes in local microecology may be an important factor in the occurrence of disease, or even adverse pregnancy outcomes. The further study of endometrial microecology may provide a new opportunity to further improve the diagnosis and treatment strategy of chronic endometritis.


Subject(s)
Endometritis , Infertility, Female , Microbiota , Pregnancy , Humans , Female , Endometritis/microbiology , RNA, Ribosomal, 16S/genetics , Prospective Studies , Infertility, Female/microbiology , Infertility, Female/pathology , Endometrium/microbiology
9.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36983020

ABSTRACT

It is generally accepted that microorganisms can colonize a non-pathological endometrium. However, in a clinical setting, endometrial samples are always collected by passing through the vaginal-cervical route. As such, the vaginal and cervical microbiomes can easily cross-contaminate endometrial samples, resulting in a biased representation of the endometrial microbiome. This makes it difficult to demonstrate that the endometrial microbiome is not merely a reflection of contamination originating from sampling. Therefore, we investigated to what extent the endometrial microbiome corresponds to that of the vagina, applying culturomics on paired vaginal and endometrial samples. Culturomics could give novel insights into the microbiome of the female genital tract, as it overcomes sequencing-related bias. Ten subfertile women undergoing diagnostic hysteroscopy and endometrial biopsy were included. An additional vaginal swab was taken from each participant right before hysteroscopy. Both endometrial biopsies and vaginal swabs were analyzed using our previously described WASPLab-assisted culturomics protocol. In total, 101 bacterial and two fungal species were identified among these 10 patients. Fifty-six species were found in endometrial biopsies and 90 were found in vaginal swabs. On average, 28 % of species were found in both the endometrial biopsy and vaginal swab of a given patient. Of the 56 species found in the endometrial biopsies, 13 were not found in the vaginal swabs. Of the 90 species found in vaginal swabs, 47 were not found in the endometrium. Our culturomics-based approach sheds a different light on the current understanding of the endometrial microbiome. The data suggest the potential existence of a unique endometrial microbiome that is not merely a presentation of cross-contamination derived from sampling. However, we cannot exclude cross-contamination completely. In addition, we observe that the microbiome of the vagina is richer in species than that of the endometrium, which contradicts the current sequence-based literature.


Subject(s)
Infertility , Microbiota , Female , Humans , Vagina/microbiology , Endometrium/microbiology , Cervix Uteri/microbiology , RNA, Ribosomal, 16S
10.
Ann Clin Microbiol Antimicrob ; 22(1): 4, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36635729

ABSTRACT

BACKGROUND: Chronic endometritis (CE) is a disease of continuous and subtle inflammation occurring in the endometrial stromal area, which is often asymptomatic or present with non-specific clinical symptoms. METHODS: This study investigated the composition and distribution of the intrauterine microbiota of 71 patients who underwent hysteroscopy during the routine clinical inspection of infertility. Among them, patients who were diagnosed with chronic endometritis (CE) were allocated into CE group (n = 29) and others into non-CE group (n = 42). There was no significant difference in average age between the two groups (P = 0.19). Uterine flushing fluid was collected by the self-developed cervical trocar uterine cavity sampler and 16S rRNA sequencing was performed. RESULTS: The alpha diversity in the CE group was significantly higher than that in the non-CE group (P < 0.05). Firmicutes (newly named Bacillota) were the dominant phylum in the non-CE group (72.23%), while their abundance was much lower in the CE group (49.92%), but there was no statistically significant difference between the two groups. The abundances of Actinobacteriota and Cyanobacteria in the CE group were significantly higher than those in the non-CE group (P < 0.05). At the genus level, the abundance of Lactobacillus dominated in all samples, which presented a significantly lower abundance in the CE group (40.88%) than that in the non-CE group (64.22%) (P < 0.05). Correspondingly, the abundance of non-Lactobacillus was higher in the CE group, among which Pseudomonas and Cutibacterium increased significantly (P < 0.01). Moreover, compared with the non-CE group, the pathways involved in arginine and proline metabolism and retinol metabolism were significantly enriched in the CE group (P < 0.05), while the metabolism of lipid and prenyltransferases were significantly decreased in the CE group (P < 0.05). CONCLUSIONS: A certain microbial community was colonized in the uterine cavity, which was dominated by Lactobacillus. The structure and distribution of intrauterine microbiota in the CE group were different from those in the non-CE group by showing a lower abundance of Lactobacillus, and a significantly higher abundance of Pseudomonas and Cutibacterium. Additionally, the microbial metabolism was altered in the CE group. This study elaborated the alteration of intrauterine microbiota in CE patients, which may contribute to the diagnosis of CE and provide a reference for antibiotic treatment of CE.


