Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.671
Filter
1.
Sci Rep ; 14(1): 12670, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830883

ABSTRACT

Gelatin-methacryloyl (GelMA) is a highly adaptable biomaterial extensively utilized in skin regeneration applications. However, it is frequently imperative to enhance its physical and biological qualities by including supplementary substances in its composition. The purpose of this study was to fabricate and characterize a bi-layered GelMA-gelatin scaffold using 3D bioprinting. The upper section of the scaffold was encompassed with keratinocytes to simulate the epidermis, while the lower section included fibroblasts and HUVEC cells to mimic the dermis. A further step involved the addition of amniotic membrane extract (AME) to the scaffold in order to promote angiogenesis. The incorporation of gelatin into GelMA was found to enhance its stability and mechanical qualities. While the Alamar blue test demonstrated that a high concentration of GelMA (20%) resulted in a decrease in cell viability, the live/dead cell staining revealed that incorporation of AME increased the quantity of viable HUVECs. Further, gelatin upregulated the expression of KRT10 in keratinocytes and VIM in fibroblasts. Additionally, the histological staining results demonstrated the formation of well-defined skin layers and the creation of extracellular matrix (ECM) in GelMA/gelatin hydrogels during a 14-day culture period. Our study showed that a 3D-bioprinted composite scaffold comprising GelMA, gelatin, and AME can be used to regenerate skin tissues.


Subject(s)
Amnion , Bioprinting , Fibroblasts , Gelatin , Human Umbilical Vein Endothelial Cells , Keratinocytes , Tissue Engineering , Tissue Scaffolds , Keratinocytes/drug effects , Keratinocytes/cytology , Keratinocytes/metabolism , Gelatin/chemistry , Humans , Tissue Engineering/methods , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/cytology , Tissue Scaffolds/chemistry , Amnion/cytology , Amnion/metabolism , Amnion/chemistry , Bioprinting/methods , Printing, Three-Dimensional , Skin/metabolism , Skin/cytology , Methacrylates/chemistry , Cell Survival/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/cytology
2.
Curr Top Dev Biol ; 159: 344-370, 2024.
Article in English | MEDLINE | ID: mdl-38729681

ABSTRACT

The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.


Subject(s)
Vascular Remodeling , Humans , Animals , Blood Vessels/growth & development , Blood Vessels/metabolism , Blood Vessels/embryology , Neovascularization, Physiologic , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/physiology , Cell Differentiation , Embryonic Development , Endothelium, Vascular/cytology
3.
Nat Commun ; 15(1): 4170, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755186

ABSTRACT

Endothelial cells are a heterogeneous population with various organ-specific and conserved functions that are critical to organ development, function, and regeneration. Here we report a Sox17-Erg direct reprogramming approach that uses cardiac fibroblasts to create differentiated endothelial cells that demonstrate endothelial-like molecular and physiological functions in vitro and in vivo. Injection of these induced endothelial cells into myocardial infarct sites after injury results in improved vascular perfusion of the scar region. Furthermore, we use genomic analyses to illustrate that Sox17-Erg reprogramming instructs cardiac fibroblasts toward an arterial-like identity. This results in a more efficient direct conversion of fibroblasts into endothelial-like cells when compared to traditional Etv2-based reprogramming. Overall, this Sox17-Erg direct reprogramming strategy offers a robust tool to generate endothelial cells both in vitro and in vivo, and has the potential to be used in repairing injured tissue.


Subject(s)
Cellular Reprogramming , Endothelial Cells , Fibroblasts , SOXF Transcription Factors , Animals , Fibroblasts/metabolism , Fibroblasts/cytology , SOXF Transcription Factors/metabolism , SOXF Transcription Factors/genetics , Endothelial Cells/metabolism , Endothelial Cells/cytology , Mice , Cellular Reprogramming/genetics , Myocardial Infarction/pathology , Cell Differentiation , Myocardium/cytology , Myocardium/metabolism , HMGB Proteins/metabolism , HMGB Proteins/genetics , Male , Mice, Inbred C57BL
4.
Nature ; 629(8012): 660-668, 2024 May.
Article in English | MEDLINE | ID: mdl-38693258

ABSTRACT

Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide1. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated2,3. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1-Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.


