Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.639
Filter
1.
Neoplasia ; 55: 101020, 2024 09.
Article in English | MEDLINE | ID: mdl-38991376

ABSTRACT

The 78-kDa glucose regulated protein (GRP78) commonly upregulated in a wide variety of tumors is an important prognostic marker and a promising target for suppressing tumorigenesis and treatment resistance. While GRP78 is well established as a major endoplasmic reticulum (ER) chaperone with anti-apoptotic properties and a master regulator of the unfolded protein response, its new role as a regulator of oncoprotein expression is just emerging. MYC is dysregulated in about 70 % of human cancers and is the most commonly activated oncoprotein. However, despite recent advances, therapeutic targeting of MYC remains challenging. Here we identify GRP78 as a new target for suppression of MYC expression. Using multiple MYC-dependent cancer models including head and neck squamous cell carcinoma and their cisplatin-resistant clones, breast and pancreatic adenocarcinoma, our studies revealed that GRP78 knockdown by siRNA or inhibition of its activity by small molecule inhibitors (YUM70 or HA15) reduced c-MYC expression, leading to onset of apoptosis and loss of cell viability. This was observed in 2D cell culture, 3D spheroid and in xenograft models. Mechanistically, we determined that the suppression of c-MYC is at the post-transcriptional level and that YUM70 and HA15 treatment potently upregulated the eukaryotic translation inhibitor 4E-BP1, which targets eIF4E critical for c-MYC translation initiation. Furthermore, knock-down of 4E-BP1 via siRNA rescued YUM70-mediated c-MYC suppression. As YUM70 is also capable of suppressing N-MYC expression, this study offers a new approach to suppress MYC protein expression through knockdown or inhibition of GRP78.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation, Neoplastic , Heat-Shock Proteins , Proto-Oncogene Proteins c-myc , Humans , Endoplasmic Reticulum Chaperone BiP/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/antagonists & inhibitors , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/antagonists & inhibitors , Apoptosis/drug effects , Cell Survival/drug effects , Xenograft Model Antitumor Assays , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Up-Regulation/drug effects
2.
CNS Neurosci Ther ; 30(7): e14840, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973202

ABSTRACT

BACKGROUND: Heat stress (HS) commonly occurs as a severe pathological response when the body's sensible temperature exceeds its thermoregulatory capacity, leading to the development of chronic brain inflammation, known as neuroinflammation. Emerging evidence suggests that HS leads to the disruption of the gut microbiota, whereas abnormalities in the gut microbiota have been demonstrated to affect neuroinflammation. However, the mechanisms underlying the effects of HS on neuroinflammation are poorly studied. Meanwhile, effective interventions have been unclear. ß-Hydroxybutyric acid (BHBA) has been found to have neuroprotective and anti-inflammatory properties in previous studies. This study aims to explore the modulatory effects of BHBA on neuroinflammation induced by HS and elucidate the underlying molecular mechanisms. METHODS: An in vivo and in vitro model of HS was constructed under the precondition of BHBA pretreatment. The modulatory effects of BHBA on HS-induced neuroinflammation were explored and the underlying molecular mechanisms were elucidated by flow cytometry, WB, qPCR, immunofluorescence staining, DCFH-DA fluorescent probe assay, and 16S rRNA gene sequencing of colonic contents. RESULTS: Heat stress was found to cause gut microbiota disruption in HS mouse models, and TM7 and [Previotella] spp. may be the best potential biomarkers for assessing the occurrence of HS. Fecal microbiota transplantation associated with BHBA effectively reversed the disruption of gut microbiota in HS mice. Moreover, BHBA may inhibit microglia hyperactivation, suppress neuroinflammation (TNF-α, IL-1ß, and IL-6), and reduce the expression of cortical endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP) mainly through its modulatory effects on the gut microbiota (TM7, Lactobacillus spp., Ruminalococcus spp., and Prevotella spp.). In vitro experiments revealed that BHBA (1 mM) raised the expression of the ERS marker GRP78, enhanced cellular activity, and increased the generation of reactive oxygen species (ROS) and anti-inflammatory cytokines (IL-10), while also inhibiting HS-induced apoptosis, ROS production, and excessive release of inflammatory cytokines (TNF-α and IL-1ß) in mouse BV2 cells. CONCLUSION: ß-Hydroxybutyric acid may be an effective agent for preventing neuroinflammation in HS mice, possibly due to its ability to inhibit ERS and subsequent microglia neuroinflammation via the gut-brain axis. These findings lay the groundwork for future research and development of BHBA as a preventive drug for HS and provide fresh insights into techniques for treating neurological illnesses by modifying the gut microbiota.


