Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.246
Filter
1.
J Am Heart Assoc ; 13(9): e032698, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38690710

ABSTRACT

BACKGROUND: Provoked anger is associated with an increased risk of cardiovascular disease events. The underlying mechanism linking provoked anger as well as other core negative emotions including anxiety and sadness to cardiovascular disease remain unknown. The study objective was to examine the acute effects of provoked anger, and secondarily, anxiety and sadness on endothelial cell health. METHODS AND RESULTS: Apparently healthy adult participants (n=280) were randomized to an 8-minute anger recall task, a depressed mood recall task, an anxiety recall task, or an emotionally neutral condition. Pre-/post-assessments of endothelial health including endothelium-dependent vasodilation (reactive hyperemia index), circulating endothelial cell-derived microparticles (CD62E+, CD31+/CD42-, and CD31+/Annexin V+) and circulating bone marrow-derived endothelial progenitor cells (CD34+/CD133+/kinase insert domain receptor+ endothelial progenitor cells and CD34+/kinase insert domain receptor+ endothelial progenitor cells) were measured. There was a group×time interaction for the anger versus neutral condition on the change in reactive hyperemia index score from baseline to 40 minutes (P=0.007) with a mean±SD change in reactive hyperemia index score of 0.20±0.67 and 0.50±0.60 in the anger and neutral conditions, respectively. For the change in reactive hyperemia index score, the anxiety versus neutral condition group by time interaction approached but did not reach statistical significance (P=0.054), and the sadness versus neutral condition group by time interaction was not statistically significant (P=0.160). There were no consistent statistically significant group×time interactions for the anger, anxiety, and sadness versus neutral condition on endothelial cell-derived microparticles and endothelial progenitor cells from baseline to 40 minutes. CONCLUSIONS: In this randomized controlled experimental study, a brief provocation of anger adversely affected endothelial cell health by impairing endothelium-dependent vasodilation.


Subject(s)
Anger , Anxiety , Endothelium, Vascular , Vasodilation , Humans , Male , Female , Adult , Endothelium, Vascular/physiopathology , Anxiety/psychology , Endothelial Progenitor Cells/metabolism , Middle Aged , Sadness , Cell-Derived Microparticles/metabolism , Hyperemia/physiopathology , Emotions , Young Adult , Time Factors , Endothelial Cells
2.
Biochem Biophys Res Commun ; 716: 150002, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38697011

ABSTRACT

Type 2 diabetes mellitus (T2DM) significantly impairs the functionality and number of endothelial progenitor cells (EPCs) and resident endothelial cells, critical for vascular repair and regeneration, exacerbating the risk of vascular complications. GLP-1 receptor agonists, like dulaglutide, have emerged as promising therapeutic agents due to their multifaceted effects, including the enhancement of EPC activity and protection of endothelial cells. This study investigates dulaglutide's effects on peripheral blood levels of CD34+ and CD133+ cells in a mouse model of lower limb ischemia and its protective mechanisms against high-glucose-induced damage in endothelial cells. Results demonstrated that dulaglutide significantly improves blood flow, reduces tissue damage and inflammation in ischemic limbs, and enhances glycemic control. Furthermore, dulaglutide alleviated high-glucose-induced endothelial cell damage, evident from improved tube formation, reduced reactive oxygen species accumulation, and restored endothelial junction integrity. Mechanistically, dulaglutide mitigated mitochondrial fission in endothelial cells under high-glucose conditions, partly through maintaining SIRT1 expression, which is crucial for mitochondrial dynamics. This study reveals the potential of dulaglutide as a therapeutic option for vascular complications in T2DM patients, highlighting its role in improving endothelial function and mitochondrial integrity.


Subject(s)
Diabetes Mellitus, Experimental , Endothelial Progenitor Cells , Glucagon-Like Peptides , Glucose , Immunoglobulin Fc Fragments , Mitochondrial Dynamics , Recombinant Fusion Proteins , Sirtuin 1 , Animals , Immunoglobulin Fc Fragments/pharmacology , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/pharmacology , Glucagon-Like Peptides/therapeutic use , Sirtuin 1/metabolism , Mitochondrial Dynamics/drug effects , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Recombinant Fusion Proteins/pharmacology , Male , Mice , Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Mice, Inbred C57BL , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Hypoglycemic Agents/pharmacology , Humans , Ischemia/metabolism , Ischemia/drug therapy , Ischemia/pathology
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732080

ABSTRACT

Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.