Subject(s)
Endothelial Cells , Mesenchymal Stem Cells , Mitochondria , Mitophagy , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Mitochondria/metabolism , Mice , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Humans , Ubiquitin-Protein Ligases/metabolism , Male , Protein Kinases/metabolism , Autophagosomes/metabolism , Ischemia/metabolism , Ischemia/therapy , Ischemia/pathology , Female , Energy Metabolism , Mesenchymal Stem Cell Transplantation , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL
5.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791256

ABSTRACT

Interrupted blood flow in the brain due to ischemic injuries such as ischemic stroke or traumatic brain injury results in irreversible brain damage, leading to cognitive impairment associated with inflammation, disruption of the blood-brain barrier (BBB), and cell death. Since the BBB only allows entry to a small class of drugs, many drugs used to treat ischemia in other tissues have failed in brain-related disorders. The administration of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) has shown promise in improving the functional recovery of the brain following cerebral ischemia by inducing blood vessel formation. To facilitate such a treatment approach, it is necessary to develop bioprocesses that can produce therapeutically relevant MSC-EVs in a reproducible and scalable manner. This study evaluated the feasibility of using stirred suspension bioreactors (SSBs) to scale-up the serum-free production of pro-angiogenic MSC-EVs under clinically relevant physioxic conditions. It was found that MSCs grown in SSBs generated EVs that stimulated angiogenesis in cerebral microvascular endothelial cells, supporting the use of SSBs to produce MSC-EVs for application in cerebral ischemia. These properties were impaired at higher cell confluency, outlining the importance of considering the time of harvest when developing bioprocesses to manufacture EV populations.


Subject(s)
Bioreactors , Endothelial Cells , Extracellular Vesicles , Mesenchymal Stem Cells , Neovascularization, Physiologic , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Endothelial Cells/metabolism , Endothelial Cells/cytology , Brain/metabolism , Brain/blood supply , Cells, Cultured , Blood-Brain Barrier/metabolism , Angiogenesis
6.
Dev Cell ; 59(9): 1093-1095, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38714156

ABSTRACT

In this issue of Developmental Cell, Fowler et al. applied genetic lineage-tracing mouse models to support the notion that artery endothelial cells are the predominant source of hematopoietic stem cells. They leveraged this and developed a method capable of efficiently differentiating human pluripotent stem cells into HLF+HOXA+ hematopoietic progenitors.


Subject(s)
Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells , Pluripotent Stem Cells , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Animals , Humans , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Mice , Cell Lineage , Endothelial Cells/cytology , Endothelial Cells/metabolism
7.
PLoS One ; 19(5): e0301099, 2024.
Article in English | MEDLINE | ID: mdl-38728291

ABSTRACT

Beyond the smallest organisms, animals rely on tubes to transport cells, oxygen, nutrients, waste products, and a great variety of secretions. The cardiovascular system, lungs, gastrointestinal and genitourinary tracts, as well as major exocrine glands, are all composed of tubes. Paradoxically, despite their ubiquitous importance, most existing devices designed to study tubes are relatively complex to manufacture and/or utilize. The present work describes a simple method for generating tubes in vitro using nothing more than a low-cost 3D printer along with general lab supplies. The technology is termed "TruD", an acronym for true dimensional. Using this technology, it is readily feasible to cast tubes embedded in ECM with easy access to the lumen. The design is modular to permit more complex tube arrangements and to sustain flow. Importantly, by virtue of its simplicity, TruD technology enables typical molecular cell biology experiments where multiple conditions are assayed in replicate.


Subject(s)
Printing, Three-Dimensional , Humans , Animals , Printing, Three-Dimensional/instrumentation , Endothelial Cells/cytology , Endothelial Cells/metabolism
8.
ACS Appl Mater Interfaces ; 16(19): 24321-24340, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700914