Subject(s)
Endometritis , Microbiota , Female , Humans , Endometritis/drug therapy , Endometritis/microbiology , RNA, Ribosomal, 16S/genetics , Endometrium/microbiology , Microbiota/genetics , Bacteria/genetics , Lactobacillus
11.
J Assist Reprod Genet ; 40(1): 125-135, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36534230

ABSTRACT

PURPOSE: A Lactobacillus-dominated microbiota in the endometrium was reported to be associated with favorable reproductive outcomes. We investigated in this study whether 16S ribosomal RNA (rRNA) gene sequencing analysis of the uterine microbiome improves pregnancy outcomes. METHODS: This prospective cohort study recruited a total of 195 women with recurrent implantation failure (RIF) between March 2019 and April 2021 in our fertility center. Analysis of the endometrial microbiota by 16S rRNA gene sequencing was suggested for all patients who had three or more failed embryo transfers (ETs). One hundred and thirty-one patients underwent microbial 16S rRNA gene sequencing (study group) before additional transfers, while 64 patients proceeded to ET without that analysis (control group). The primary outcome was to compare the cumulative clinical pregnancy rate of two additional ETs. MAIN RESULTS: An endometrial microbiota considered abnormal was detected in 30 patients (22.9%). All but one of these 30 patients received antibiotics according to the bacterial genus detected in their sample, followed by treatment with probiotics. As a result, the cumulative clinical pregnancy rate (study group: 64.5% vs. control group: 33.3%, p = 0.005) and the ongoing pregnancy rate (study group: 48.9% vs. control group: 32.8%, p = 0.028) were significantly increased in the study group compared to the control group. CONCLUSION: Personalized treatment recommendations based on the microbial 16S rRNA gene sequencing of the uterine microbiota can improve IVF outcomes of patients with RIF. TRIAL REGISTRATION: The University Hospital Medical Information Network (UMIN) Clinical Trial Registry: UMIN000036050 (date of registration: March 1, 2019).


Subject(s)
Fertilization in Vitro , Microbiota , Pregnancy Outcome , RNA, Ribosomal, 16S , Female , Humans , Pregnancy , Endometrium/microbiology , Microbiota/genetics , Prospective Studies , RNA, Ribosomal, 16S/genetics
12.
Biol Futur ; 73(3): 291-300, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36161422

ABSTRACT

The existence of Lactobacillus-led colonized bacteria in the endometrium of a healthy human has been reported in recent studies. Unlike the composition of the microbiome in the lower genital tract, that in the endometrium is different and closely associated with the physiological and pathological processes of gynecological diseases. For example, changing the immune microenvironment affects the receptivity of the endometrium, thereby leading to abnormal reproductive outcomes, such as embryo implantation failure and recurrent spontaneous abortion. However, the concrete functions and mechanisms of the endometrial microbiome have not been studied thoroughly. This review elaborates the research progress on the mechanisms by which the endometrial microbiome affects endometrial receptivity from the perspective of endometrial immune microenvironment regulation. Considering the lack of a unified evaluation method for the endometrial microbiome, as well as the lack of an optimal treatment protocol against recurrent spontaneous abortion, we also discussed the application of combining antibiotics with probiotics/prebiotics as precautionary measures.