Subject(s)
3-Hydroxybutyric Acid , Brain-Gut Axis , Disease Models, Animal , Endoplasmic Reticulum Stress , Gastrointestinal Microbiome , Mice, Inbred C57BL , Neuroinflammatory Diseases , Animals , Mice , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Brain-Gut Axis/physiology , Brain-Gut Axis/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Male , 3-Hydroxybutyric Acid/pharmacology , Heat Stress Disorders/metabolism , Endoplasmic Reticulum Chaperone BiP , Neuroprotective Agents/pharmacology , Heat-Shock Response/physiology , Heat-Shock Response/drug effects
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1126-1134, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977342

ABSTRACT

OBJECTIVE: To investigate the protective effect of recombinant Schistosoma japonicum cystatin (rSj-Cys) against acute liver injury induced by lipopolysaccharide (LPS) and D-GalN in mice. METHODS: Adult male C57BL/6J mice with or without LPS/D-GaIN-induced acute liver injury were given intraperitoneal injections of rSj-Cys or PBS 30 min after modeling (n=18), and serum and liver tissues samples were collected from 8 mice in each group 6 h after modeling. The survival of the remaining 10 mice in each group within 24 h was observed. Serum levels of ALT, AST, TNF-α and IL-6 of the mice were measured, and liver pathologies was observed with HE staining. The hepatic expressions of macrophage marker CD68, Bax, Bcl-2 and endoplasmic reticulum stress (ERS)-related proteins were detected using immunohistochemistry or immunoblotting, and TUNEL staining was used to detect hepatocyte apoptosis. RESULTS: The survival rates of PBS- and rSj-Cys-treated mouse models of acute liver injury were 30% and 80% at 12 h and were 10% and 60% at 24 h after modeling, respectively; no death occurred in the two control groups within 24 h. The mouse models showed significantly increased serum levels of AST, ALT, IL-6 and TNF-α and serious liver pathologies with increased hepatic expressions of CD68 and Bax, lowered expression of Bcl-2, increased hepatocyte apoptosis, and up-regulated expressions of ERS-related signaling pathway proteins GRP78, CHOP and NF-κB p-p65. Treatment of the mouse models significantly lowered the levels of AST, ALT, IL-6 and TNF-α, alleviated liver pathologies, reduced hepatic expressions of CD68, Bax, GRP78, CHOP and NF-κB p-p65, and enhanced the expression of Bcl-2. In the normal control mice, rSj-Cys injection did not produce any significant changes in these parameters compared with PBS. CONCLUSION: rSj-Cys alleviates LPS/D-GalN-induced acute liver injury in mice by suppressing ERS, attenuating inflammation and inhibiting hepatocyte apoptosis.


Subject(s)
Apoptosis , Cystatins , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Hepatocytes , Inflammation , Mice, Inbred C57BL , Schistosoma japonicum , Animals , Mice , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Male , Hepatocytes/metabolism , Hepatocytes/drug effects , Cystatins/pharmacology , Liver/pathology , Liver/metabolism , Lipopolysaccharides , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Recombinant Proteins/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Galactosamine , Antigens, CD/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , CD68 Molecule
4.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999938

ABSTRACT

The purpose of this study was to evaluate the spatiotemporal immunoexpression pattern of microtubule-associated protein 1 light chain 3 beta (LC3B), glucose-regulated protein 78 (GRP78), heat shock protein 70 (HSP70), and lysosomal-associated membrane protein 2A (LAMP2A) in normal human fetal kidney development (CTRL) and kidneys affected with congenital anomalies of the kidney and urinary tract (CAKUT). Human fetal kidneys (control, horseshoe, dysplastic, duplex, and hypoplastic) from the 18th to the 38th developmental week underwent epifluorescence microscopy analysis after being stained with antibodies. Immunoreactivity was quantified in various kidney structures, and expression dynamics were examined using linear and nonlinear regression modeling. The punctate expression of LC3B was observed mainly in tubules and glomerular cells, with dysplastic kidneys displaying distinct staining patterns. In the control group's glomeruli, LAMP2A showed a sporadic, punctate signal; in contrast to other phenotypes, duplex kidneys showed significantly stronger expression in convoluted tubules. GRP78 had a weaker expression in CAKUT kidneys, especially hypoplastic ones, while normal kidneys exhibited punctate staining of convoluted tubules and glomeruli. HSP70 staining varied among phenotypes, with dysplastic and hypoplastic kidneys exhibiting stronger staining compared to controls. Expression dynamics varied among observed autophagy markers and phenotypes, indicating their potential roles in normal and dysfunctional kidney development.