ABSTRACT

In current clinical practices related to orthopedics, dental, and cardiovascular surgeries, a number of biomaterial coatings, such as hydroxyapatite (HAp), diamond-like carbon (DLC), have been used in combination with metallic substrates (stainless steel, Ti6Al4V alloy, etc.). Although SiBCN coatings are widely explored in material science for diverse applications, their potential remains largely unexplored for biomedical applications. With this motivation, the present work reports the development of SiBxCyNzOm coatings on a Ti6Al4V substrate, employing a reactive radiofrequency (RF) magnetron sputtering technique. Three different coating compositions (Si0.27B0.10C0.31N0.07O0.24, Si0.23B0.06C0.21N0.22O0.27, and Si0.20B0.05C0.19N0.20O0.35) were obtained using a Si2BC2N target and varying nitrogen flow rates. The hydrophilic properties of the as-synthesized coatings were rationalized in terms of an increase in the number of oxygen-containing functional groups (OH and NO) on the surface, as probed using XPS and FTIR analyses. Furthermore, the cellular monoculture of SVEC4-10 endothelial cells and L929 fibroblasts established good cytocompatibility. More importantly, the coculture system of SVEC4-10 and L929, in the absence of growth factors, demonstrated clear cellular phenotypical changes, with extensive sprouting leading to tube-like morphologies on the coating surfaces, when stimulated using a customized cell stimulator (StimuCell) with 1.15 V/cm direct current (DC) electric field strength for 1 h. In addition, the hemocompatibility assessment using human blood samples revealed clinically acceptable hemolysis, less erythrocyte adhesion, shorter plasma recalcification, and reduced risk for thrombosis on the SiBxCyNzOm coatings, when compared to uncoated Ti6Al4V. Taken together, the present study unambiguously establishes excellent cytocompatibility, hemocompatibility, and defines the preangiogenic properties of SiBxCyNzOm bioceramic coatings for potential biomedical applications.


Subject(s)
Alloys , Coated Materials, Biocompatible , Materials Testing , Titanium , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Alloys/chemistry , Alloys/pharmacology , Titanium/chemistry , Titanium/pharmacology , Humans , Animals , Mice , Endothelial Cells/drug effects , Endothelial Cells/cytology , Cell Line , Surface Properties , Fibroblasts/drug effects , Fibroblasts/cytology , Neovascularization, Physiologic/drug effects
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 304-312, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686411

ABSTRACT

The effect of neutrophil extracellular traps (NETs) on promoting intravascular microthrombi formation and exacerbating the severity of sepsis in patients has gained extensive attention. However, in sepsis, the mechanisms and key signaling molecules mediating NET formation during direct interactions of endothelial cells and neutrophils still need further explored. Herein, we utilized lipoteichoic acid (LTA), a component shared by Gram-positive bacteria, to induce NET extrusion from neutrophils firmly adhered to the glass slides coated with intercellular adhesion molecule-1(ICAM-1). We also used Sytox green to label NET-DNA and Flou-4 AM as the intracellular Ca 2+ signaling indicator to observe the NET formation and fluctuation of Ca 2+ signaling. Our results illustrated that LTA was able to induce NET release from neutrophils firmly attached to ICAM-1-coated glass slides, and the process was time-dependent. In addition, our study indicated that LTA-induced NET release by neutrophils stably adhered to ICAM-1 depended on Ca 2+ signaling but not intracellular reactive oxygen species (ROS). This study reveals NET formation mediated by direct interactions between endothelial ICAM-1 and neutrophils under LTA stimulation and key signaling molecules involved, providing the theoretical basis for medicine development and clinical treatment for related diseases.


Subject(s)
Extracellular Traps , Intercellular Adhesion Molecule-1 , Lipopolysaccharides , Neutrophils , Teichoic Acids , Teichoic Acids/pharmacology , Intercellular Adhesion Molecule-1/metabolism , Neutrophils/metabolism , Extracellular Traps/metabolism , Humans , Reactive Oxygen Species/metabolism , Calcium Signaling , Cell Adhesion , Sepsis/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology
10.
Lab Chip ; 24(9): 2428-2439, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38625094

ABSTRACT

Rotary blood pumps (RBPs) operating at a constant speed generate non-physiologic blood pressure and flow rate, which can cause endothelial dysfunction, leading to adverse clinical events in peripheral blood vessels and other organs. Notably, pulsatile working modes of the RBP can increase vascular pulsatility to improve arterial endothelial function. However, the laws and related mechanisms of differentially regulating arterial endothelial function under different pulsatile working modes are still unclear. This knowledge gap hinders the optimal selection of the RBP working modes. To address these issues, this study developed a multi-element in vitro endothelial cell culture system (ECCS), which could realize in vitro cell culture effectively and accurately reproduce blood pressure, shear stress, and circumferential strain in the arterial endothelial microenvironment. Performance of this proposed ECCS was validated with numerical simulation and flow experiments. Subsequently, this study investigated the effects of four different pulsation frequency modes that change once every 1-4-fold cardiac cycles (80, 40, 80/3, and 20 cycles per min, respectively) of the RBP on the expression of nitric oxide (NO) and reactive oxygen species (ROS) in endothelial cells. Results indicated that the 2-fold and 3-fold cardiac cycles significantly increased the production of NO and prevented the excessive generation of ROS, potentially minimizing the occurrence of endothelial dysfunction and related adverse events during the RBP support, and were consistent with animal study findings. In general, this study may provide a scientific basis for the optimal selection of the RBP working modes and potential treatment options for heart failure.


