Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66.605
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Article in English | LILACS | ID: biblio-1538029

ABSTRACT

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Subject(s)
Sesquiterpenes/pharmacology , Lipopolysaccharides/pharmacology , Endothelial Cells/drug effects
2.
Lasers Med Sci ; 39(1): 122, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703271

ABSTRACT

Pulsed dye lasers are used effectively in the treatment of psoriasis with long remission time and limited side effects. It is, however, not completely understood which biological processes underlie its favorable outcome. Pulsed dye laser treatment at 585-595 nm targets hemoglobin in the blood, inducing local hyperthermia in surrounding blood vessels and adjacent tissues. While the impact of destructive temperatures on blood vessels has been well studied, the effects of lower temperatures on the function of several cell types within the blood vessel wall and its periphery are not known. The aim of our study is to assess the functionality of isolated blood vessels after exposure to moderate hyperthermia (45 to 60°C) by evaluating the function of endothelial cells, smooth muscle cells, and vascular nerves. We measured blood vessel functionality of rat mesenteric arteries (n=19) by measuring vascular contraction and relaxation before and after heating vessels in a wire myograph. To this end, we elicited vascular contraction by addition of either high potassium solution or the thromboxane analogue U46619 to stimulate smooth muscle cells, and electrical field stimulation (EFS) to stimulate nerves. For measurement of endothelium-dependent relaxation, we used methacholine. Each vessel was exposed to one temperature in the range of 45-60°C for 30 seconds and a relative change in functional response after hyperthermia was determined by comparison with the response per stimulus before heating. Non-linear regression was used to fit our dataset to obtain the temperature needed to reduce blood vessel function by 50% (Half maximal effective temperature, ET50). Our findings demonstrate a substantial decrease in relative functional response for all three cell types following exposure to 55°C-60°C. There was no significant difference between the ET50 values of the different cell types, which was between 55.9°C and 56.9°C (P>0.05). Our data show that blood vessel functionality decreases significantly when exposed to temperatures between 55°C-60°C for 30 seconds. The results show functionality of endothelial cells, smooth muscle cells, and vascular nerves is similarly impaired. These results help to understand the biological effects of hyperthermia and may aid in tailoring laser and light strategies for selective photothermolysis that contribute to disease modification of psoriasis after pulsed dye laser treatment.


Subject(s)
Lasers, Dye , Animals , Rats , Male , Lasers, Dye/therapeutic use , Myocytes, Smooth Muscle/physiology , Myocytes, Smooth Muscle/radiation effects , Vasodilation/radiation effects , Vasodilation/physiology , Temperature , Muscle, Smooth, Vascular/radiation effects , Muscle, Smooth, Vascular/physiology , Endothelial Cells/radiation effects , Endothelial Cells/physiology , Vasoconstriction/radiation effects , Vasoconstriction/physiology , Endothelium, Vascular/radiation effects , Rats, Wistar
3.
Dev Cell ; 59(9): 1093-1095, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38714156

ABSTRACT

In this issue of Developmental Cell, Fowler et al. applied genetic lineage-tracing mouse models to support the notion that artery endothelial cells are the predominant source of hematopoietic stem cells. They leveraged this and developed a method capable of efficiently differentiating human pluripotent stem cells into HLF+HOXA+ hematopoietic progenitors.


Subject(s)
Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells , Pluripotent Stem Cells , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Animals , Humans , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Mice , Cell Lineage , Endothelial Cells/cytology , Endothelial Cells/metabolism
4.
Methods Cell Biol ; 187: 117-137, 2024.
Article in English | MEDLINE | ID: mdl-38705622

ABSTRACT

Correlative microscopy is an important approach for bridging the resolution gap between fluorescence light and electron microscopy. Here, we describe a fast and simple method for correlative immunofluorescence and immunogold labeling on the same section to elucidate the localization of phosphorylated vimentin (P-Vim), a robust feature of pulmonary vascular remodeling in cells of human lung small arteries. The lung is a complex, soft and difficult tissue to prepare for transmission electron microscopy (TEM). Detailing the molecular composition of small pulmonary arteries (<500µm) would be of great significance for research and diagnostics. Using the classical methods of immunochemistry (either hydrophilic resin or thin cryosections), is difficult to locate small arteries for analysis by TEM. To address this problem and to observe the same structures by both light and electron microscopy, correlative microscopy is a reliable approach. Immunofluorescence enables us to know the distribution of P-Vim in cells but does not provide ultrastructural detail on its localization. Labeled structures selected by fluorescence microscope can be identified and further analyzed by TEM at high resolution. With our method, the morphology of the arteries is well preserved, enabling the localization of P-Vim inside pulmonary endothelial cells. By applying this approach, fluorescent signals can be directly correlated to the corresponding subcellular structures in areas of interest.