Subject(s)
Cell Movement , Cell Proliferation , Dihydrotestosterone , Endothelial Progenitor Cells , Neovascularization, Physiologic , Receptors, Androgen , Dihydrotestosterone/pharmacology , Humans , Cell Movement/drug effects , Receptors, Androgen/metabolism , Neovascularization, Physiologic/drug effects , Cell Proliferation/drug effects , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/cytology , Animals , Cells, Cultured , Mice , Cell Survival/drug effects , Androgens/pharmacology , Androgens/metabolism , Male
4.
Cell Transplant ; 33: 9636897241253144, 2024.
Article in English | MEDLINE | ID: mdl-38798036

ABSTRACT

This study tested the hypothesis that ITRI Biofilm prevents adhesion of the chest cavity. Combined extracorporeal shock wave (ECSW) + bone marrow-derived autologous endothelial progenitor cell (EPC) therapy was superior to monotherapy for improving heart function (left ventricular ejection fraction [LVEF]) in minipigs with ischemic cardiomyopathy (IC) induced by an ameroid constrictor applied to the mid-left anterior descending artery. The minipigs (n = 30) were equally designed into group 1 (sham-operated control), group 2 (IC), group 3 (IC + EPCs/by directly implanted into the left ventricular [LV] myocardium; 3 [+]/3[-] ITRI Biofilm), group 4 (IC + ECSW; 3 [+]/[3] - ITRI Biofilm), and group 5 (IC + EPCs-ECSW; 3 [+]/[3] - ITRI Biofilm). EPC/ECSW therapy was administered by day 90, and the animals were euthanized, followed by heart harvesting by day 180. In vitro studies demonstrated that cell viability/angiogenesis/cell migratory abilities/mitochondrial concentrations were upregulated in EPCs treated with ECSW compared with those in EPCs only (all Ps < 0.001). The LVEF was highest in group 1/lowest in group 2/significantly higher in group 5 than in groups 3/4 (all Ps < 0.0001) by day 180, but there was no difference in groups 3/4. The adhesion score was remarkably lower in patients who received ITRI Biofilm treatment than in those who did not (all Ps <0.01). The protein expressions of oxidative stress (NOX-1/NOX-2/oxidized protein)/apoptotic (mitochondrial-Bax/caspase3/PARP)/fibrotic (TGF-ß/Smad3)/DNA/mitochondria-damaged (γ-H2AX/cytosolic-cytochrome-C/p-DRP1), and heart failure/pressure-overload (BNP [brain natriuretic peptide]/ß-MHC [beta myosin heavy chain]) biomarkers displayed a contradictory manner of LVEF among the groups (all Ps < 0.0001). The protein expression of endothelial biomarkers (CD31/vWF)/small-vessel density revealed a similar LVEF within the groups (all Ps < 0.0001). ITRI Biofilm treatment prevented chest cavity adhesion and was superior in restoring IC-related LV dysfunction when combined with EPC/ECSW therapy compared with EPC/ECSW therapy alone.


Subject(s)
Biofilms , Endothelial Progenitor Cells , Myocardial Ischemia , Swine, Miniature , Animals , Swine , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/cytology , Myocardial Ischemia/therapy , Myocardial Ischemia/complications , Extracorporeal Shockwave Therapy/methods , Myocardium/metabolism , Myocardium/pathology , Male
5.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38704134

ABSTRACT

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Subject(s)
Endothelial Progenitor Cells , Hematopoiesis , PPAR delta , Reactive Oxygen Species , Humans , PPAR delta/metabolism , PPAR delta/genetics , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Reactive Oxygen Species/metabolism , Animals , Hematopoiesis/drug effects , Male , Female , Fluorouracil/pharmacology , Middle Aged , Mice , Thiazoles/pharmacology , NADPH Oxidases/metabolism , Tumor Suppressor Protein p53/metabolism , Adult , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/drug therapy
6.
Front Immunol ; 15: 1368099, 2024.
Article in English | MEDLINE | ID: mdl-38665923

