Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.133
Filter
1.
Invest Ophthalmol Vis Sci ; 65(5): 8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700874

ABSTRACT

Purpose: In the present study, we aim to elucidate the underlying molecular mechanism of endoplasmic reticulum (ER) stress induced delayed corneal epithelial wound healing and nerve regeneration. Methods: Human limbal epithelial cells (HLECs) were treated with thapsigargin to induce excessive ER stress and then RNA sequencing was performed. Immunofluorescence, qPCR, Western blot, and ELISA were used to detect the expression changes of SLIT3 and its receptors ROBO1-4. The role of recombinant SLIT3 protein in corneal epithelial proliferation and migration were assessed by CCK8 and cell scratch assay, respectively. Thapsigargin, exogenous SLIT3 protein, SLIT3-specific siRNA, and ROBO4-specific siRNA was injected subconjunctivally to evaluate the effects of different intervention on corneal epithelial and nerve regeneration. In addition, Ki67 staining was performed to evaluate the proliferation ability of epithelial cells. Results: Thapsigargin suppressed normal corneal epithelial and nerve regeneration significantly. RNA sequencing genes related to development and regeneration revealed that thapsigargin induced ER stress significantly upregulated the expression of SLIT3 and ROBO4 in corneal epithelial cells. Exogenous SLIT3 inhibited normal corneal epithelial injury repair and nerve regeneration, and significantly suppressed the proliferation and migration ability of cultured mouse corneal epithelial cells. SLIT3 siRNA inhibited ROBO4 expression and promoted epithelial wound healing under thapsigargin treatment. ROBO4 siRNA significantly attenuated the delayed corneal epithelial injury repair and nerve regeneration induced by SLIT3 treatment or thapsigargin treatment. Conclusions: ER stress inhibits corneal epithelial injury repair and nerve regeneration may be related with the upregulation of SLIT3-ROBO4 pathway.


Subject(s)
Cell Proliferation , Endoplasmic Reticulum Stress , Epithelium, Corneal , Nerve Regeneration , Receptors, Immunologic , Roundabout Proteins , Signal Transduction , Wound Healing , Animals , Humans , Mice , Blotting, Western , Cell Movement/physiology , Cells, Cultured , Endoplasmic Reticulum Stress/physiology , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal/metabolism , Limbus Corneae/cytology , Nerve Regeneration/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction/physiology , Wound Healing/physiology
2.
Exp Neurol ; 377: 114806, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701941

ABSTRACT

Endoplasmic reticulum (ER) stress and neuroinflammation play an important role in secondary brain damage after traumatic brain injury (TBI). Due to the complex brain cytoarchitecture, multiple cell types are affected by TBI. However, cell type-specific and sex-specific responses to ER stress and neuroinflammation remain unclear. Here we investigated differential regulation of ER stress and neuroinflammatory pathways in neurons and microglia during the acute phase post-injury in a mouse model of impact acceleration TBI in both males and females. We found that TBI resulted in significant weight loss only in males, and sensorimotor impairment and depressive-like behaviors in both males and females at the acute phase post-injury. By concurrently isolating neurons and microglia from the same brain sample of the same animal, we were able to evaluate the simultaneous responses in neurons and microglia towards ER stress and neuroinflammation in both males and females. We discovered that the ER stress and anti-inflammatory responses were significantly stronger in microglia, especially in female microglia, compared with the male and female neurons. Whereas the degree of phosphorylated-tau (pTau) accumulation was significantly higher in neurons, compared with the microglia. In conclusion, TBI resulted in behavioral deficits and cell type-specific and sex-specific responses to ER stress and neuroinflammation, and abnormal protein accumulation at the acute phase after TBI in immature mice.