Subject(s)
Autophagy , Endoplasmic Reticulum Chaperone BiP , HSP70 Heat-Shock Proteins , Kidney , Lysosomal-Associated Membrane Protein 2 , Microtubule-Associated Proteins , Humans , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Kidney/metabolism , Kidney/abnormalities , Kidney/pathology , Microtubule-Associated Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Urogenital Abnormalities/metabolism , Urogenital Abnormalities/pathology , Urinary Tract/metabolism , Urinary Tract/abnormalities , Vesico-Ureteral Reflux/metabolism , Vesico-Ureteral Reflux/pathology
5.
CNS Neurosci Ther ; 30(7): e14839, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021040

ABSTRACT

BACKGROUND: The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions. METHODS: This article, reviews how the UPR is implicated in cell homeostasis maintenance, then surveils the evidence supporting the UPR involvement in GB genesis, progression, angiogenesis, GB stem cell biology, tumor microenvironment modulation, extracellular matrix remodeling, cell fate decision, invasiveness, and grading. Next, it concurs the evidence showing how the UPR mediates GB chemoresistance-related mechanisms. RESULTS: The UPR stress sensors IRE1, PERK, and ATF6 with their regulator GRP78 are upregulated in GB compared to lower grade gliomas and normal brain tissue. They are activated in response to oncogenes and are implicated at different stages of GB progression, from its genesis to chemoresistance and relapse. The UPR arms can be effectors of apoptosis as mediators or targets. CONCLUSION: Recent research has established the role of the UPR in GB pathophysiology and chemoresistance. Targeting its different sensors have shown promising in overcoming GB chomo- and radioresistance and inducing apoptosis.


Subject(s)
Brain Neoplasms , Drug Resistance, Neoplasm , Endoplasmic Reticulum Chaperone BiP , Glioblastoma , Unfolded Protein Response , Humans , Unfolded Protein Response/drug effects , Unfolded Protein Response/physiology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Drug Resistance, Neoplasm/physiology , Drug Resistance, Neoplasm/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
6.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000233

ABSTRACT

The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by a number of variables, including endoplasmic reticulum stress (ER). Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family and acts as an endoplasmic reticulum (ER) chaperone. Nevertheless, the function of TXNDC5 in hepatocytes under ER stress remains largely uncharacterized. In order to identify the role of TXNDC5 in hepatic wild-type (WT) and TXNDC5-deficient (KO) AML12 cell lines, tunicamycin, palmitic acid, and thapsigargin were employed as stressors. Cell viability, mRNA, protein levels, and mRNA splicing were then assayed. The protein expression results of prominent ER stress markers indicated that the ERN1 and EIF2AK3 proteins were downregulated, while the HSPA5 protein was upregulated. Furthermore, the ATF6 protein demonstrated no significant alterations in the absence of TXNDC5 at the protein level. The knockout of TXNDC5 has been demonstrated to increase cellular ROS production and its activity is required to maintain normal mitochondrial function during tunicamycin-induced ER stress. Tunicamycin has been observed to disrupt the protein levels of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells. However, palmitic acid has been observed to disrupt the protein levels of ATF6, HSPA5, and EIF2AK3. In conclusion, TXNDC5 can selectively activate distinct ER stress pathways via HSPA5, contingent on the origin of ER stress. Conversely, the absence of TXNDC5 can disrupt the EIF2AK3 cascade.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Hepatocytes , Protein Disulfide-Isomerases , Signal Transduction , Tunicamycin , Endoplasmic Reticulum Chaperone BiP/metabolism , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Hepatocytes/metabolism , Animals , Tunicamycin/pharmacology , Endoplasmic Reticulum/metabolism , Mice , Reactive Oxygen Species/metabolism , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Cell Line , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Palmitic Acid/pharmacology , Palmitic Acid/metabolism , Thapsigargin/pharmacology , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Thioredoxins/metabolism , Thioredoxins/genetics , Cell Survival/drug effects
7.
Sci Rep ; 14(1): 16487, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019902

ABSTRACT

Cerebral dopamine neurotrophic factor (CDNF) and its close structural relative, mesencephalic astrocyte-derived neurotrophic factor (MANF), are proteins with neurotrophic properties. CDNF protects and restores the function of dopamine (DA) neurons in rodent and non-human primate (NHP) toxin models of Parkinson's disease (PD) and therefore shows promise as a drug candidate for disease-modifying treatment of PD. Moreover, CDNF was found to be safe and to have some therapeutic effects on PD patients in phase 1/2 clinical trials. However, the mechanism underlying the neurotrophic activity of CDNF is unknown. In this study, we delivered human CDNF (hCDNF) to the brain using an adeno-associated viral (AAV) vector and demonstrated the neurotrophic effect of AAV-hCDNF in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. AAV-hCDNF resulted in the expression of hCDNF in the striatum (STR) and substantia nigra (SN), and no toxic effects on the nigrostriatal pathway were observed. Intrastriatal injection of AAV-hCDNF reduced motor impairment and partially alleviated gait dysfunction in the acute MPTP mouse model. In addition, gene therapy with AAV-hCDNF had significant neuroprotective effects on the nigrostriatal pathway and decreased the levels of interleukin 1beta (IL-1ß) and complement 3 (C3) in glial cells in the acute MPTP mouse model. Moreover, AAV-hCDNF reduced C/EBP homologous protein (CHOP) and glucose regulatory protein 78 (GRP78) expression in astroglia. These results suggest that the neuroprotective effects of CDNF may be mediated at least in part through the regulation of neuroinflammation and the UPR pathway in a mouse MPTP model of PD in vivo.