Subject(s)
Cell Culture Techniques , Pulsatile Flow , Humans , Cell Culture Techniques/instrumentation , Hemodynamics , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Heart-Assist Devices , Endothelial Cells/cytology , Endothelial Cells/metabolism , Lab-On-A-Chip Devices , Equipment Design , Human Umbilical Vein Endothelial Cells/metabolism , Microfluidic Analytical Techniques/instrumentation , Cells, Cultured
11.
J Vis Exp ; (206)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38647333

ABSTRACT

Microvascular endothelial cells (MVECs) have many critical roles, including control of vascular tone, regulation of thrombosis, and angiogenesis. Significant heterogeneity in endothelial cell (EC) genotype and phenotype depends on their vascular bed and host disease state. The ability to isolate MVECs from tissue-specific vascular beds and individual patient groups offers the opportunity to directly compare MVEC function in different disease states. Here, using subcutaneous adipose tissue (SAT) taken at the time of insertion of cardiac implantable electronic devices (CIED), we describe a method for the isolation of a pure population of functional human subcutaneous adipose tissue MVEC (hSATMVEC) and an experimental model of hSATMVEC-adipocyte cross-talk. hSATMVEC were isolated following enzymatic digestion of SAT by incubation with anti-CD31 antibody-coated magnetic beads and passage through magnetic columns. hSATMVEC were grown and passaged on gelatin-coated plates. Experiments used cells at passages 2-4. Cells maintained classic features of EC morphology until at least passage 5. Flow cytometric assessment showed 99.5% purity of isolated hSATMVEC, defined as CD31+/CD144+/CD45-. Isolated hSATMVEC from controls had a population doubling time of approximately 57 h, and active proliferation was confirmed using a cell proliferation imaging kit. Isolated hSATMVEC function was assessed using their response to insulin stimulation and angiogenic tube-forming potential. We then established an hSATMVEC-subcutaneous adipocyte co-culture model to study cellular cross-talk and demonstrated a downstream effect of hSATMVEC on adipocyte function. hSATMVEC can be isolated from SAT taken at the time of CIED insertion and are of sufficient purity to both experimentally phenotype and study hSATMVEC-adipocyte cross-talk.


Subject(s)
Adipocytes , Endothelial Cells , Subcutaneous Fat , Humans , Adipocytes/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Subcutaneous Fat/cytology , Cell Communication/physiology
12.
Methods Mol Biol ; 2803: 49-58, 2024.
Article in English | MEDLINE | ID: mdl-38676884

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe vascular disease characterized by persistent precapillary pulmonary hypertension, leading to right heart failure and death. Despite intense research in the last decades, PAH remains an incurable disease with high morbidity and mortality. New directions and therapies to improve understanding and treatment of PAH are desperately needed. The pathological mechanisms leading to this fatal disorder remain mostly undetermined, although structural remodeling of the pulmonary vessels is known to be an early feature of PAH. Pulmonary vascular remodeling includes proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). The use of in vitro approaches is useful to delineate the mechanisms involved in the pathogenesis of PAH and to identify new therapeutic strategies for PAH. In this chapter, we describe protocols for culturing and assessing proliferation and migration of human PASMCs and PAECs.


Subject(s)
Cell Movement , Cell Proliferation , Endothelial Cells , Myocytes, Smooth Muscle , Pulmonary Artery , Humans , Pulmonary Artery/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Cell Culture Techniques/methods , Cells, Cultured , Muscle, Smooth, Vascular/cytology
13.
Nat Cell Biol ; 26(5): 719-730, 2024 May.
Article in English | MEDLINE | ID: mdl-38594587

ABSTRACT

During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.