Subject(s)
Brain Injuries, Traumatic , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , Microglia , Neuroinflammatory Diseases , Neurons , Sex Characteristics , Animals , Female , Mice , Male , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/psychology , Endoplasmic Reticulum Stress/physiology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology
3.
Biol Res ; 57(1): 34, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812057

ABSTRACT

Studies have suggested that endoplasmic reticulum stress (ERS) is involved in neurological dysfunction and that electroacupuncture (EA) attenuates neuropathic pain (NP) via undefined pathways. However, the role of ERS in the anterior cingulate cortex (ACC) in NP and the effect of EA on ERS in the ACC have not yet been investigated. In this study, an NP model was established by chronic constriction injury (CCI) of the left sciatic nerve in rats, and mechanical and cold tests were used to evaluate behavioral hyperalgesia. The protein expression and distribution were evaluated using western blotting and immunofluorescence. The results showed that glucose-regulated protein 78 (BIP) and inositol-requiring enzyme 1α (IRE-1α) were co-localized in neurons in the ACC. After CCI, BIP, IRE-1α, and phosphorylation of IRE-1α were upregulated in the ACC. Intra-ACC administration of 4-PBA and Kira-6 attenuated pain hypersensitivity and downregulated phosphorylation of IRE-1α, while intraperitoneal injection of 4-PBA attenuated hyperalgesia and inhibited the activation of P38 and JNK in ACC. In contrast, ERS activation by intraperitoneal injection of tunicamycin induced behavioral hyperalgesia in naive rats. Furthermore, EA attenuated pain hypersensitivity and inhibited the CCI-induced overexpression of BIP and pIRE-1α. Taken together, these results demonstrate that EA attenuates NP by suppressing BIP- and IRE-1α-mediated ERS in the ACC. Our study presents novel evidence that ERS in the ACC is implicated in the development of NP and provides insights into the molecular mechanisms involved in the analgesic effect of EA.


Subject(s)
Disease Models, Animal , Electroacupuncture , Endoplasmic Reticulum Stress , Gyrus Cinguli , Neuralgia , Rats, Sprague-Dawley , Animals , Electroacupuncture/methods , Gyrus Cinguli/metabolism , Neuralgia/therapy , Male , Endoplasmic Reticulum Stress/physiology , Rats , Blotting, Western , Heat-Shock Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Hyperalgesia/therapy , Endoplasmic Reticulum Chaperone BiP
4.
Biomed Pharmacother ; 175: 116812, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781866

ABSTRACT

The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Unfolded Protein Response , Endoplasmic Reticulum/metabolism , Humans , Animals , Endoplasmic Reticulum Stress/physiology , Unfolded Protein Response/physiology , Hypoxia/metabolism , Apoptosis/physiology , Cell Hypoxia/physiology , Endoplasmic Reticulum-Associated Degradation
5.
Respir Res ; 25(1): 220, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789967

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a complex and progressive illness that has a multifaceted origin, significant fatality rates, and profound effects on health. The pathogenesis of PAH is poorly defined due to the insufficient understanding of the combined impact of endoplasmic reticulum (ER) stress and immune infiltration, both of which play vital roles in PAH development. This study aims to identify potential ER stress-related biomarkers in PAH and investigate their involvement in immune infiltration. METHODS: The GEO database was used to download gene expression profiles. Genes associated with ER stress were obtained from the MSigDB database. Weighted gene co-expression network analysis (WGCNA), GO, KEGG, and protein-protein interaction (PPI) were utilized to conduct screening of hub genes and explore potential molecular mechanisms. Furthermore, the investigation also delved into the presence of immune cells in PAH tissues and the correlation between hub genes and the immune system. Finally, we validated the diagnostic value and expression levels of the hub genes in PAH using subject-workup characterization curves and real-time quantitative PCR. RESULTS: In the PAH and control groups, a total of 31 genes related to ER stress were found to be differentially expressed. The enrichment analysis revealed that these genes were primarily enriched in reacting to stress in the endoplasmic reticulum, dealing with unfolded proteins, transporting proteins, and processing proteins within the endoplasmic reticulum. EIF2S1, NPLOC4, SEC61B, SYVN1, and DERL1 were identified as the top 5 hub genes in the PPI network. Immune infiltration analysis revealed that these hub genes were closely related to immune cells. The receiver operating characteristic (ROC) curves revealed that the hub genes exhibited excellent diagnostic efficacy for PAH. The levels of SEC61B, NPLOC4, and EIF2S1 expression were in agreement with the findings of bioinformatics analysis in the PAH group. CONCLUSIONS: Potential biomarkers that could be utilized are SEC61B, NPLOC4, and EIF2S1, as identified in this study. The infiltration of immune cells was crucial to the development and advancement of PAH. This study provided new potential therapeutic targets for PAH.