Subject(s)
Lung , Vimentin , Humans , Vimentin/metabolism , Phosphorylation , Lung/metabolism , Lung/ultrastructure , Microscopy, Fluorescence/methods , Pulmonary Artery/metabolism , Pulmonary Artery/cytology , Pulmonary Artery/ultrastructure , Fluorescent Antibody Technique/methods , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Microscopy, Electron, Transmission/methods , Microscopy, Electron/methods
5.
Curr Top Dev Biol ; 159: 344-370, 2024.
Article in English | MEDLINE | ID: mdl-38729681

ABSTRACT

The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.


Subject(s)
Vascular Remodeling , Humans , Animals , Blood Vessels/growth & development , Blood Vessels/metabolism , Blood Vessels/embryology , Neovascularization, Physiologic , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/physiology , Cell Differentiation , Embryonic Development , Endothelium, Vascular/cytology
6.
Sci Rep ; 14(1): 10477, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714743

ABSTRACT

Endothelial glycocalyx (eGC) covers the inner surface of the vessels and plays a role in vascular homeostasis. Syndecan is considered the "backbone" of this structure. Several studies have shown eGC shedding in sepsis and its involvement in organ dysfunction. Matrix metalloproteinases (MMP) contribute to eGC shedding through their ability for syndecan-1 cleavage. This study aimed to investigate if doxycycline, a potent MMP inhibitor, could protect against eGC shedding in lipopolysaccharide (LPS)-induced sepsis and if it could interrupt the vascular hyperpermeability, neutrophil transmigration, and microvascular impairment. Rats that received pretreatment with doxycycline before LPS displayed ultrastructural preservation of the eGC observed using transmission electronic microscopy of the lung and heart. In addition, these animals exhibited lower serum syndecan-1 levels, a biomarker of eGC injury, and lower perfused boundary region (PBR) in the mesenteric video capillaroscopy, which is inversely related to the eGC thickness compared with rats that only received LPS. Furthermore, this study revealed that doxycycline decreased sepsis-related vascular hyperpermeability in the lung and heart, reduced neutrophil transmigration in the peritoneal lavage and inside the lungs, and improved some microvascular parameters. These findings suggest that doxycycline protects against LPS-induced eGC shedding, and it could reduce vascular hyperpermeability, neutrophils transmigration, and microvascular impairment.


Subject(s)
Doxycycline , Glycocalyx , Lipopolysaccharides , Sepsis , Glycocalyx/metabolism , Glycocalyx/drug effects , Animals , Sepsis/drug therapy , Sepsis/metabolism , Doxycycline/pharmacology , Rats , Male , Capillary Permeability/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects , Syndecan-1/metabolism , Rats, Wistar , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Neutrophils/metabolism , Neutrophils/drug effects , Matrix Metalloproteinase Inhibitors/pharmacology
7.
Commun Biol ; 7(1): 544, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714800

ABSTRACT

Numerous myofibroblasts are arisen from endothelial cells (ECs) through endothelial to mesenchymal transition (EndMT) triggered by TGF-ß. However, the mechanism of ECs transforms to a different subtype, or whether there exists an intermediate state of ECs remains unclear. In present study, we demonstrate Midkine (MDK) mainly expressed by CD31 + ACTA2+ECs going through partial EndMT contribute greatly to myofibroblasts by spatial and single-cell transcriptomics. MDK is induced in TGF-ß treated ECs, which upregulates C/EBPß and increases EndMT genes, and these effects could be reversed by siMDK. Mechanistically, MDK promotes the binding ability of C/EBPß with ACTA2 promoter by stabilizing the C/EBPß protein. In vivo, knockout of Mdk or conditional knockout of Mdk in ECs reduces EndMT markers and significantly reverses fibrogenesis. In conclusion, our study provides a mechanistic link between the induction of EndMT by TGF-ß and MDK, which suggests that blocking MDK provides potential therapeutic strategies for renal fibrosis.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Fibrosis , Midkine , Midkine/metabolism , Midkine/genetics , Animals , Mice , Humans , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Epithelial-Mesenchymal Transition , Endothelial Cells/metabolism , Endothelial Cells/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Transforming Growth Factor beta/metabolism , Mice, Inbred C57BL , Male , Kidney/metabolism , Kidney/pathology , Mice, Knockout , Endothelial-Mesenchymal Transition
8.
Sci Rep ; 14(1): 10503, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714844