ABSTRACT

Early increase in the level of endothelial progenitor cells (EPCs) in the systemic circulation occurs in patients with septic infection/sepsis. The significance and underlying mechanisms of this response remain unclear. This study investigated the bone marrow EPC response in adult mice with septic infection induced by intravenous injection (i.v.) of Escherichia coli. For in vitro experiments, sorted marrow stem/progenitor cells (SPCs) including lineage(lin)-stem cell factor receptor (c-kit)+stem cell antigen-1 (Sca-1)-, lin-c-kit+, and lin- cells were cultured with or without lipopolysaccharides (LPSs) and recombinant murine vascular endothelial growth factor (VEGF) in the absence and presence of anti-Sca-1 crosslinking antibodies. In a separate set of experiments, marrow lin-c-kit+ cells from green fluorescence protein (GFP)+ mice, i.v. challenged with heat-inactivated E. coli or saline for 24 h, were subcutaneously implanted in Matrigel plugs for 5 weeks. Marrow lin-c-kit+ cells from Sca-1 knockout (KO) mice challenged with heat-inactivated E. coli for 24 h were cultured in the Matrigel medium for 8 weeks. The marrow pool of EPCs bearing the lin-c-kit+Sca-1+VEGF receptor 2 (VEGFR2)+ (LKS VEGFR2+) and LKS CD133+VEGFR2+ surface markers expanded rapidly following septic infection, which was supported by both proliferative activation and phenotypic conversion of marrow stem/progenitor cells. Increase in marrow EPCs and their reprogramming for enhancing angiogenic activity correlated with cell-marked upregulation of Sca-1 expression. Sca-1 was coupled with Ras-related C3 botulinum toxin substrate 2 (Rac2) in signaling the marrow EPC response. Septic infection caused a substantial increase in plasma levels of IFN-γ, VEGF, G-CSF, and SDF-1. The early increase in circulating EPCs was accompanied by their active homing and incorporation into pulmonary microvasculature. These results demonstrate that the marrow EPC response is a critical component of the host defense system. Sca-1 signaling plays a pivotal role in the regulation of EPC response in mice with septic infection.


Subject(s)
Endothelial Progenitor Cells , Membrane Proteins , Sepsis , Animals , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/immunology , Sepsis/immunology , Sepsis/metabolism , Mice , Mice, Knockout , Escherichia coli/immunology , Escherichia coli Infections/immunology , Mice, Inbred C57BL , Vascular Endothelial Growth Factor A/metabolism , Antigens, Ly/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/immunology , Cells, Cultured , Male
7.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674031

ABSTRACT

Hemangioblasts give rise to endothelial progenitor cells (EPCs), which also express the cell surface markers CD133 and c-kit. They may differentiate into the outgrowth endothelial cells (OECs) that control neovascularization in the developing embryo. According to numerous studies, reduced levels of EPCs in circulation have been linked to human cardiovascular disorders. Furthermore, preeclampsia and senescence have been linked to levels of EPCs produced from cord blood. Uncertainties surround how preeclampsia affects the way EPCs function. It is reasonable to speculate that preeclampsia may have an impact on the function of fetal EPCs during the in utero period; however, the present literature suggests that maternal vasculopathies, including preeclampsia, damage fetal circulation. Additionally, the differentiation potential and general activity of EPCs may serve as an indicator of the health of the fetal vascular system as they promote neovascularization and repair during pregnancy. Thus, the purpose of this review is to compare-through the assessment of their quantity, differentiation potency, angiogenic activity, and senescence-the angiogenic function of fetal EPCs obtained from cord blood for normal and pregnancy problems (preeclampsia, gestational diabetes mellitus, and fetal growth restriction). This will shed light on the relationship between the angiogenic function of fetal EPCs and pregnancy complications, which could have an effect on the management of long-term health issues like metabolic and cardiovascular disorders in offspring with abnormal vasculature development.


Subject(s)
Diabetes, Gestational , Endothelial Progenitor Cells , Fetal Blood , Fetal Growth Retardation , Pre-Eclampsia , Humans , Pregnancy , Female , Diabetes, Gestational/metabolism , Diabetes, Gestational/blood , Pre-Eclampsia/blood , Endothelial Progenitor Cells/metabolism , Fetal Blood/cytology , Fetal Blood/metabolism , Fetal Growth Retardation/pathology , Cell Differentiation
8.
J Am Heart Assoc ; 13(9): e031972, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38639380