Subject(s)
Endoplasmic Reticulum Stress , Humans , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/physiology , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/diagnosis , Pulmonary Arterial Hypertension/metabolism , Male , Female , Gene Expression Profiling/methods , Middle Aged , Databases, Genetic , Protein Interaction Maps/genetics , Gene Regulatory Networks , Gene Expression Regulation
6.
Cell Death Dis ; 15(4): 276, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637497

ABSTRACT

The Unfolded Protein Response (UPR) is an essential cellular process activated by the accumulation of unfolded proteins within the Endoplasmic Reticulum (ER), a condition referred to as ER stress. Three ER anchored receptors, IRE1, PERK and ATF6 act as ER stress sensors monitoring the health of the ER. Upon detection of ER stress, IRE1, PERK and ATF6 initiate downstream signaling pathways collectively referred to as the UPR. The overarching aim of the UPR is to restore ER homeostasis by reducing ER stress, however if that is not possible, the UPR transitions from a pro-survival to a pro-death response. While our understanding of the key signaling pathways central to the UPR is well defined, the same is not true of the subtle signaling events that help fine tune the UPR, supporting its ability to adapt to varying amplitudes or durations of ER stress. In this study, we demonstrate cross talk between the IRE1 and PERK branches of the UPR, wherein IRE1 via XBP1s signaling helps to sustain PERK expression during prolonged ER stress. Our findings suggest cross talk between UPR branches aids adaptiveness thereby helping to support the plasticity of UPR signaling responses.


Subject(s)
Protein Serine-Threonine Kinases , eIF-2 Kinase , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Endoplasmic Reticulum Stress/physiology , Signal Transduction , Unfolded Protein Response
7.
Front Immunol ; 15: 1381227, 2024.
Article in English | MEDLINE | ID: mdl-38638434

ABSTRACT

Obesity presents a significant global health challenge, increasing the susceptibility to chronic conditions such as diabetes, cardiovascular disease, and hypertension. Within the context of obesity, lipid metabolism, adipose tissue formation, and inflammation are intricately linked to endoplasmic reticulum stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well as cell proliferation and death through the unfolded protein response (UPR) pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose tissue and the inflammatory response. In this review, we comprehensively elucidate the mechanisms by which ERS impacts adipose tissue function and inflammation in obesity, aiming to offer insights into targeting ERS for ameliorating metabolic dysregulation in obesity-associated chronic diseases such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Humans , Diabetes Mellitus, Type 2/metabolism , Endoplasmic Reticulum Stress/physiology , Obesity/metabolism , Adipose Tissue/metabolism , Inflammation/metabolism
8.
Exp Neurol ; 377: 114795, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657855

ABSTRACT

Clinical studies have shown that traumatic brain injury (TBI) increases the onset of Parkinson's disease (PD) in later life by >50%. Oxidative stress, endoplasmic reticulum (ER) stress, and inflammation are the major drivers of both TBI and PD pathologies. We presently evaluated if curtailing oxidative stress and ER stress concomitantly using a combination of apocynin and tert-butylhydroquinone and salubrinal during the acute stage after TBI in mice reduces the severity of late-onset PD-like pathology. The effect of multiple low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on post-TBI neurodegeneration was also evaluated. The combo therapy elevated the level of phosphorylation at serine 129 (pS129) of α-Syn in the pericontusional cortex of male mice at 72 h post-TBI. Motor and cognitive deficits induced by TBI lasted at least 3 months and the combo therapy curtailed these deficits in both sexes. At 3 months post-TBI, male mice given combo therapy exhibited significantly lesser α-Syn aggregates in the SN and higher TH+ cells in the SNpc, compared to vehicle control. However, the aggregate number was not significantly different between groups of female mice. Moreover, TBI-induced loss of TH+ cells was negligible in female mice irrespective of treatment. The MPTP treatment aggravated PD-like pathology in male mice but had a negligible effect on the loss of TH+ cells in female mice. Thus, the present study indicates that mitigation of TBI-induced oxidative stress and ER stress at the acute stage could potentially reduce the risk of post-TBI PD-like pathology at least in male mice, plausibly by elevating pS129-α-Syn level.