ABSTRACT

Diesel exhaust particles (DEPs) are very small (typically < 0.2 µm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs. Inhaled DEPs reach the deepest sites in the respiratory system where they could induce respiratory/cardiovascular dysfunction. Additionally, a previous study has revealed that a portion of inhaled DEPs often activate immune cells and subsequently induce somatic inflammation. Moreover, DEPs are known to localize in lymph nodes. Therefore, in this study we explored the effect of DEPs on the lymphatic endothelial cells (LECs) that are a constituent of the walls of lymph nodes. DEP exposure induced cell death in a reactive oxygen species (ROS)-dependent manner. Following exposure to DEPs, next-generation sequence (NGS) analysis identified an upregulation of the integrated stress response (ISR) pathway and cell death cascades. Both the soluble and insoluble components of DEPs generated intracellular ROS. Three-dimensional Raman imaging revealed that DEPs are taken up by LECs, which suggests internalized DEP cores produce ROS, as well as soluble DEP components. However, significant cell death pathways such as apoptosis, necroptosis, ferroptosis, pyroptosis, and parthanatos seem unlikely to be involved in DEP-induced cell death in LECs. This study clarifies how DEPs invading the body might affect the lymphatic system through the induction of cell death in LECs.


Subject(s)
Endothelial Cells , Reactive Oxygen Species , Vehicle Emissions , Vehicle Emissions/toxicity , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism , Humans , Particulate Matter/toxicity , Apoptosis/drug effects , Air Pollutants/toxicity , Cell Death/drug effects
9.
BMC Med ; 22(1): 189, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715017

ABSTRACT

BACKGROUND: Sleep loss is a common public health problem that causes hyperalgesia, especially that after surgery, which reduces the quality of life seriously. METHODS: The 48-h sleep restriction (SR) mouse model was created using restriction chambers. In vivo imaging, transmission electron microscopy (TEM), immunofluorescence staining and Western blot were performed to detect the status of the blood-spinal cord barrier (BSCB). Paw withdrawal mechanical threshold (PWMT) was measured to track mouse pain behavior. The role of infiltrating regulatory T cells (Tregs) and endothelial cells (ECs) in mouse glycolysis and BSCB damage were analyzed using flow cytometry, Western blot, CCK-8 assay, colorimetric method and lactate administration. RESULTS: The 48-h SR made mice in sleep disruption status and caused an acute damage to the BSCB, resulting in hyperalgesia and neuroinflammation in the spinal cord. In SR mice, the levels of glycolysis and glycolysis enzymes of ECs in the BSCB were found significantly decreased [CON group vs. SR group: CD31+Glut1+ cells: p < 0.001], which could cause dysfunction of ECs and this was confirmed in vitro. Increased numbers of infiltrating T cells [p < 0.0001] and Treg population [p < 0.05] were detected in the mouse spinal cord after 48-h SR. In the co-cultured system of ECs and Tregs in vitro, the competition of Tregs for glucose resulted in the glycolysis disorder of ECs [Glut1: p < 0.01, ENO1: p < 0.05, LDHα: p < 0.05; complete tubular structures formed: p < 0.0001; CCK8 assay: p < 0.001 on 24h, p < 0.0001 on 48h; glycolysis level: p < 0.0001]. An administration of sodium lactate partially rescued the function of ECs and relieved SR-induced hyperalgesia. Furthermore, the mTOR signaling pathway was excessively activated in ECs after SR in vivo and those under the inhibition of glycolysis or co-cultured with Tregs in vitro. CONCLUSIONS: Affected by glycolysis disorders of ECs due to glucose competition with infiltrating Tregs through regulating the mTOR signaling pathway, hyperalgesia induced by 48-h SR is attributed to neuroinflammation and damages to the barriers, which can be relieved by lactate supplementation.