ABSTRACT

BACKGROUND: Coronary microvascular dysfunction (CMD) represents an early functional characteristic of coronary vascular aging. Klotho (α-klotho) is a circulating protein inversely linked to physiological aging. We examined low klotho as a potential marker for vascular aging in patients with CMD and no coronary artery disease. METHODS AND RESULTS: Patients undergoing nonurgent angiogram for chest pain who had no coronary artery disease underwent invasive coronary microvascular and endothelial function testing. CMD was defined by ≤50% increase in coronary blood flow (percentage change in coronary blood flow) in response to intracoronary acetylcholine or coronary flow reserve ≤2. Fresh arterial whole blood was used to analyze circulating endothelial progenitor cells with flow cytometry. Stored arterial plasma was used for klotho analysis by ELISA. Participants with CMD (n=62) were compared with those without CMD (n=36). Those with CMD were age 55±10 years (versus 51±11 years; P=0.07) and 73% women (versus 81%; P=0.38). Traditional risk factors for coronary artery disease were similar between groups. Patients with CMD had less klotho (0.88±1.50 versus 1.75±2.38 ng/mL; P=0.03), and the odds of low klotho in CMD were significant in a logistic regression model after adjusting for traditional cardiovascular risk factors (odds ratio [OR], 0.80 [95% CI, 0.636-0.996]; P=0.05). Higher klotho was associated with higher numbers of endothelial progenitor cells with vascular regenerative potential (CD34+ and CD34+CD133+KDR+). Among a subgroup of patients with atherosclerotic cardiovascular disease risk <5% (n=58), CMD remained associated with lower klotho (OR, 0.80 [95% CI, 0.636-0.996]; P=0.047). CONCLUSIONS: Klotho may be a biomarker for CMD and may be a therapeutic target for groups of patients without significant traditional cardiovascular risk.


Subject(s)
Biomarkers , Coronary Circulation , Glucuronidase , Klotho Proteins , Humans , Female , Male , Glucuronidase/blood , Middle Aged , Biomarkers/blood , Coronary Circulation/physiology , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Adult , Coronary Angiography , Microcirculation , Coronary Artery Disease/blood , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Aged , Flow Cytometry , Enzyme-Linked Immunosorbent Assay
9.
Biomed Pharmacother ; 173: 116343, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428311

ABSTRACT

Therapeutic neovascularization is a strategy to promote blood vessel growth and improve blood flow, which is critical to tissue repair and regeneration in ischemic diseases. Here, we investigated the role of endothelial progenitor cell - derived exosomes (EPC-Exos) in therapeutic neovascularization and clarified the mechanism of hsa_circ_0093884 in EPC-Exos mediated neovascularization. Injection of EPC-Exos improved mouse ischemic hindlimb perfusion, promoted angiogenesis in Matrigel plugs and mouse skin wound healing. In vitro coculture with EPC-Exos improved HUVEC proliferation, angiogenic and migration ability, while alleviated hypoxia-induced apoptosis. hsa_circ_0093884 was identified from eleven types of circRNA derived from SIRT1 and proved to be enriched in EPC-Exos. Overexpression of hsa_circ_0093884 in EPC-Exos further enhanced the angiogenic capacity, while knockdown of hsa_circ_0093884 abolished the benefits. Mechanistically, EPC-Exos mediated shuttling of hsa_circ_0093884 induced cytoplasmic sponge of miR-145, thereby releasing repression of SIRT1. In vitro co-transfection indicated silence of miR-145 further strengthened the angiogenic effect of hsa_circ_0093884, while overexpression of miR-145 inhibited hsa_circ_0093884 mediated angiogenesis and abolished the beneficial effect of EPC-Exos. Furthermore, in vivo experiments using endothelial specific SIRT1 conditional knockout mice indicated hsa_circ_0093884 overexpressing EPC-Exos failed to promote therapeutic neovascularization in SIRT1cKO mice. Collectively, our results demonstrated that EPC-Exos promoted therapeutic neovascularization through hsa_circ_0093884/miR-145/SIRT1 axis.


Subject(s)
Endothelial Progenitor Cells , MicroRNAs , Mice , Animals , Endothelial Progenitor Cells/metabolism , MicroRNAs/metabolism , Sirtuin 1/genetics , Neovascularization, Physiologic/genetics , Neovascularization, Pathologic/genetics , Cell Proliferation/genetics
10.
Arterioscler Thromb Vasc Biol ; 44(6): 1225-1245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511325

ABSTRACT

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.