Subject(s)
Antioxidants , Brain Injuries, Traumatic , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , Animals , Male , Mice , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Female , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Phosphorylation/drug effects , Antioxidants/pharmacology , Sex Characteristics , Acetophenones/pharmacology , Acetophenones/therapeutic use , Acetophenones/administration & dosage , Thiourea/analogs & derivatives , Thiourea/pharmacology , Thiourea/therapeutic use , Thiourea/administration & dosage , Serine/metabolism , Hydroquinones/pharmacology , Hydroquinones/administration & dosage , Hydroquinones/therapeutic use , Drug Therapy, Combination , Oxidative Stress/drug effects
9.
Brain Res ; 1835: 148930, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38604556

ABSTRACT

The anxiety caused by morphine protracted abstinence is considered to be an important factor contributes to drug-seeking and relapse. Endoplasmic reticulum (ER) stress plays important roles in many kinds of mental disorders including drug addiction and anxiety, but it is unclear whether ER stress is involved in anxiety-like behaviors induced by morphine withdrawal. In this study, by using behavioral test, western blot, immunofluorescence, electron transmission microscope, we found that: (1) Inhibition of endoplasmic reticulum stress by 4-Phenylbutyric acid (4-PBA) could attenuate anxiety-like behaviors induced by morphine withdrawal. (2) The endoplasmic reticulum stress-related proteins in the lateral habenula (LHb) but not in the nucleus accumbens (NAc), ventral pallidum (VP), basolateral amygdala (BLA) and CA1 of hippocampus was upregulated by morphine withdrawal, upregulation of endoplasmic reticulum stress-related proteins in the lateral habenula induced by morphine withdrawal was inhibited by 4-PBA. (3) Endoplasmic reticulum stress-related protein CHOP and eIF2α were expressed in neurons but not in microglia in the LHb. (4) Morphine withdrawal induced neuronal morphological change in the LHb, which was attenuated by 4-PBA.


Subject(s)
Anxiety , Endoplasmic Reticulum Stress , Morphine , Substance Withdrawal Syndrome , Animals , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Male , Morphine/pharmacology , Anxiety/metabolism , Anxiety/drug therapy , Substance Withdrawal Syndrome/metabolism , Mice , Phenylbutyrates/pharmacology , Morphine Dependence/metabolism , Neurons/metabolism , Neurons/drug effects , Mice, Inbred C57BL
10.
Life Sci ; 347: 122651, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642844

ABSTRACT

Calcium ion (Ca2+) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca2+ homeostasis is compromised. Ca2+ regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca2+ homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca2+. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca2+ within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca2+ homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na+/Ca2+ exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca2+ sequestering and release mechanisms to maintain intracellular Ca2+ homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca2+ and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca2+ overload in cerebral ischemia.


Subject(s)
Calcium , Cell Death , Ischemic Stroke , Neurons , Humans , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Animals , Calcium/metabolism , Neurons/metabolism , Neurons/pathology , Mitochondria/metabolism , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Unfolded Protein Response , Calcium Signaling/physiology , Homeostasis
11.
Mol Biol Cell ; 35(6): br12, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656789

ABSTRACT

The endoplasmic reticulum (ER) is a single-copy organelle that cannot be generated de novo, suggesting coordination between the mechanisms overseeing ER integrity and those controlling the cell cycle to maintain organelle inheritance. The Unfolded Protein Response (UPR) is a conserved signaling network that regulates ER homeostasis. Here, we show that pharmacological and genetic inhibition of the UPR sensors IRE1, ATF6, and PERK in unstressed cells delays the cell cycle, with PERK inhibition showing the most penetrant effect, which was associated with a slowdown of the G1-to-S/G2 transition. Treatment with the small molecule ISRIB to bypass the effects of PERK-dependent phosphorylation of the translation initiation factor eIF2α had no such effect, suggesting that cell cycle timing depends on PERK's kinase activity but is independent of eIF2α phosphorylation. Using complementary light and electron microscopy and flow cytometry-based analyses, we also demonstrate that the ER enlarges before mitosis. Together, our results suggest coordination between UPR signaling and the cell cycle to maintain ER physiology during cell division.