Subject(s)
Dependovirus , Disease Models, Animal , Dopaminergic Neurons , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Genetic Vectors , Nerve Growth Factors , Animals , Dopaminergic Neurons/metabolism , Dependovirus/genetics , Mice , Humans , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Gene Transfer Techniques , Male , Parkinson Disease/therapy , Parkinson Disease/metabolism , Parkinson Disease/genetics , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Inflammation/metabolism , Genetic Therapy/methods , Mice, Inbred C57BL , Corpus Striatum/metabolism , MPTP Poisoning/therapy , MPTP Poisoning/metabolism , Substantia Nigra/metabolism
8.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963344

ABSTRACT

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Subject(s)
Cell Differentiation , Endoplasmic Reticulum Chaperone BiP , Muscle, Skeletal , Myoblasts , Receptor, IGF Type 1 , Signal Transduction , Tunicamycin , Animals , Mice , Glycosylation , Myoblasts/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Tunicamycin/pharmacology , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Muscle, Skeletal/metabolism , Muscle Development/physiology , Cell Line , Mice, Transgenic , Endoplasmic Reticulum Stress , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics
9.
Elife ; 132024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963323

ABSTRACT

Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.


Subject(s)
Endoplasmic Reticulum , Receptors, GABA-A , Humans , HEK293 Cells , Endoplasmic Reticulum/metabolism , Animals , Receptors, GABA-A/metabolism , Receptors, GABA-A/genetics , Rats , Endoplasmic Reticulum Chaperone BiP/metabolism , Neurons/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics
10.
Zhen Ci Yan Jiu ; 49(7): 686-692, 2024 Jul 25.
Article in English, Chinese | MEDLINE | ID: mdl-39020486

ABSTRACT

OBJECTIVES: To investigate the mechanism of the effect of acupuncture and moxibustion on improving liver injury in cisplatin (DDP) induced liver injury model mice by observing the changes of inositol-requiring enzyme (IRE) -1 signaling pathway. METHODS: Forty KM mice were randomly divided into control, model, acupuncture and moxibustion groups, with 10 mice in each group. The liver injury model was replicated by intraperitoneal injection of DDP (10 mg/kg). In the acupuncture group and the moxibustion group, acupuncture and moxibustion were performed at "Dazhui"(GV14), and bilateral "Ganshu"(BL18), "Shenshu" (BL23), and "Zusanli"(ST36), respectively for 6 min, once per day for 7 d. The apoptosis of hepatocytes was detected by TUNEL staining. The expression of phosphorylation(p)-IRE-1α, glucose-regulated protein (Grp) 78 and cysteine aspartic protease (Caspase) -12 in liver tissue were detected by immunohistochemistry and Western blot, respectively. The expression levels of Grp78 and Caspase-12 mRNA in liver tissue were detected by quantitative real-time PCR. RESULTS: Compared with the control group, the apoptosis rate of hepatocytes was increased (P<0.05), the positive expression and protein expression of p-IRE-1α, Grp78, and Caspase-12 were increased (P<0.05), the expression levels of Grp78 and Caspase-12 mRNA were increased (P<0.05) in the model group. Compared with the model group, all these indicators showed opposite trends (P<0.05) in the acupuncture and moxibustion groups. CONCLUSIONS: Acupuncture and moxibustion can reduce liver injury due to DDP chemotherapy by modulating IRE-1 signaling pathway, inhibiting the excessive activation of endoplasmic reticulum stress, and reducing liver cell apoptosis.


Subject(s)
Acupuncture Therapy , Apoptosis , Cisplatin , Endoplasmic Reticulum Chaperone BiP , Liver , Moxibustion , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Mice , Male , Humans , Liver/metabolism , Liver/injuries , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Chemical and Drug Induced Liver Injury/therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/genetics , Acupuncture Points , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Caspase 12/metabolism , Caspase 12/genetics , Hepatocytes/metabolism
11.
Food Chem Toxicol ; 189: 114773, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823497

ABSTRACT

Fluoride, a ubiquitous environmental compound, carries significant health risks at excessive levels. This study investigated the reproductive toxicity of fluoride exposure during puberty in mice, focusing on its impact on testicular development, spermatogenesis, and underlying mechanisms. The results showed that fluoride exposure during puberty impaired testicular structure, induced germ cell apoptosis, and reduced sperm counts in mice. Additionally, the SOD activity and GSH content were significantly decreased, while MDA content was significantly elevated in the NaF group. Immunohistochemistry showed an increase in the number of cells positive for GRP78, a key ER stress marker. Moreover, qRT-PCR and Western blot analyses confirmed the upregulation of both Grp78 mRNA and protein expression, as well as increased mRNA expression of other ER stress-associated genes (Grp94, chop, Atf6, Atf4, and Xbp1) and enhanced protein expression of phosphorylated PERK, IRE1α, eIF2α, JNK, XBP-1, ATF-6α, ATF-4, and CHOP. In conclusion, our findings demonstrate that fluoride exposure during puberty impairs testicular structure, induces germ cell apoptosis, and reduces sperm counts in mice. ER stress may participate in testicular cell apoptosis, and contribute to the testicular damage and decreased sperm counts induced by fluoride.