Subject(s)
Diabetes Mellitus, Experimental , Endothelial Progenitor Cells , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Glycolysis , Hindlimb , Ischemia , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic , Signal Transduction , Animals , Ischemia/drug therapy , Ischemia/physiopathology , Ischemia/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Neovascularization, Physiologic/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycolysis/drug effects , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide 1/pharmacology , Humans , Hindlimb/blood supply , Male , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/etiology , Nitric Oxide Synthase Type III/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Cells, Cultured , Angiogenesis Inducing Agents/pharmacology , Peptide Fragments/pharmacology , Mice , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Disease Models, Animal , Incretins/pharmacology , Angiogenesis
11.
J Am Heart Assoc ; 13(4): e030054, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38348774

ABSTRACT

BACKGROUND: This study investigated whether gCTRP9 (globular C1q/tumor necrosis factor-related protein-9) could restore high-glucose (HG)-suppressed endothelial progenitor cell (EPC) functions by activating the endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS: EPCs were treated with HG (25 mmol/L) and gCTRP9. Migration, adhesion, and tube formation assays were performed. Adiponectin receptor 1, adiponectin receptor 2, and N-cadherin expression and AMP-activated protein kinase, protein kinase B, and eNOS phosphorylation were measured by Western blotting. eNOS activity was determined using nitrite production measurement. In vivo reendothelialization and EPC homing assays were performed using Evans blue and immunofluorescence in mice. Treatment with gCTRP9 at physiological levels enhanced migration, adhesion, and tube formation of EPCs. gCTRP9 upregulated the phosphorylation of AMP-activated protein kinase, protein kinase B, and eNOS and increased nitrite production in a concentration-dependent manner. Exposure of EPCs to HG-attenuated EPC functions induced cellular senescence and decreased eNOS activity and nitric oxide synthesis; the effects of HG were reversed by gCTRP9. Protein kinase B knockdown inhibited eNOS phosphorylation but did not affect gCTRP9-induced AMP-activated protein kinase phosphorylation. HG impaired N-cadherin expression, but treatment with gCTRP9 restored N-cadherin expression after HG stimulation. gCTRP9 restored HG-impaired EPC functions through both adiponectin receptor 1 and N-cadherin-mediated AMP-activated protein kinase /protein kinase B/eNOS signaling. Nude mice that received EPCs treated with gCTRP9 under HG medium showed a significant enhancement of the reendothelialization capacity compared with those with EPCs incubated under HG conditions. CONCLUSIONS: CTRP9 promotes EPC migration, adhesion, and tube formation and restores these functions under HG conditions through eNOS-mediated signaling mechanisms. Therefore, CTRP9 modulation could eventually be used for vascular healing after injury.


Subject(s)
Adiponectin , Endothelial Progenitor Cells , Glycoproteins , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Endothelial Progenitor Cells/metabolism , Complement C1q/metabolism , Complement C1q/pharmacology , AMP-Activated Protein Kinases/metabolism , Cytokines/metabolism , Nitric Oxide Synthase Type III/metabolism , Mice, Nude , Receptors, Adiponectin/metabolism , Nitrites , Cell Movement , Glucose/pharmacology , Glucose/metabolism , Cadherins/metabolism , Tumor Necrosis Factors/metabolism , Tumor Necrosis Factors/pharmacology , Nitric Oxide/metabolism , Cells, Cultured
12.
Adv Healthc Mater ; 13(14): e2302830, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38366136

ABSTRACT

Tissue engineering holds great promise for regenerative medicine, drug discovery, and as an alternative to animal models. However, as soon as the dimensions of engineered tissue exceed the diffusion limit of oxygen and nutriments, a necrotic core forms leading to irreversible damage. To overcome this constraint, the establishment of a functional perfusion network is essential. In this work, digital light processing bioprinting is used to encapsulate endothelial progenitor cells (EPCs) in 3D light-cured hydrogel scaffolds to guide them toward vascular network formation. In these scaffolds, EPCs proliferate and self-organize within a few days into branched tubular structures with predefined geometry, forming capillary-like vascular tubes or trees of diameters in the range of 10 to 100 µm. Presenting a confluent monolayer wall of cells strongly connect by tight junctions around a central lumen-like space, these structures can be microinjected with a fluorescent dye and are stable for several weeks in vitro. These endothelial structures can be recovered and manipulated in an alginate patch without altering their shape or viability. This approach opens new opportunities for future applications, such as stacking with other cell sheets or multicellular constructs to yield bioengineered tissue with higher complexity and functionality.