Subject(s)
Activating Transcription Factor 6 , Cell Cycle , Endoplasmic Reticulum , Eukaryotic Initiation Factor-2 , Protein Serine-Threonine Kinases , Signal Transduction , Unfolded Protein Response , eIF-2 Kinase , eIF-2 Kinase/metabolism , Humans , Cell Cycle/physiology , Endoplasmic Reticulum/metabolism , Phosphorylation , Eukaryotic Initiation Factor-2/metabolism , Activating Transcription Factor 6/metabolism , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/metabolism , Animals , HeLa Cells , Endoplasmic Reticulum Stress/physiology
12.
Mech Ageing Dev ; 219: 111933, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588730

ABSTRACT

The global prevalence of nonalcoholic fatty liver disease (NAFLD) defined by the increased number of lipid droplets (LDs) in hepatocytes, have risen continuously in parallel with the obesity. LDs and related proteins are known to affect cellular metabolism and signaling. Seipin, one of the most important LD-related proteins, plays a critical role in LD biogenesis. Although the role of adipose tissue-specific Seipin silencing is known, hepatocyte-specific silencing upon cholesterol-mediated lipid accumulation has not been investigated. In our study, we investigated the effect of Seipin on endoplasmic reticulum (ER) stress and lipophagy in cholesterol accumulated mouse hepatocyte cells. In this direction, cholesterol accumulation was induced by cholesterol-containing liposome, while Seipin mRNA and protein levels were reduced by siRNA. Our findings show that cholesterol containing liposome administration in hepatocytes increases both Seipin protein and number of large LDs. However Seipin silencing reduced the increase of cholesterol mediated large LDs and Glucose-regulated protein 78 (GRP78) mRNA. Additionally, lysosome-LD colocalization increased only in cells treated with cholesterol containing liposome, while the siRNA against Seipin did not lead any significant difference. According to our findings, we hypothesize that Seipin silencing in hepatocytes reduced cholesterol mediated LD maturation as well as GRP78 levels, but not lipophagy.


Subject(s)
Autophagy , Cholesterol , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , GTP-Binding Protein gamma Subunits , Hepatocytes , Lipid Droplets , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Chaperone BiP/metabolism , Animals , GTP-Binding Protein gamma Subunits/metabolism , Mice , Lipid Droplets/metabolism , Cholesterol/metabolism , Hepatocytes/metabolism , Autophagy/physiology , Non-alcoholic Fatty Liver Disease/metabolism , Heat-Shock Proteins/metabolism
13.
EMBO J ; 43(8): 1653-1685, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491296

ABSTRACT

Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.


Subject(s)
Lipid Bilayers , Saccharomyces cerevisiae Proteins , Lipid Bilayers/metabolism , Saccharomyces cerevisiae/metabolism , Endoplasmic Reticulum Stress/physiology , Saccharomyces cerevisiae Proteins/metabolism , Unfolded Protein Response , Endoplasmic Reticulum/metabolism , Technology , Lipid Metabolism
14.
Int J Mol Sci ; 25(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542170

ABSTRACT

The communication between mitochondria and the endoplasmic reticulum (ER) is facilitated by a dynamic membrane structure formed by protein complexes known as mitochondria-associated membranes (MAMs). The structural and functional integrity of MAMs is crucial for insulin signal transduction, relying heavily on their regulation of intracellular calcium homeostasis, lipid homeostasis, mitochondrial quality control, and endoplasmic reticulum stress (ERS). This article reviews recent research findings, suggesting that exercise may promote the remodeling of MAMs structure and function by modulating the expression of molecules associated with their structure and function. This, in turn, restores cellular homeostasis and ultimately contributes to the amelioration of insulin resistance (IR). These insights provide additional possibilities for the study and treatment of insulin resistance-related metabolic disorders such as obesity, diabetes, fatty liver, and atherosclerosis.


Subject(s)
Insulin Resistance , Humans , Insulin Resistance/physiology , Mitochondria Associated Membranes , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis , Endoplasmic Reticulum Stress/physiology
15.
Exp Gerontol ; 189: 112401, 2024 May.
Article in English | MEDLINE | ID: mdl-38490286

ABSTRACT

Age-related hearing loss (ARHL) is the most common sensory disorder associated with human aging. Chronic inflammation is supposed to be an important contributor to ARHL. Yet, the underlying mechanisms of developing cochlear inflammation are still not well understood. In this study, we found that the inflammation, endoplasmic reticulum (ER) stress and necroptosis signalings are activated in the cochlea of aged C57BL/6 mice. ER stress activator tunicamycin (TM) induced necroptosis in cochlear HEI-OC1 cells and cochlear explants, while necroptosis inhibitors protected cochlear cells from ER stress-induced cell death. The antioxidants inhibited necroptosis and protected HEI-OC1 cells from TM insults. Necroptotic HEI-OC1 cells promoted the activation of the co-cultured macrophages via Myd88 signaling. Moreover, necroptosis inhibitor protected from TM-induced hearing loss, and inhibited inflammation in C57BL/6 mice. These findings suggest that ER stress-induced necroptosis promotes cochlear inflammation and hearing loss. Targeting necroptosis serves as a potential approach for the treatment of cochlear inflammation and ARHL.