Subject(s)
Abortion, Spontaneous , Microbiota , Anti-Bacterial Agents/pharmacology , Embryo Implantation/physiology , Endometrium/microbiology , Female , Humans , Pregnancy
13.
Curr Opin Obstet Gynecol ; 34(3): 122-132, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35645010

ABSTRACT

PURPOSE OF REVIEW: Review the latest research on the female urogenital microbiome as a predictor of successful implantation. RECENT FINDINGS: Lactobacillus crispatus seems to be beneficial species in a healthy female genital tract, although the presence of anaerobic bacteria and their impact has yet to be determined. The vaginal microbiome is associated with assisted reproductive technology (ART) outcome in terms of successful implantation and pregnancy. Approaches restoring a dysbiotic vaginal microbiome seem promising. It is questionable if a unique endometrial microbiome exists, given the low bacterial biomass, the invasiveness of endometrial sampling, and its associated high contamination risk. Future studies should focus on the whole microbiome using proteomics and metabolomics, as well as the virome to get a more holistic understanding of its role in reproduction. SUMMARY: The vaginal and endometrial compartments are being studied to determine a healthy and unhealthy microbiome composition. Defining a healthy composition could provide insight into physiological processes related to the success of embryo implantation. The vaginal microbiome is easily accessible and its composition can be reliably assessed and can be associated with ART outcome. The existence of an endometrial or uterine microbiome is still debated, due to the combination of low biomass and unavoidable high risk of contamination during sampling.


Subject(s)
Embryo Implantation , Microbiota , Endometrium/microbiology , Female , Humans , Microbiota/physiology , Pregnancy , Uterus/physiology , Vagina/microbiology
14.
Sci Rep ; 12(1): 8467, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589752

ABSTRACT

There is growing interest on the potential clinical relevance of the endometrial microbiome. However, insufficient attention has been given to the methodology of sampling. To minimize contamination, we advocate the use of the double-lumen catheters commonly employed for the embryo transfer. Endometrial fluid samples obtained from 53 women scheduled for IVF were studied for microbiome characterization. Control samples from the vagina of these same women were concomitantly obtained. Samples were analysed by V3-V4-V6 regions of 16S rRNA gene sequencing with Next Generation Sequencing technique. Endometrial Lactobacillus-dominant cases were uncommon compared to previous evidence, being observed in only 4 (8%) women. Taxonomy markedly differed between the endometrial and vaginal microbiomes composition. The most common bacterial genera coincided in only 4 (8%) women. The comparison between women who did and did not subsequently become pregnant failed to identify any microorganism associated with the success of the procedure. However, the endometrial biodiversity resulted higher among pregnant women. Shannon's Equitability index in pregnant and non pregnant women was 0.76 [0.57-0.87] and 0.55 [0.51-0.64], respectively (p = 0.002). In conclusion, the use of embryo transfer catheters for testing the endometrial microbiome is promising. The scant concordance with vaginal samples supports the validity of this approach. Moreover, our study highlighted a possible beneficial role of a higher biodiversity on endometrial receptivity.


Subject(s)
Embryo Implantation , Microbiota , Embryo Transfer , Endometrium/microbiology , Female , Humans , Male , Microbiota/genetics , Pregnancy , RNA, Ribosomal, 16S/genetics , Vagina/microbiology
15.
Reproduction ; 163(5): R81-R96, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35195535

ABSTRACT

Microbiome or microbiota is essential to regulate many mammalian physiological processes, including reproduction. Like other organs or tissues, the upper female reproductive tract used to be considered as devoid of microorganisms; however, a non-infection-related bacterial community was discovered in the uterus from humans and other mammals, and its composition is related to reproductive success. The dysbiosis of endometrial microbiota is associated with benign and malign uterine diseases. Hence, this review addressed the current knowledge about uterine microbiota alterations and their association with common endometrial diseases, including endometrial polyposis, endometriosis, uterine myomatosis, endometrial hyperplasia, and endometrial cancer. There is a specific bacterial community in the endometrium in the most-analyzed uterine diseases. However, the constant finding consists in a reduced abundance of Firmicutes and Lactobacillus, while there is an increased abundance of Proteobacteria (such as Escherichia coli and Enterococcus), Bacteroidetes (Prevotella, for example), and Actinobacteria (as Gardnerella), in contrast to healthy endometrium. Besides, we discussed the future usefulness of the endometrial microbiota components as biomarkers to diagnose uterine diseases and their probable clinical outcomes. In addition, we analyzed their potential use as probiotics since they could provide an alternative or complement to existing therapies.