Subject(s)
Bioprinting , Endothelial Progenitor Cells , Tissue Engineering , Tissue Scaffolds , Humans , Bioprinting/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/metabolism , Hydrogels/chemistry , Capillaries/physiology , Alginates/chemistry , Printing, Three-Dimensional
13.
Oncogene ; 43(13): 944-961, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351345

ABSTRACT

Metastasis causes most cancer-related deaths, and the role and mechanism of periostin (POSTN) in the metastasis of hepatocellular carcinoma (HCC) remain undiscovered. In this study, DEN and HTVi HCC models were performed in hepatic-specific Postn ablation and Postn knock-in mouse to reveal the role of POSTN in HCC metastasis. Furthermore, POSTN was positively correlated with circulating EPCs level and promoted EPC mobilization and tumour infiltration. POSTN also mediated the crosstalk between HCC and EPCs, which promoted metastasis ability and upregulated CD36 expression in HCC through indirect crosstalk. Chemokine arrays further revealed that hepatic-derived POSTN induced elevated CCL2 expression and secretion in EPCs, and CCL2 promoted prometastatic traits in HCC. Mechanistic studies showed that POSTN upregulated CCL2 expression in EPCs via the αvß3/ILK/NF-κB pathway. CCL2 further induced CD36 expression via the CCR2/STAT3 pathway by directly binding to the promoter region of CD36. Finally, CD36 was verified to have a prometastatic role in vitro and to be correlated with POSTN expression, metastasis and recurrence in HCC in clinical samples. Our findings revealed that crosstalk between HCC and EPCs is mediated by periostin/CCL2/CD36 signalling which promotes HCC metastasis and emphasizes a potential therapeutic strategy for preventing HCC metastasis.


Subject(s)
CD36 Antigens , Carcinoma, Hepatocellular , Chemokine CCL2 , Endothelial Progenitor Cells , Liver Neoplasms , Periostin , Animals , Mice , Carcinoma, Hepatocellular/pathology , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Liver Neoplasms/pathology , Signal Transduction/genetics , Tumor Microenvironment/genetics , Chemokine CCL2/metabolism , CD36 Antigens/metabolism
14.
PLoS One ; 19(2): e0296671, 2024.
Article in English | MEDLINE | ID: mdl-38394221

ABSTRACT

Bone marrow-derived CD34-positive (CD34+) endothelial progenitor cells (EPCs) has unique functions in the mechanism of compensatory lung growth (CLG). The content of this study is mainly to describe the effect of microRNA (miR)-155 in the mechanisms of EPCs and CLG. Our study found that transfection of miR-155 mimic could promote EPC proliferation, migration and tube formation, while transfection of miR-155 inhibitor had the opposite effect. It was also found that transfection of pc-JARID2 inhibited EPC proliferation, migration and tube formation, while transfection of si-JARID2 had the opposite effect. miR-155 can target and negatively regulate JARID2 expression. Overexpression of JARID2 weakened the promoting effects of miR-155 mimic on EPC proliferation, migration, and tubular formation, while silencing JARID2 weakened the inhibitory effects of miR-155 inhibitors on EPC proliferation, migration, and tubular formation. Transplantation of EPCs transfected with miR-155 mimic into the left lung model effectively increased lung volume, total alveolar number, diaphragm surface area, and lung endothelial cell number, while transplantation of EPCs co-transfected with miR-155 mimic and pc-JARID2 reversed this phenomenon. Overall, we found that miR-155 activates CD34+ EPC by targeting negative regulation of JARID2 and promotes CLG.