Subject(s)
Necroptosis , Presbycusis , Mice , Animals , Humans , Aged , Mice, Inbred C57BL , Cochlea/metabolism , Endoplasmic Reticulum Stress/physiology
16.
Diabetes ; 73(4): 545-553, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38507587

ABSTRACT

The synthesis, processing, and secretion of insulin by the pancreatic ß-cell is key for the maintenance of systemic metabolic homeostasis, and loss or dysfunction of ß-cells underlies the development of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Work in the Evans-Molina laboratory over the past 15 years has pioneered the idea that regulation of calcium dynamics is critical to ß-cell biology and diabetes pathophysiology. In this article, I will share three vignettes from the laboratory that demonstrate our bench-to-bedside approach to determining mechanisms of ß-cell stress that could improve therapeutic options and outcomes for individuals living with diabetes. The first of these vignettes will illustrate a role for the sarcoendoplasmic reticulum calcium ATPase (SERCA) pump in the regulation of endoplasmic reticulum (ER) calcium, protein trafficking, and proinsulin processing within the ß-cell. The second vignette will highlight how alterations in ß-cell calcium signaling intersect with T1D pathogenesis. The final vignette will demonstrate how activation of ß-cell stress pathways may serve as an anchor to inform biomarker strategies in T1D. Lastly, I will share my vision for the future of diabetes care, where multiple biomarkers of ß-cell stress may be combined with additional immune and metabolic biomarkers to better predict disease risk and improve therapies to prevent or delay T1D development.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Calcium/metabolism , Insulin-Secreting Cells/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Biomarkers/metabolism
17.
Biomed Pharmacother ; 173: 116354, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442673

ABSTRACT

Angiogenesis is the growth of new blood vessels on preexisting ones. It is the outcome of a multifactorial effect involving several cells, which can be brought on by different stress reactions.The accumulation of unfolded proteins in the endoplasmic reticulum occurs when cells are stressed due to environmental changes, where physical or chemical stimuli induce endoplasmic reticulum stress, thereby activating the unfolded protein response (UPR), a homeostasis response designed to re-establish protein balance. Ferroptosis is a planned death of lipid peroxidation and anomalies in metabolism that is dependent on iron. Large concentrations of iron ions accumulate there, along with high concentrations of lipid peroxides and reactive oxygen species, all of which can contribute to the development of several diseases. Through the production of growth factors, adhesion factors, and inflammatory factors that trigger the start of angiogenesis, both UPR and Ferroptosis can be implicated in angiogenesis.To set the stage for further research on angiogenesis, this work concentrated on the effects of Ferroptosis and UPR on angiogenesis, respectively.


Subject(s)
Ferroptosis , Angiogenesis , Unfolded Protein Response , Endoplasmic Reticulum Stress/physiology , Iron
18.
Curr Biol ; 34(7): 1390-1402.e4, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38428416

ABSTRACT

Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration. dPPP1R15 is an ortholog of mammalian PPP1R15 proteins that attenuate the endoplasmic reticulum (ER) stress response. We show that, in collectively migrating border cells, dPPP1R15 phosphatase restrains an active physiological protein kinase R-like ER kinase- (PERK)-eIF2α-activating transcription factor 4 (ATF4) stress pathway. RNAi knockdown of dPPP1R15 blocks border cell delamination from the epithelium and subsequent migration, increases eIF2α phosphorylation, reduces translation, and drives expression of the stress response transcription factor ATF4. We observe similar defects upon overexpression of ATF4 or the eIF2α kinase PERK. Furthermore, we show that normal border cells express markers of the PERK-dependent ER stress response and require PERK and ATF4 for efficient migration. In many other cell types, unresolved ER stress induces initiation of apoptosis. In contrast, border cells with chronic RNAi knockdown of dPPP1R15 survive. Together, our results demonstrate that the PERK-eIF2α-ATF4 pathway, regulated by dPPP1R15 activity, counteracts the physiological ER stress that occurs during collective border cell migration. We propose that in vivo collective cell migration is intrinsically "stressful," requiring tight homeostatic control of the ER stress response for collective cell cohesion, dynamics, and movement.