Subject(s)
Endothelial Cells , Glucose , Hyperalgesia , Sleep Deprivation , Spinal Cord , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Glucose/metabolism , Endothelial Cells/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Male , Sleep Deprivation/complications , Glycolysis/physiology , Disease Models, Animal , Mice, Inbred C57BL
10.
Genome Biol ; 25(1): 117, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715110

ABSTRACT

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Subject(s)
Pre-Eclampsia , Trophoblasts , Vascular Remodeling , Pre-Eclampsia/genetics , Pregnancy , Female , Humans , Trophoblasts/metabolism , Vascular Remodeling/genetics , Placenta/metabolism , DNA Methylation , Epigenesis, Genetic , Endothelial Cells/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genomic Imprinting , Transforming Growth Factor beta/metabolism , Fetal Growth Retardation/genetics , Placentation/genetics , RNA-Binding Proteins , Apoptosis Regulatory Proteins
11.
Cell Mol Life Sci ; 81(1): 240, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806818

ABSTRACT

The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1ß and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.


Subject(s)
Claudins , Endothelial Cells , Lung , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/physiology , Lung/metabolism , Lung/virology , Lung/pathology , Lung/blood supply , Endothelial Cells/metabolism , Endothelial Cells/virology , Claudins/metabolism , Claudins/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Claudin-4/metabolism , Claudin-4/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , Endothelium, Vascular/pathology , Cells, Cultured , Capillary Permeability , Acute Lung Injury/metabolism , Acute Lung Injury/virology , Acute Lung Injury/pathology , Cytokines/metabolism
12.
Cell Biochem Funct ; 42(4): e4065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807444

ABSTRACT

Cancer is the second leading cause of mortality worldwide. The development of anticancer therapy plays a crucial role in mitigating tumour progression and metastasis. Epithelioid hemangioendothelioma is a very rare cancer, however, with a high systemic involvement. Kynurenine metabolites which include l-kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid have been shown to inhibit T-cell proliferation resulting in a decrease in cell growth of natural killer cells and T cells. Furthermore, metabolites such as  l-kynurenine have been shown to inhibit proliferation of melanoma cells in vitro. Considering these metabolite properties, the present study aimed to explore the in vitro effects of  l-kynurenine, quinolinic acid and kynurenic acid on endothelioma sEnd-2 cells and on endothelial (EA. hy926 cells) (control cell line). The in vitro effect at 24, 48, and 72 h exposure to a range of 1-4 mM of the respective kynurenine metabolites on the two cell lines in terms of cell morphology, cell cycle progression and induction of apoptosis was assessed. The half inhibitory concentration (IC50), as determined using nonlinear regression, for  l-kynurenine, quinolinic acid and kynurenic acid was 9.17, 15.56, and 535.40 mM, respectively. Optical transmitted light differential interference contrast and hematoxylin and eosin staining revealed cells blocked in metaphase, formation of apoptotic bodies and compromised cell density in  l-kynurenine-treated cells. A statistically significant increase in the number of cells present in the sub-G1 phase was observed in  l-kynurenine-treated sample. To our knowledge, this was the first in vitro study conducted to investigate the mechanism of action of kynurenine metabolites on endothelioma sEnd-2 cells. It can be concluded that  l-kynurenine exerts an antiproliferative effect on the endothelioma sEnd-2 cell line by decreasing cell growth and proliferation as well as a metaphase block. These hallmarks suggest cell death via apoptosis. Further research will be conducted on  l-kynurenine to assess the effect on cell adhesion in vitro and in vivo as cell-cell adhesion has been shown to increase metastasis to distant organs therefore, the inhibition of adhesion may lead to a decrease in metastasis.


Subject(s)
Apoptosis , Cell Proliferation , Kynurenine , Quinolinic Acid , Kynurenine/metabolism , Kynurenine/pharmacology , Kynurenine/analogs & derivatives , Humans , Apoptosis/drug effects , Cell Proliferation/drug effects , Quinolinic Acid/pharmacology , Quinolinic Acid/metabolism , Kynurenic Acid/pharmacology , Kynurenic Acid/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Dose-Response Relationship, Drug
13.
Gen Physiol Biophys ; 43(3): 231-242, 2024 May.
Article in English | MEDLINE | ID: mdl-38774923