Subject(s)
Endometriosis , Microbiota , Uterine Diseases , Animals , Endometrium/microbiology , Female , Humans , Mammals , Microbiota/physiology , Uterus/microbiology
16.
Int J Mol Sci ; 23(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35008911

ABSTRACT

Changes in the female genital tract microbiome are consistently correlated to gynecological and obstetrical pathologies, and tract dysbiosis can impact reproductive outcomes during fertility treatment. Nonetheless, a consensus regarding the physiological microbiome core inside the uterine cavity has not been reached due to a myriad of study limitations, such as sample size and experimental design variations, and the influence of endometrial bacterial communities on human reproduction remains debated. Understanding the healthy endometrial microbiota and how changes in its composition affect fertility would potentially allow personalized treatment through microbiome management during assisted reproductive therapies, ultimately leading to improvement of clinical outcomes. Here, we review current knowledge regarding the uterine microbiota and how it relates to human conception.


Subject(s)
Endometrium/microbiology , Fertilization/physiology , Microbiota , Dysbiosis/microbiology , Female , Humans , Pregnancy , Pregnancy Outcome , Virulence
17.
Acta Obstet Gynecol Scand ; 101(2): 212-220, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35092013

ABSTRACT

INTRODUCTION: The endometrial microbiota has been linked to several gynecological disorders, including infertility. It has been shown that the microbial profile of endometrium could have a role in fertilization and pregnancy outcomes. In this study we aim to assess the microbial community of endometrial tissue (ET) and endometrial fluid (EF) samples in women receiving in vitro fertilization (IVF) treatment. We also search for possible associations between chronic endometritis (CE) and endometrial microbiota. MATERIAL AND METHODS: This was a cohort study involving 25 women aged between 28 and 42 years with both primary and secondary infertility and with at least one IVF failure. The ET and EF sample collection was carried out between September 2016 and November 2018. Each of the participants provided two types of samples-tissue and fluid samples (50 samples in total). A 16S rRNA sequencing was performed on both of the sample types for microbial profile evaluation. CE was diagnosed based on a CD138 immunohistochemistry where CE diagnosis was confirmed in the presence of one or more plasma cells. Microbial profiles of women with and without CE were compared in both sample types separately. RESULTS: We report no differences in the microbial composition and alpha diversity (pObserved  = 0.07, pShannon  = 0.65, pInverse Simpson  = 0.59) between the EF and ET samples of IVF patients. We show that the abundance of the genus Lactobacillus influences the variation in microbial beta diversity between and fluid samples (r2  = 0.34; false discovery rate [FDR] <9.9 × 10-5 ). We report that 32% (8/25) of the participants had differences in Lactobacillus dominance in the paired samples and these samples also present a different microbial diversity (pShannon  = 0.06, FDRweighted UniFrac  = 0.01). These results suggest that the microbial differences between ET and fluid samples are driven by the abundance of genus Lactobacillus. The microbiome of CE and without CE (ie non-CE) women in our sample set of IVF patients was similar. CONCLUSIONS: Our findings show that genus Lactobacillus dominance is an important factor influencing the microbial composition of ET and fluid samples.


Subject(s)
Endometritis/microbiology , Endometrium/microbiology , Fertilization in Vitro , Lactobacillus/isolation & purification , Adult , Cohort Studies , Endometritis/pathology , Endometrium/pathology , Female , Humans , Treatment Failure
18.
Placenta ; 117: 179-186, 2022 01.
Article in English | MEDLINE | ID: mdl-34929458

ABSTRACT

Human embryo implantation is an intricate spatiotemporal process that involves the intimate association between the embryo and the endometrium of the mother. During implantation, the endometrium undergoes a dynamic cascade of gene activation and repression, largely driven by autocrine, paracrine, and endocrine action. Steroid hormones, such as estrogen and progesterone, act on a variety of targets including cellular adhesion molecules (CAMs), cytokines, and growth factors to facilitate the implantation process. Given the synchrony required to achieve implantation, it is unsurprising that embryo implantation represents a substantial problem for infertility patients. This is due to a complex interplay taking place at the level of the endometrium. This review discusses the intricacies of embryo implantation including the window of implantation, the cyclical phases of the endometrium, the implantation process itself, and features of endometrial receptivity. Additionally, we will discuss new research regarding inflammatory reproductive biology, epigenetics and microRNA, and the role of the vaginal and endometrial microbiome in implantation. A better understanding of embryo implantation and the interactions occurring at the level of the blastocyst and the endometrium will improve patient care for infertile patients who experience this frustrating challenge.