Subject(s)
Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Fluorides , Testis , Animals , Male , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Testis/drug effects , Testis/metabolism , Fluorides/toxicity , Mice , Sexual Maturation/drug effects , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Sperm Count , Spermatogenesis/drug effects
12.
Pancreatology ; 24(5): 690-697, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876922

ABSTRACT

BACKGROUND: Chymotrypsin C (CTRC) protects the pancreas against unwanted intrapancreatic trypsin activity through degradation of trypsinogen. Loss-of-function CTRC variants increase the risk for chronic pancreatitis (CP). The aim of the present study was to characterize novel CTRC variants found during genetic testing of CP cases at a pediatric pancreatitis center. METHODS: We used next-generation sequencing to screen patients. We analyzed the functional effects of CTRC variants in HEK 293T cells and using purified enzymes. RESULTS: In 5 separate cases, we detected 5 novel heterozygous CTRC variants: c.407C>T (p.Thr136Ile), c.550G>A (p.Ala184Thr), c.627Cdup (p.Ser210Leufs∗?, where the naming indicates a frame shift with no stop codon), c.628T>C (p.Ser210Pro), and c.779A>G (p.Asp260Gly). Functional studies revealed that with the exception of p.Ser210Leufs∗?, the CTRC variants were secreted normally from transfected cells. Enzyme activity of purified variants p.Thr136Ile, p.Ala184Thr, and p.Asp260Gly was similar to that of wild-type CTRC, whereas variant p.Ser210Pro was inactive. The frame-shift variant p.Ser210Leufs∗? was not secreted but accumulated intracellularly, and induced endoplasmic reticulum stress, as judged by elevated mRNA levels of HSPA5 and DDIT3, and increased mRNA splicing of XBP1. CONCLUSIONS: CTRC variants p.Ser210Pro and p.Ser210Leufs∗? abolish CTRC function and should be classified as pathogenic. Mechanistically, variant p.Ser210Pro directly affects the amino acid at the bottom of the substrate-binding pocket while the frame-shift variant promotes misfolding and thereby blocks enzyme secretion. Importantly, 3 of the 5 novel CTRC variants proved to be benign, indicating that functional analysis is indispensable for reliable determination of pathogenicity and the correct interpretation of genetic test results.


Subject(s)
Chymotrypsin , Endoplasmic Reticulum Chaperone BiP , Genetic Testing , Pancreatitis, Chronic , Humans , Pancreatitis, Chronic/genetics , Chymotrypsin/genetics , Chymotrypsin/metabolism , HEK293 Cells , Male , Child , Female , Adolescent , Mutation , Transcription Factor CHOP
13.
Ecotoxicol Environ Saf ; 281: 116630, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917590

ABSTRACT

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon compound that is generated during combustion processes, and is present in various substances such as foods, tobacco smoke, and burning emissions. BaP is extensively acknowledged as a highly carcinogenic substance to induce multiple forms of cancer, such as lung cancer, skin cancer, and stomach cancer. Recently it is shown to adversely affect the reproductive system. Nevertheless, the potential toxicity of BaP on oocyte quality remains unclear. In this study, we established a BaP exposure model via mouse oral gavage and found that BaP exposure resulted in a notable decrease in the ovarian weight, number of GV oocytes in ovarian, and oocyte maturation competence. BaP exposure caused ribosomal dysfunction, characterized by a decrease in the expression of RPS3 and HPG in oocytes. BaP exposure also caused abnormal distribution of the endoplasmic reticulum (ER) and induced ER stress, as indicated by increased expression of GRP78. Besides, the Golgi apparatus exhibited an abnormal localization pattern, which was confirmed by the GM130 localization. Disruption of vesicle transport processes was observed by the abnormal expression and localization of Rab10. Additionally, an enhanced lysosome and LC3 fluorescence intensity indicated the occurrence of protein degradation in oocytes. In summary, our results suggested that BaP exposure disrupted the distribution and functioning of organelles, consequently affecting the developmental competence of mouse oocytes.