ABSTRACT

Vascular endothelial cell functions affect lower extremity arteriosclerosis obliterans (LEASO), while alpha-2-macroglobulin (A2M) and CCCTC-binding factor (CTCF) are closely related to the function of such cells. This paper aims to identify the influences of CTCF on vascular endothelial cells in LEASO by regulating A2M. A rat model of LEASO was established to measure intima-media ratio, blood lipid, and inflammatory factor levels. By constructing LEASO cell models, cell viability and apoptosis were assayed, while autophagy-related proteins, CTCF and A2M levels in femoral artery tissues and HUVECs were determined. The transcriptional regulation of CTCF on A2M was verified. In LEASO rat models, femoral artery lumen was narrowed and endothelial cells were disordered; levels of total cholesterol, IL-1, and TNF-α enhanced, and HDL-C decreased, with strong expression of A2M and low expression of CTCF. The viability of ox-LDL-treated HUVECs was decreased, together with higher apoptosis, lower LC3II/I expression, and higher p62 expression, which were reversed by sh-A2M transfection. Overexpression of CTCF inhibited A2M transcription, promoted the viability and autophagy of HUVECs, and decreased apoptosis. Collectively, CTCF improves the function of vascular endothelial cells in LEASO by inhibiting A2M transcription.


Subject(s)
Arteriosclerosis Obliterans , CCCTC-Binding Factor , Human Umbilical Vein Endothelial Cells , Rats , CCCTC-Binding Factor/metabolism , Animals , Humans , Arteriosclerosis Obliterans/metabolism , Male , Human Umbilical Vein Endothelial Cells/metabolism , Endothelial Cells/metabolism , Transcription, Genetic , Rats, Sprague-Dawley , Lower Extremity/blood supply , Apoptosis , Pregnancy-Associated alpha 2-Macroglobulins/metabolism , Cell Survival , Autophagy
14.
PLoS One ; 19(5): e0289854, 2024.
Article in English | MEDLINE | ID: mdl-38771750

ABSTRACT

INTRODUCTION: Recent research suggests that endothelial activation plays a role in coronavirus disease 2019 (COVID-19) pathogenesis by promoting a pro-inflammatory state. However, the mechanism by which the endothelium is activated in COVID-19 remains unclear. OBJECTIVE: To investigate the mechanism by which COVID-19 activates the pulmonary endothelium and drives pro-inflammatory phenotypes. HYPOTHESIS: The "inflammatory load or burden" (cytokine storm) of the systemic circulation activates endothelial NADPH oxidase 2 (NOX2) which leads to the production of reactive oxygen species (ROS) by the pulmonary endothelium. Endothelial ROS subsequently activates pro-inflammatory pathways. METHODS: The inflammatory burden of COVID-19 on the endothelial network, was recreated in vitro, by exposing human pulmonary microvascular endothelial cells (HPMVEC) to media supplemented with serum from COVID-19 affected individuals (sera were acquired from patients with COVID-19 infection that eventually died. Sera was isolated from blood collected at admission to the Intensive Care Unit of the Hospital of the University of Pennsylvania). Endothelial activation, inflammation and cell death were assessed in HPMVEC treated with serum either from patients with COVID-19 or from healthy individuals. Activation was monitored by measuring NOX2 activation (Rac1 translocation) and ROS production; inflammation (or appearance of a pro-inflammatory phenotype) was monitored by measuring the induction of moieties such as intercellular adhesion molecule (ICAM-1), P-selectin and the NLRP3 inflammasome; cell death was measured via SYTOX™ Green assays. RESULTS: Endothelial activation (i.e., NOX2 activation and subsequent ROS production) and cell death were significantly higher in the COVID-19 model than in healthy samples. When HPMVEC were pre-treated with the novel peptide PIP-2, which blocks NOX2 activation (via inhibition of Ca2+-independent phospholipase A2, aiPLA2), significant abrogation of ROS was observed. Endothelial inflammation and cell death were also significantly blunted. CONCLUSIONS: The endothelium is activated during COVID-19 via cytokine storm-driven NOX2-ROS activation, which causes a pro-inflammatory phenotype. The concept of endothelial NOX2-ROS production as a unifying pathophysiological axis in COVID-19 raises the possibility of using PIP-2 to maintain vascular health.