Subject(s)
Signal Transduction , eIF-2 Kinase , Animals , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Endoplasmic Reticulum Stress/physiology , Apoptosis , Cell Movement , Phosphoric Monoester Hydrolases/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Mammals
19.
Neuroscience ; 545: 158-170, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38513765

ABSTRACT

Thioredoxin-reductase 2 (Txnrd2) belongs to the thioredoxin-reductase family of selenoproteins and is a key antioxidant enzyme in mammalian cells to regulate redox homeostasis. Here, we reported that Txnrd2 exerted a major influence in brain damage caused by Intracerebral hemorrhage (ICH) by suppressing endoplasmic reticulum (ER) stress oxidative stress and via Trx2/Prx3 pathway. Furthermore, we demonstrated that pharmacological selenium (Se) rescued the brain damage after ICH by enhancing Txnrd2 expression. Primarily, expression and localization of Txnrd2, Trx2 and Prx3 were determined in collagenase IV-induced ICH model. Txnrd2 was then knocked down using siRNA interference in rats which were found to develop more severe encephaledema and neurological deficits. Mechanistically, we observed that loss of Txnrd2 leads to increased lipid peroxidation levels and ER stress protein expression in neurons and astrocytes. Additionally, it was revealed that Se effectively restored the expression of Txnrd2 in brain and inhibited both the activity of ER stress protein activity and the generation of reactive oxygen species (ROS) by promoting Trx2/Prx3 kilter when administrating sodium selenite in lateral ventricle. This study shed light on the effect of Txnrd2 in regulating oxidative stress and ER stress via Trx2/Prx3 pathway upon ICH and its promising potential as an ICH therapeutic target.


Subject(s)
Cerebral Hemorrhage , Endoplasmic Reticulum Stress , Oxidative Stress , Rats, Sprague-Dawley , Thioredoxin Reductase 2 , Thioredoxins , Animals , Male , Rats , Astrocytes/metabolism , Astrocytes/drug effects , Brain/metabolism , Brain/drug effects , Brain/pathology , Brain Injuries/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Disease Models, Animal , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Stress/drug effects , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Peroxiredoxin III/metabolism , Reactive Oxygen Species/metabolism , Selenium/pharmacology , Signal Transduction/physiology , Signal Transduction/drug effects , Thioredoxin Reductase 2/metabolism , Thioredoxins/metabolism
20.
Neurogastroenterol Motil ; 36(5): e14780, 2024 May.
Article in English | MEDLINE | ID: mdl-38462652

ABSTRACT

BACKGROUND: Different studies have shown the key role of endoplasmic reticulum (ER) stress in autoimmune and chronic inflammatory disorders, as well as in neurodegenerative diseases. ER stress leads to the formation of misfolded proteins which affect the secretion of different cell types that are crucial for the intestinal homeostasis. PURPOSE: In this review, we discuss the role of ER stress and its involvement in the development of inflammatory bowel diseases, chronic conditions that can cause severe damage of the gastrointestinal tract, focusing on the alteration of Paneth cells and goblet cells (the principal secretory phenotypes of the intestinal epithelial cells). ER stress is also discussed in the context of neurodegenerative diseases, in which protein misfolding represents the signature mechanism. ER stress in the bowel and consequent accumulation of misfolded proteins might represent a bridge between bowel inflammation and neurodegeneration along the gut-to-brain axis, affecting intestinal epithelial homeostasis and the equilibrium of the commensal microbiota. Targeting intestinal ER stress could foster future studies for designing new biomarkers and new therapeutic approaches for neurodegenerative disorders.


Subject(s)
Endoplasmic Reticulum Stress , Neurodegenerative Diseases , Endoplasmic Reticulum Stress/physiology , Humans , Neurodegenerative Diseases/metabolism , Animals , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Paneth Cells/metabolism , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...