Subject(s)
Benzo(a)pyrene , Endoplasmic Reticulum Chaperone BiP , Oocytes , Animals , Benzo(a)pyrene/toxicity , Oocytes/drug effects , Female , Mice , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Organelles/drug effects , Mice, Inbred ICR
14.
JCI Insight ; 9(12)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912589

ABSTRACT

Spermatogenesis requires precise posttranslational control in the endoplasmic reticulum (ER), but the mechanism remains largely unknown. The protein disulfide isomerase (PDI) family is a group of thiol oxidoreductases responsible for catalyzing the disulfide bond formation of nascent proteins. In this study, we generated 14 strains of KO mice lacking the PDI family enzymes and found that only PDI deficiency caused spermatogenesis defects. Both inducible whole-body PDI-KO (UBC-Cre/Pdifl/fl) mice and premeiotic PDI-KO (Stra8-Cre/Pdifl/fl) mice experienced a significant decrease in germ cells, testicular atrophy, oligospermia, and complete male infertility. Stra8-Cre/Pdifl/fl spermatocytes had significantly upregulated ER stress-related proteins (GRP78 and XBP1) and apoptosis-related proteins (Cleaved caspase-3 and BAX), together with cell apoptosis. PDI deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene spermatocytes. Quantitative mass spectrometry indicated that PDI deficiency downregulated vital proteins in spermatogenesis such as HSPA4L, SHCBP1L, and DDX4, consistent with the proteins' physical association with PDI in normal testes tissue. Furthermore, PDI served as a thiol oxidase for disulfide bond formation of SHCBP1L. Thus, PDI plays an essential role in protein quality control for spermatogenesis in mice.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Mice, Knockout , Protein Disulfide-Isomerases , Spermatogenesis , Testis , Animals , Male , Spermatogenesis/genetics , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Mice , Testis/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Infertility, Male/pathology , Apoptosis , Spermatocytes/metabolism , Endoplasmic Reticulum Stress , Oligospermia/genetics , Oligospermia/metabolism , Oligospermia/pathology
15.
J Appl Biomed ; 22(2): 99-106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912865

ABSTRACT

Resveratrol (RSV) is a polyphenol antioxidant that has been shown to have neuroprotective effects. We sought molecular mechanisms that emphasize the anti-inflammatory activity of RSV in traumatic brain injury (TBI) in mice associated with endoplasmic reticulum stress (ERS). After establishing three experimental groups (sham, TBI, and TBI+RSV), we explored the results of RSV after TBI on ERS and caspase-12 apoptotic pathways. The expression levels of C/EBP homologous protein (CHOP), glucose regulated protein 78kD (GRP78), caspase-3, and caspase-12 in cortical brain tissues were assessed by western blotting. The qPCR analysis was also performed on mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß in cortical brain tissue. In addition, the expression of GRP78 in microglia (ionized calcium binding adaptor molecule 1; Iba-1) and neurons (neuronal nuclei; NeuN) was identified by immunofluorescence staining. The neurological function of mice was assessed by modified neurological severity scores (mNSS). After drug treatment, the expression of CHOP, GRP78, caspase-3 and caspase-12 decreased, and qPCR results showed that TNF-α and IL-1ß were down-regulated. Immunofluorescence staining showed down-regulation of Iba-1+/GRP78+ and NeuN+/GRP78+ cells after RSV treatment. The mNSS analysis confirmed improvement after RSV treatment. RSV improved apoptosis by downregulating the ERS signaling pathway and improved neurological prognosis in mice with TBI.


Subject(s)
Brain Injuries, Traumatic , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Resveratrol , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Endoplasmic Reticulum Stress/drug effects , Mice , Male , Apoptosis/drug effects , Prognosis , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Caspase 12/metabolism , Caspase 12/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Cell Death/drug effects , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics
16.
Discov Med ; 36(185): 1250-1259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926111

ABSTRACT

BACKGROUND: Cigarette smoke (CS) induces autophagy and endoplasmic reticulum (ER) stress in the lungs. Research suggests that maternal exposure to CS during pregnancy leads to decreased lung function in offspring. However, the effects of maternal CS exposure on lung autophagy and ER stress in offspring during pregnancy remain unclear. METHODS: C57BL/6J female mice were divided into the AA (air treatment during both pre-pregnancy and pregnancy), AS (air treatment during pre-pregnancy and CS treatment during pregnancy), SA (CS treatment during pre-pregnancy and air treatment during pregnancy), and SS (CS treatment during both pre-pregnancy and pregnancy) groups. The male offspring mice were selected to the study and euthanized 49 days after birth for the study. Hematoxylin and eosin (HE) staining was employed to observe pathological alterations, while transmission electron microscopy (TEM) was utilized to examine ultrastructure and autophagic vesicles. Additionally, the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) method was applied to identify apoptosis in lung tissues. Immunofluorescence, Real-Time PCR, and Western Blot analyses were conducted to assess the expression of ER stress and autophagy-related markers in lung tissues. RESULTS: The findings revealed that exposure to CS heightened the extent of pathological damage and the abundance of autophagosomes in the lungs of offspring mice. TUNEL results indicated an increased fluorescence intensity in the AS, SA and SS groups, with the most significant in AS and SS groups. Furthermore, CS exposure augmented the fluorescence intensity and expression of ER stress and autophagy-related proteins. The expression of C/EBP-homologous protein (CHOP) exhibited no discernible difference between the SA and SS groups but showed a significant increase in the AS group. Conversely, the expression levels of glucose-regulated protein 78 (GRP78), Caspase-12, Beclin-1, and microtubule-associated protein 1 light chain 3 (LC3) exhibited no significant difference between the AS and SA groups, whereas they were significantly upregulated in the SS group. CONCLUSIONS: Preconceptional and gestational exposure to CS heightened ER stress and autophagy in the lungs of mouse offspring. However, in mothers who smoked, withdrawal from CS during pregnancy led to a reduction in ER stress and autophagy in the lungs of their offspring.