Subject(s)
COVID-19 , Endothelial Cells , NADPH Oxidase 2 , Reactive Oxygen Species , SARS-CoV-2 , Signal Transduction , Humans , COVID-19/metabolism , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , SARS-CoV-2/physiology , NADPH Oxidase 2/metabolism , Endothelium, Vascular/metabolism , Lung/pathology , Lung/metabolism , Lung/virology , Lung/blood supply , Peptides/metabolism , Intercellular Adhesion Molecule-1/metabolism
15.
J Cell Mol Med ; 28(10): e18239, 2024 May.
Article in English | MEDLINE | ID: mdl-38774996

ABSTRACT

The occurrence and development of diabetic vascular diseases are closely linked to inflammation-induced endothelial dysfunction. Puerarin (Pue), the primary component of Pueraria lobata, possesses potent anti-inflammatory properties. However, its vasoprotective role remains elusive. Therefore, we investigated whether Pue can effectively protect against vascular damage induced by diabetes. In the study, Pue ameliorated lipopolysaccharide-adenosine triphosphate (LPS-ATP) or HG-primed cytotoxicity and apoptosis, while inhibited reactive oxygen species (ROS)-mediated NLR family pyrin domain containing 3 (NLRP3) inflammasome in HUVECs, as evidenced by significantly decreased ROS level, NOX4, Caspase-1 activity and expression of NLRP3, GSDMD, cleaved caspase-1, IL-1ß and IL-18. Meanwhile, ROS inducer CoCI2 efficiently weakened the effects of Pue against LPS-ATP-primed pyroptosis. In addition, NLRP3 knockdown notably enhanced Pue's ability to suppress pyroptosis in LPS-ATP-primed HUVECs, whereas overexpression of NLRP3 reversed the inhibitory effects of Pue. Furthermore, Pue inhibited the expression of ROS and NLRP3 inflammasome-associated proteins on the aorta in type 2 diabetes mellitus rats. Our findings indicated that Pue might ameliorate LPS-ATP or HG-primed damage in HUVECs by inactivating the ROS-NLRP3 signalling pathway.


Subject(s)
Adenosine Triphosphate , Human Umbilical Vein Endothelial Cells , Inflammasomes , Isoflavones , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Signal Transduction , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Isoflavones/pharmacology , Isoflavones/therapeutic use , Humans , Animals , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Rats , Male , Adenosine Triphosphate/metabolism , Inflammasomes/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Pyroptosis/drug effects , Rats, Sprague-Dawley , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Glucose/metabolism , Apoptosis/drug effects
16.
Cell ; 187(11): 2690-2702.e17, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38723627

ABSTRACT

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Mice, Inbred C57BL , Tumor Microenvironment , Animals , CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Humans , Tumor Microenvironment/immunology , Mice , Immunotherapy/methods , Circadian Rhythm , Melanoma/immunology , Melanoma/therapy , Melanoma/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Female , Cell Line, Tumor , Circadian Clocks , Male , Endothelial Cells/immunology
17.
Ecotoxicol Environ Saf ; 278: 116444, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728943

ABSTRACT

Silicosis is a disease characterized by lung inflammation and fibrosis caused by long-term inhalation of free silicon dioxide (SiO2). Recent studies have found that a large number of lymphatic hyperplasia occurs during the occurrence and development of silicosis. miRNAs play an important role in lymphangiogenesis. However, the regulation and mechanism of miRNAs on lymphangiogenesis in silicosis remain unclear. In this study, lymphangiogenesis was observed in silicosis rats, and VEGF-C-targeted miRNAs were screened, and the effect of miRNAs on the formation of human lymphatic endothelial cells (HLECs) tubular structure was investigated in vitro. The results showed that SiO2 promoted the expressions of Collagen Ι and α-SMA, TNF-α, IL-6 and VEGF-C increased first and then decreased, and promoted the formation of lymphatic vessels. Bioinformatics methods screened miR-455-3p for targeted binding to VEGF-C, and dual luciferase reporter genes confirmed VEGF-C as the target gene of miR-455-3p, and miR-455-3p was down-regulated in the lung tissue of silicosis rats. Transfection of miR-455-3p Inhibitors down-regulated the expression level of miR-455-3p and up-regulated the expression levels of VEGF-C and VEGFR-3 in HLECs, enhanced migration ability and increased tube formation. Transfection of miR-455-3p Mimics showed an opposite trend. These results suggest that miR-455-3p further regulates the tubular structure formation of HLECs by regulating VEGF-C/VEGFR3. Therefore, targeting miR-455-3p may provide a new therapeutic strategy for SiO2-induced silicosis injury.