Subject(s)
Embryo Implantation , Endometrium/physiology , Endometrium/microbiology , Epigenesis, Genetic , Female , Humans , Infertility, Female/etiology , Inflammation , Microbiota
19.
Front Immunol ; 12: 750808, 2021.
Article in English | MEDLINE | ID: mdl-34917075

ABSTRACT

Endometrial immune response is highly associated with the homeostatic balance of the uterus and embryo development; however, the underlying molecular regulatory mechanisms are not fully elucidated. Herein, the porcine endometrium showed significant variation in mucosal immunity in proliferative and secretory phases by single-cell RNA sequencing. The loose arrangement and high motility of the uterine epithelium in the proliferative phase gave opportunities for epithelial cells and dendritic cells to cross talk with colonizing microbial community, guiding lymphocyte migration into the mucosal and glandular epithelium. The migrating lymphocytes were primarily NK and CD8+ T cells, which were robustly modulated by the chemokine signaling. In the secretory phase, the significantly strengthened mechanical mucosal barrier and increased immunoglobulin A alleviated the migration of lymphocytes into the epithelium when the neuro-modulation, mineral uptake, and amino acid metabolism were strongly upregulated. The noticeably increased intraepithelial lymphocytes were positively modulated by the bacteria in the uterine cavity. Our findings illustrated that significant mucosal immunity variation in the endometrium in the proliferative and secretory phases was closely related to intraepithelial lymphocyte migration, which could be modulated by the colonizing bacteria after cross talk with epithelial cells with higher expressions of chemokine.


Subject(s)
Endometrium/immunology , Endometrium/microbiology , Estrous Cycle/immunology , Immunity, Mucosal/physiology , Microbiota/immunology , Animals , Female , Mucous Membrane/immunology , Mucous Membrane/microbiology , Swine
20.
Front Immunol ; 12: 748447, 2021.
Article in English | MEDLINE | ID: mdl-34671363

ABSTRACT

Objective: To investigate the Interaction between chronic endometritis (CE) caused endometrial microbiota disorder and endometrial immune environment change in recurrent implantation failure (RIF). Method: Transcriptome sequencing analysis of the endometrial of 112 patients was preform by using High-Throughput Sequencing. The endometrial microbiota of 43 patients was analyzed by using 16s rRNA sequencing technology. Result: In host endometrium, CD4 T cell and macrophage exhibited significant differences abundance between CE and non-CE patients. The enrichment analysis indicated differentially expressed genes mainly enriched in immune-related functional terms. Phyllobacterium and Sphingomonas were significantly high infiltration in CE patients, and active in pathways related to carbohydrate metabolism and/or fat metabolism. The increased synthesis of lipopolysaccharide, an important immunomodulator, was the result of microbial disorders in the endometrium. Conclusion: The composition of endometrial microorganisms in CE and non-CE patients were significantly different. Phyllobacterium and Sphingomonas mainly regulated immune cells by interfering with the process of carbohydrate metabolism and/or fat metabolism in the endometrium. CE endometrial microorganisms might regulate Th17 response and the ratio of Th1 to Th17 through lipopolysaccharide (LPS).


Subject(s)
Abortion, Habitual/microbiology , Endometritis/microbiology , Endometrium/microbiology , Transcriptome , Abortion, Habitual/immunology , Carbohydrate Metabolism , Embryo Implantation , Embryo Transfer , Endometritis/immunology , Endometritis/metabolism , Endometrium/immunology , Endometrium/metabolism , Female , Gene Expression Regulation, Developmental , Gene Ontology , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Lipid Metabolism , Lipopolysaccharides/immunology , Phyllobacteriaceae/genetics , Phyllobacteriaceae/isolation & purification , Phyllobacteriaceae/physiology , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , RNA-Seq , Sphingomonas/genetics , Sphingomonas/isolation & purification , Sphingomonas/physiology , Th1 Cells/immunology , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...