Subject(s)
Autophagy , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Lung , Maternal Exposure , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects , Animals , Endoplasmic Reticulum Stress/drug effects , Female , Pregnancy , Mice , Lung/pathology , Lung/metabolism , Maternal Exposure/adverse effects , Male , Prenatal Exposure Delayed Effects/pathology , Apoptosis , Tobacco Smoke Pollution/adverse effects
17.
Cells ; 13(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38920643

ABSTRACT

Neurodegenerative disorders are affecting millions of people worldwide, impacting the healthcare system of our society. Among them, Alzheimer's disease (AD) is the most common form of dementia, characterized by severe cognitive impairments. Neuropathological hallmarks of AD are ß-amyloid (Aß) plaques and neurofibrillary tangles, as well as endoplasmic reticulum and mitochondria dysfunctions, which finally lead to apoptosis and neuronal loss. Since, to date, there is no definitive cure, new therapeutic and prevention strategies are of crucial importance. In this scenario, cannabinoids are deeply investigated as promising neuroprotective compounds for AD. In this study, we evaluated the potential neuroprotective role of cannabinerol (CBNR) in an in vitro cellular model of AD via next-generation sequencing. We observed that CBNR pretreatment counteracts the Aß-induced loss of cell viability of differentiated SH-SY5Y cells. Moreover, a network-based transcriptomic analysis revealed that CBNR restores normal mitochondrial and endoplasmic reticulum functions in the AD model. Specifically, the most important genes regulated by CBNR are related mainly to oxidative phosphorylation (COX6B1, OXA1L, MT-CO2, MT-CO3), protein folding (HSPA5) and degradation (CUL3, FBXW7, UBE2D1), and glucose (G6PC3) and lipid (HSD17B7, ERG28, SCD) metabolism. Therefore, these results suggest that CBNR could be a new neuroprotective agent helpful in the prevention of AD dysfunctions.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cannabinoids , Endoplasmic Reticulum , Mitochondria , Humans , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Cannabinoids/pharmacology , Amyloid beta-Peptides/metabolism , Endoplasmic Reticulum Chaperone BiP , Cell Line, Tumor , Gene Expression Profiling , Transcriptome/drug effects , Transcriptome/genetics , Cell Survival/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Models, Biological , Gene Regulatory Networks/drug effects
18.
J Ethnopharmacol ; 333: 118440, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38885916

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jiedu Tongluo Tiaogan Formula (JTTF), a traditional Chinese herbal decoction, exhibits the potential to treat type 2 diabetes mellitus (T2DM) by inhibiting endoplasmic reticulum stress (ERS) and excessive autophagy, which are the risk factors for the abnormal development and progression of ß cells. AIM OF THE STUDY: We aimed to assess the effect of JTTF on pancreatic glucotoxicity by inhibiting ERS and excessive autophagy, for which db/db mice and INS-1 insulinoma cells were used. MATERIALS AND METHODS: The chemical composition of the JTTF was analyzed by UPLC-Q/TOF-MS. Diabetic (db/db) mice were treated with distilled water or JTTF (2.4 and 7.2 g/kg/day) for 8 weeks. Furthermore, INS-1 cells induced by high glucose (HG) levels were treated with or without JTTF (50, 100, and 200 µg/mL) for 48 h to elucidate the protective mechanism of JTTF on glucose toxicity. The experimental methods included an oral glucose tolerance test, hematoxylin-eosin staining, immunohistochemistry, western blotting, RT-qPCR, and acridine orange staining. RESULT: 28 chemical components of JTTF were identified. Additionally, treatment with JTTF significantly decreased the severity of glycemic symptoms in the db/db mice. Moreover, the treatment partially restored glucose homeostasis in the db/db mice and protected the pancreatic ß-cell function. JTTF protected INS-1 cells from HG injury by upregulating GSIS and PDX1, MafA mRNA expression. Further, treatment with JTTF downregulated GRP78 and ATF6 expression, whereas it inhibited Beclin-1 and LC3 activation. The treatment protected the cells from HG-induced ERS and excessive autophagy by downregulating the CaMKKß/AMPK pathway. CONCLUSIONS: The present study findings show that JTTF may protects ß-cells by inhibiting the CaMKKß/AMPK pathway, which deepens our understanding of the effectiveness of JTTF as a treatment strategy against T2DM.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Drugs, Chinese Herbal , Endoplasmic Reticulum Stress , Insulin-Secreting Cells , Signal Transduction , Animals , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Endoplasmic Reticulum Stress/drug effects , Drugs, Chinese Herbal/pharmacology , Autophagy/drug effects , Mice , Male , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Rats , Endoplasmic Reticulum Chaperone BiP , Mice, Inbred C57BL , Cell Line, Tumor , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/drug therapy
19.
Neoplasia ; 54: 101008, 2024 08.
Article in English | MEDLINE | ID: mdl-38823209