Subject(s)
Lymphangiogenesis , MicroRNAs , Silicosis , Vascular Endothelial Growth Factor C , Vascular Endothelial Growth Factor Receptor-3 , MicroRNAs/genetics , Lymphangiogenesis/drug effects , Silicosis/pathology , Animals , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Rats , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism , Male , Humans , Silicon Dioxide/toxicity , Endothelial Cells/drug effects , Rats, Sprague-Dawley
18.
Stroke ; 55(6): 1650-1659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738428

ABSTRACT

BACKGROUND: Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS: Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS: Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS: Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.


Subject(s)
Blood-Brain Barrier , Brain Ischemia , Tight Junctions , Animals , Mice , Humans , Tight Junctions/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/genetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Cell Death , Male , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Mice, Inbred C57BL , Endothelial Cells/metabolism
19.
Xenotransplantation ; 31(3): e12863, 2024.
Article in English | MEDLINE | ID: mdl-38751087

ABSTRACT

Overexpression of human CD200 (hCD200) in porcine endothelial cells (PECs) has been reported to suppress xenogeneic immune responses of human macrophages against porcine endothelial cells. The current study aimed to address whether the above-mentioned beneficial effect of hCD200 is mediated by overcoming the molecular incompatibility between porcine CD200 (pCD200) and hCD200 receptor or simply by increasing the expression levels of CD200 without any molecular incompatibility across the two species. We overexpressed hCD200 or pCD200 using lentiviral vectors with V5 marker in porcine endothelial cells and compared their suppressive activity against U937-derived human macrophage-like cells (hMCs) and primary macrophages. In xenogeneic coculture of porcine endothelial cells and human macrophage-like cells or macrophages, hCD200-porcine endothelial cells suppressed phagocytosis and cytotoxicity of human macrophages to a greater extent than pCD200-porcine endothelial cells. Secretion of tumor necrosis factor-α, interleukin-1ß, and monocyte chemoattractant protein-1 from human macrophages and expression of M1 phenotypes (inducible nitric oxide synthase, dectin-1, and CD86) were also suppressed by hCD200 to a greater extent than pCD200. Furthermore, in signal transduction downstream of CD200 receptor, hCD200 induced Dok2 phosphorylation and suppressed IκB phosphorylation to a greater extent than pCD200. The above data supported the possibility of a significant molecular incompatibility between pCD200 and human CD200 receptor, suggesting that the beneficial effects of hCD200 overexpression in porcine endothelial cells could be mediated by overcoming the molecular incompatibility across the species barrier rather than by simple overexpression effects of CD200.


Subject(s)
Antigens, CD , Endothelial Cells , Macrophages , Transplantation, Heterologous , Animals , Humans , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , Swine , Macrophages/immunology , Macrophages/metabolism , Transplantation, Heterologous/methods , Endothelial Cells/immunology , Phagocytosis , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexin Receptors/immunology , Coculture Techniques
20.
Sci Adv ; 10(21): eadn7655, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781333

ABSTRACT

Few neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell types-the functional unit of life-contribute to neuropsychiatric disorders. Leveraging advances in human brain single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 postmortem brains, including from individuals diagnosed with Alzheimer's disease, schizophrenia, and autism. We observe and replicate cell-type compositional shifts for Alzheimer's disease (endothelial cell loss), autism (increased microglia), and schizophrenia (decreased oligodendrocytes), and find age- and sex-related changes. Multiple layers of evidence indicate that endothelial cell loss contributes to Alzheimer's disease, with comparable effect size to APOE genotype among older people. Genome-wide association identified five genetic loci related to cell-type composition, involving plausible genes for the neurovascular unit (P2RX5 and TRPV3) and excitatory neurons (DPY30 and MEMO1). These results implicate specific cell-type shifts in the pathophysiology of neuropsychiatric disorders.


Subject(s)
Alzheimer Disease , Autistic Disorder , Brain , DNA Methylation , Schizophrenia , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Schizophrenia/genetics , Schizophrenia/pathology , Brain/metabolism , Brain/pathology , Autistic Disorder/genetics , Autistic Disorder/pathology , Male , Female , Genome-Wide Association Study , Aged , Endothelial Cells/metabolism , Endothelial Cells/pathology , Epigenomics/methods , Middle Aged , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL
...