Subject(s)
Endothelial Progenitor Cells , Lung , MicroRNAs , Antigens, CD34/metabolism , Cell Movement , Cell Proliferation , Endothelial Progenitor Cells/metabolism , Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Polycomb Repressive Complex 2/metabolism
15.
Sci Rep ; 14(1): 4465, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38396011

ABSTRACT

The main objective of this study is to evaluate the influence of exosomes derived from endothelial progenitor cells (EPC-Exo) on neointimal formation induced by balloon injury in rats. Furthermore, the study aims to investigate the potential of EPC-Exo to promote proliferation, migration, and anti-apoptotic effects of vascular endothelial cells (VECs) in vitro. The underlying mechanisms responsible for these observed effects will also be thoroughly explored and analyzed. Endothelial progenitor cells (EPCs) was isolated aseptically from Sprague-Dawley (SD) rats and cultured in complete medium. The cells were then identified using immunofluorescence and flow cytometry. The EPC-Exo were isolated and confirmed the identities by western-blot, transmission electron microscope, and nanoparticle analysis. The effects of EPC-Exo on the rat carotid artery balloon injury (BI) were detected by hematoxylin and eosin (H&E) staining, ELISA, immunohistochemistry, immunofluorescence, western-blot and qPCR. LPS was used to establish an oxidative damage model of VECs. The mechanism of EPC-Exo repairing injured vascular endothelial cells was detected by measuring the proliferation, migration, and tube function of VECs, actin cytoskeleton staining, TUNEL staining, immunofluorescence, western-blot and qPCR. In vivo, EPC-Exo exhibit inhibitory effects on neointima formation following carotid artery injury and reduce the levels of inflammatory factors, including TNF-α and IL-6. Additionally, EPC-Exo downregulate the expression of adhesion molecules on the injured vascular wall. Notably, EPC-Exo can adhere to the injured vascular area, promoting enhanced endothelial function and inhibiting vascular endothelial hyperplasia Moreover, they regulate the expression of proteins and genes associated with apoptosis, including B-cell lymphoma-2 (Bcl2), Bcl2-associated x (Bax), and Caspase-3. In vitro, experiments further confirmed that EPC-Exo treatment significantly enhances the proliferation, migration, and tube formation of VECs. Furthermore, EPC-Exo effectively attenuate lipopolysaccharides (LPS)-induced apoptosis of VECs and regulate the Bcl2/Bax/Caspase-3 signaling pathway. This study demonstrates that exosomes derived from EPCs have the ability to inhibit excessive carotid intimal hyperplasia after BI, promote the repair of endothelial cells in the area of intimal injury, and enhance endothelial function. The underlying mechanism involves the suppression of inflammation and anti-apoptotic effects. The fundamental mechanism for this anti-apoptotic effect involves the regulation of the Bcl2/Bax/Caspase-3 signaling pathway.


Subject(s)
Carotid Artery Injuries , Endothelial Progenitor Cells , Exosomes , Animals , Rats , bcl-2-Associated X Protein/metabolism , Carotid Artery Injuries/metabolism , Caspase 3/metabolism , Cell Proliferation , Endothelial Progenitor Cells/metabolism , Exosomes/metabolism , Hyperplasia/metabolism , Lipopolysaccharides/metabolism , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-bcl-2/metabolism
16.
Acta Neuropsychiatr ; 36(3): 153-161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38178721

ABSTRACT

OBJECTIVES: Despite mounting evidence demonstrates circulating endothelial progenitor cells (cEPCs) quantitative changes in depression, no study has investigated cEPC functions in major depressive disorder (MDD). We investigated the role of cEPC adhesive and apoptotic functions in MDD. METHODS: We recruited 68 patients with MDD and 56 healthy controls (HCs). The depression symptoms, anxiety, psychosomatic symptoms, subjective cognitive dysfunction, quality of life, and functional disability were evaluated using the Hamilton Depression Rating Scale and Montgomery-Åsberg Depression Rating Scale, Hamilton Anxiety Rating Scale, Depression and Somatic Symptoms Scale (DSSS), Perceived Deficits Questionnaire-Depression, 12-Item Short Form Health Survey (SF-12), and Sheehan Disability Scale (SDS), respectively. Working memory and executive function were assessed using a 2-back task and Wisconsin Card Sorting Test (WCST). Inflammatory marker (soluble interleukin-6 receptor, C-reactive protein, and tumor necrosis factor-α receptor-1), cEPC adhesive, and apoptotic levels were measured using in vitro assays. RESULTS: The MDD patients showed significantly lower cEPC adhesive levels than the HCs, and this difference in adhesive function remained statistically significant even after adjusting for inflammatory marker levels. The cEPC adhesion levels were in inverse correlations with commission and omission errors in 2-back task, the percent perseverative response and percent perseverative errors in WCST, and the DSSS and SDS scores, but in positive correlations with SF-12 physical and mental component scores. cEPC apoptotic levels did not differ significantly between the groups. CONCLUSION: The findings indicate that cEPC adhesive function is diminished in MDD and impacts various aspects of cognitive and psychosocial functions associated with the disorder.