ABSTRACT

Successful treatment of glioblastoma multiforme (GBM), an aggressive form of primary brain neoplasm, mandates the need to develop new therapeutic strategies. In this study, we investigated the potential of PBI-05204 in targeting GBM stem cells (GSCs) and the underlying mechanisms. Treatment with PBI-05204 significantly reduced both the number and size of tumor spheres derived from patient-derived GSCs (GBM9, GSC28 and TS543), and suppressed the tumorigenesis of GBM9 xenografts. Moreover, PBI-05204 treatment led to a significant decrease in the expression of CD44 and NANOG, crucial markers of progenitor stem cells, in GBM9 and GSC28 GSCs. This treatment also down-regulated GRP78 expression in both GSC types. Knocking down GRP78 expression through GRP78 siRNA transfection in GBM9 and GSC28 GSCs also resulted in reduced spheroid size and CD44 expression. Combining PBI-05204 with GRP78 siRNA further decreased spheroid numbers compared to GRP78 siRNA treatment alone. PBI-05204 treatment led to increased expression of pRIP1K and pRIP3K, along with enhanced binding of RIPK1/RIPK3 in GBM9 and GSC28 cells, resembling the effects observed in GRP78-silenced GSCs, suggesting that PBI-05204 induced necroptosis in these cells. Furthermore, oleandrin, a principle active cardiac glycoside component of PBI-05204, showed the ability to inhibit the self-renewal capacity in GSCs. These findings highlight the potential of PBI-05204 as a promising candidate for the development of novel therapies that target GBM stem cells.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Glioblastoma , Heat-Shock Proteins , Neoplastic Stem Cells , Xenograft Model Antitumor Assays , Humans , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Mice , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Cell Line, Tumor , Plant Extracts/pharmacology , Necroptosis/drug effects , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Proliferation/drug effects , Apoptosis/drug effects , Disease Models, Animal , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics
20.
Biochem Biophys Res Commun ; 725: 150258, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38897041

ABSTRACT

OBJECTIVE: Long-term exposure to arsenic has been linked to several illnesses, including hypertension, diabetes, hepatic and renal diseases and cardiovascular malfunction. The aim of the current investigation was to determine whether zingerone (ZN) could shield rats against the hepatotoxicity that sodium arsenite (SA) causes. METHODS: The following five groups of thirty-five male Sprague Dawley rats were created: I) Control; received normal saline, II) ZN; received ZN, III) SA; received SA, IV) SA + ZN 25; received 10 mg/kg body weight SA + 25 mg/kg body weight ZN, and V) SA + ZN 50; received 10 mg/kg body weight SA + 50 mg/kg body weight ZN. The experiment lasted 14 days, and the rats were sacrificed on the 15th day. While oxidative stress parameters were studied by spectrophotometric method, apoptosis, inflammation and endoplasmic reticulum stress parameters were measured by RT-PCR method. RESULTS: The SA disrupted the histological architecture and integrity of the liver and enhanced oxidative damage by lowering antioxidant enzyme activity, such as those of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) level and increasing malondialdehyde (MDA) level in the liver tissue. Additionally, SA increased the mRNA transcript levels of Bcl2 associated x (Bax), caspases (-3, -6, -9), apoptotic protease-activating factor 1 (Apaf-1), p53, tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), c-Jun NH2-terminal kinase (JNK), mitogen-activated protein kinase 14 (MAPK14), MAPK15, receptor for advanced glycation endproducts (RAGE) and nod-like receptor family pyrin domain-containing 3 (NLRP3) in the liver tissue. Also produced endoplasmic reticulum stress by raising the mRNA transcript levels of activating transcription factor 6 (ATF-6), protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and glucose-regulated protein 78 (GRP-78). These factors together led to inflammation, apoptosis, and endoplasmic reticulum stress. On the other hand, liver tissue treated with ZN at doses of 25 and 50 mg/kg showed significant improvement in oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress. CONCLUSIONS: Overall, the study's data suggest that administering ZN may be able to lessen the liver damage caused by SA toxicity.


Subject(s)
Arsenites , Chemical and Drug Induced Liver Injury , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Signal Transduction , Sodium Compounds , Tumor Necrosis Factor-alpha , Animals , Male , Signal Transduction/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Arsenites/toxicity , Sodium Compounds/toxicity , Rats , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Caspase 3/metabolism , Caspase 3/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Oxidative Stress/drug effects , Apoptosis/drug effects , Protective Agents/pharmacology , Protective Agents/therapeutic use , Endoplasmic Reticulum Chaperone BiP , Endoribonucleases , Multienzyme Complexes , Protein Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...