Subject(s)
Embryonic Development , Receptors, IgG , Humans , Embryonic Development/genetics , Receptors, IgG/metabolism , Receptors, IgG/genetics , Hemangioblasts/metabolism , Hemangioblasts/cytology , Cell Differentiation , Endothelial Cells/metabolism , Endothelial Cells/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Cell Lineage , Cells, Cultured , Gene Expression Regulation, Developmental , Hematopoiesis , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Transcriptome , Gene Expression Profiling , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology
14.
Tissue Eng Part C Methods ; 30(5): 229-237, 2024 May.
Article in English | MEDLINE | ID: mdl-38568845

ABSTRACT

Modeling organ-blood barriers through the inclusion of microvessel networks within in vitro tissue models could lead to more physiologically accurate results, especially since organ-blood barriers are crucial to the normal function, drug transport, and disease states of vascularized organs. Microvessel networks are difficult to form, since they push the practical limits of most fabrication methods, and it is difficult to coax vascular cells to self-assemble into structures larger than capillaries. Here, we present a method for rapidly forming networks of microvessel-like structures using sacrificial alginate structures. Specifically, we encapsulated endothelial cells within short alginate threads, and then embedded them in collagen gel. Following enzymatic degradation of the alginate, the collagen gel contained a network of hollow channels seeded with cells, all surrounding a perfusable central channel. This method uses a 3D-printed coaxial extruder and syringe pumps to generate short threads in a way that is repeatable and easily transferrable to other labs. The cell-laden, sacrificial alginate threads can be frozen after fabrication and thawed before embedding without significant loss of cell viability. The ability to freeze the threads enables future scale-up and ease of use. Within millifluidic devices that restrict access to media, the threads enhance cell survival under static conditions. These results indicate the potential for use of this method in a range of tissue engineering applications.


Subject(s)
Alginates , Microvessels , Tissue Engineering , Alginates/chemistry , Microvessels/cytology , Humans , Tissue Engineering/methods , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Tissue Scaffolds/chemistry , Endothelial Cells/cytology , Endothelial Cells/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Cell Survival , Animals , Collagen/chemistry
15.
EMBO J ; 43(9): 1722-1739, 2024 May.
Article in English | MEDLINE | ID: mdl-38580775

ABSTRACT

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Subject(s)
Hematopoietic Stem Cells , Megakaryocytes , Animals , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Hematopoiesis/physiology , Mesonephros/embryology , Mesonephros/metabolism , Mesonephros/cytology , Endothelial Cells/metabolism , Endothelial Cells/cytology , Coculture Techniques
16.
Nature ; 628(8009): 863-871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570687

ABSTRACT

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Subject(s)
Brain , Neovascularization, Physiologic , Animals , Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/cytology , Brain/cytology , Brain/blood supply , Brain/metabolism , Cell Movement , Collagen Type IV/metabolism , CRISPR-Cas Systems/genetics , Endothelial Cells/metabolism , Endothelial Cells/cytology , Meninges/cytology , Meninges/blood supply , Meninges/metabolism , Organ Specificity , Wnt Proteins/metabolism , Wnt Signaling Pathway , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
17.
Int J Biol Macromol ; 267(Pt 2): 131667, 2024 May.
Article in English | MEDLINE | ID: mdl-38636761

ABSTRACT

A thiolated RGD was incorporated into the threaded allyl-ß-cyclodextrins (Allyl-ß-CDs) of the polyrotaxane (PR) through a thiol-ene click reaction, resulting in the formation of dynamic RGD ligands on the PR surface (dRGD-PR). When maintaining consistent RGD density and other physical properties, endothelial cells (ECs) cultured on dRGD-PR exhibited significantly increased cell proliferation and a larger cell spreading area compared to those on the non-dynamic RGD (nRGD-PCL). Furthermore, ECs on dRGD-PR demonstrated elevated expression levels of FAK, p-FAK, and p-AKT, along with a larger population of cells in the G2/M stage during cell cycle analysis, in contrast to cells on nRGD-PCL. These findings suggest that the movement of the RGD ligands may exert additional beneficial effects in promoting EC spreading and proliferation, beyond their essential adhesion and proliferation-promoting capabilities, possibly mediated by the RGD-integrin-FAK-AKT pathway. Moreover, in vitro vasculogenesis tests were conducted using two methods, revealing that ECs cultured on dRGD-PR exhibited much better vasculogenesis than nRGD-PCL in vitro. In vivo testing further demonstrated an increased presence of CD31-positive tissues on dRGD-PR. In conclusion, the enhanced EC spreading and proliferation resulting from the dynamic RGD ligands may contribute to improved in vitro vasculogenesis and in vivo vascularization.


Subject(s)
Cell Proliferation , Cyclodextrins , Oligopeptides , Humans , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Ligands , Neovascularization, Physiologic/drug effects , Oligopeptides/pharmacology , Oligopeptides/chemistry , Poloxamer/chemistry , Poloxamer/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rotaxanes
18.
Redox Biol ; 72: 103162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669864

ABSTRACT

Protein disulfide isomerases (PDIs) are involved in many intracellular and extracellular processes, including cell adhesion and cytoskeletal reorganisation, but their contribution to the regulation of fenestrations in liver sinusoidal endothelial cells (LSECs) remains unknown. Given that fenestrations are supported on a cytoskeleton scaffold, this study aimed to investigate whether endothelial PDIs regulate fenestration dynamics in primary mouse LSECs. PDIA3 and PDIA1 were found to be the most abundant among PDI isoforms in LSECs. Taking advantage of atomic force microscopy, the effects of PDIA1 or PDIA3 inhibition on the fenestrations in LSECs were investigated using a classic PDIA1 inhibitor (bepristat) and novel aromatic N-sulfonamides of aziridine-2-carboxylic acid derivatives as PDIA1 (C-3389) or PDIA3 (C-3399) inhibitors. The effect of PDIA1 inhibition on liver perfusion was studied in vivo using dynamic contrast-enhanced magnetic resonance imaging. Additionally, PDIA1 inhibitors were examined in vitro in LSECs for effects on adhesion, cytoskeleton organisation, bioenergetics, and viability. Inhibition of PDIA1 with bepristat or C-3389 significantly reduced the number of fenestrations in LSECs, while inhibition of PDIA3 with C-3399 had no effect. Moreover, the blocking of free thiols by the cell-penetrating N-ethylmaleimide, but not by the non-cell-penetrating 4-chloromercuribenzenesulfonate, resulted in LSEC defenestration. Inhibition of PDIA1 did not affect LSEC adhesion, viability, and bioenergetics, nor did it induce a clear-cut rearrangement of the cytoskeleton. However, PDIA1-dependent defenestration was reversed by cytochalasin B, a known fenestration stimulator, pointing to the preserved ability of LSECs to form new pores. Importantly, systemic inhibition of PDIA1 in vivo affected intra-parenchymal uptake of contrast agent in mice consistent with LSEC defenestration. These results revealed the role of intracellular PDIA1 in the regulation of fenestration dynamics in LSECs, and in maintaining hepatic sinusoid homeostasis.


Subject(s)
Endothelial Cells , Liver , Protein Disulfide-Isomerases , Animals , Male , Mice , Cell Adhesion , Cells, Cultured , Cytoskeleton/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Enzyme Inhibitors/pharmacology , Liver/metabolism , Liver/cytology , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/antagonists & inhibitors
19.
Dev Cell ; 59(9): 1110-1131.e22, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38569552

ABSTRACT

The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.


Subject(s)
Cell Differentiation , Cell Lineage , Hematopoietic Stem Cells , Pluripotent Stem Cells , Animals , Humans , Mice , Endothelial Cells/metabolism , Endothelial Cells/cytology , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism
20.
Stem Cell Res ; 77: 103417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608355

ABSTRACT

The pro-angiogenic abilities of adipose-derived stromal cells (ASCs) make them attractive candidates for cellular therapy, especially for ischemic disease indications. However, details regarding the underlying mechanisms remain elusive. Therefore, this study aimed to investigate paracrine and juxtacrine abilities of ASCs in angiogenesis triple cell co-cultures by detailed image analysis of the vascular-like structures. Fibroblast-endothelial cell co-cultures were established, and ASCs were added directly or indirectly through inserts. The cultures were treated with antibodies or subjected to analyses using ELISA and RT2 PCR Arrays. The model consistently generated vascular-like structures. ASCs increased the total branch lengths equally well in paracrine and juxtacrine conditions, by increasing the number of branches and average branch lengths (ABL). In contrast, addition of VEGF to the model increased the number of branches, but not the ABL. Still, ASCs increased the VEGF levels in supernatants of paracrine and juxtacrine co-cultures, and anti-VEGF treatment decreased the sprouting. ASCs themselves up-regulated collagen type V in response to paracrine signals from the co-cultures. The results suggest that ASCs initiate sprouting through secretion of several paracrine factors, among which VEGF is identified, but VEGF alone does not recapitulate the paracrine actions of ASCs. By employing neutralizing antibodies and dismantling common model outputs using image analysis, the triple cell co-culture is an attractive tool for discovery of the paracrine factors in ASCs' secretome which act in concert with VEGF to improve angiogenesis.


Subject(s)
Adipose Tissue , Coculture Techniques , Neovascularization, Physiologic , Paracrine Communication , Stromal Cells , Humans , Stromal Cells/metabolism , Stromal Cells/cytology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/cytology , Angiogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...