Subject(s)
Depressive Disorder, Major , Endothelial Progenitor Cells , Humans , Depressive Disorder, Major/blood , Depressive Disorder, Major/psychology , Female , Male , Endothelial Progenitor Cells/metabolism , Adult , Middle Aged , Apoptosis/physiology , Executive Function/physiology , Cell Adhesion , Case-Control Studies , Psychiatric Status Rating Scales , Neuropsychological Tests
17.
Free Radic Biol Med ; 213: 327-342, 2024 03.
Article in English | MEDLINE | ID: mdl-38281628

ABSTRACT

BACKGROUND: Bone marrow-derived endothelial progenitor cells (EPCs) play a dynamic role in maintaining the structure and function of blood vessels. But how these cells maintain their growth and angiogenic capacity under bone marrow hypoxic niche is still unclear. This study aims to explore the mechanisms from a perspective of cellular metabolism. METHODS: XFe96 Extracellular Flux Analyzer was used to analyze the metabolic status of EPCs. Gas Chromatography-Mass Spectrometry (GC-MS) was used to trace the carbon movement of 13C-labeled glucose and glutamine under 1 % O2 (hypoxia) and ∼20 % O2 (normoxia). Moreover, RNA interference, targeting isocitrate dehydrogenase-1 (IDH1) and IDH2, was used to inhibit the reverse tricarboxylic acid (TCA) cycle and analyze metabolic changes via isotope tracing as well as changes in cell growth and angiogenic potential under hypoxia. The therapeutic potential of EPCs under hypoxia was investigated in the ischemic hindlimb model. RESULTS: Compared with normoxic cells, hypoxic cells showed increased glycolysis and decreased mitochondrial respiration. Isotope metabolic tracing revealed that under hypoxia, the forward TCA cycle was decreased and the reverse TCA cycle was enhanced, mediating the conversion of α-ketoglutarate (α-KG) into isocitrate/citrate, and de novo lipid synthesis was promoted. Downregulation of IDH1 or IDH2 under hypoxia suppressed the reverse TCA cycle, attenuated de novo lipid synthesis (DNL), elevated α-KG levels, and decreased the expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA), eventually inhibiting the growth and angiogenic capacity of EPCs. Importantly, the transplantation of hypoxia-cultured EPCs in a mouse model of limb ischemia promoted new blood vessel regeneration and blood supply recovery in the ischemic area better than the transplantation of normoxia-cultured EPCs. CONCLUSIONS: Under hypoxia, the IDH1- and IDH2-mediated reverse TCA cycle promotes glutamine-derived de novo lipogenesis and stabilizes the expression of α-KG and HIF-1α, thereby enhancing the growth and angiogenic capacity of EPCs.


Subject(s)
Endothelial Progenitor Cells , Animals , Mice , Bone Marrow/metabolism , Cell Hypoxia , Endothelial Progenitor Cells/metabolism , Glutamine/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia/metabolism , Isotopes/metabolism , Lipids , Lipogenesis , Vascular Endothelial Growth Factor A/metabolism
18.
Curr Mol Med ; 24(2): 252-263, 2024.
Article in English | MEDLINE | ID: mdl-36631922

ABSTRACT

BACKGROUND: Hyperglycemia is widespread in the world's population, increasing the risk of many diseases. This study aimed to explore the regulatory effect and mechanism of astragaloside IV (ASIV)-mediated endothelial progenitor cells (EPCs) exosomal LINC01963 in endothelial cells (HUVECs) impaired by high glucose. METHODS: Morphologies of exosomes were observed by light microscope and electron microscope. Immunofluorescence was used to identify EPCs and detect the expressions of caspase-1. LINC01963 was detected by quantitative reverse transcription PCR. NLRP3, ASC, and caspase-3 were detected by Western Blot. Nanoparticle tracking analysis was carried out to analyze the exosome diameter. High-throughput sequencing was applied to screen target lncRNAs. The proliferation of endothelial cells was measured by cell counting kit-8 assay. The apoptosis level of HUVECs was detected by flow cytometry and TdT-mediated dUTP Nick-End labeling. The levels of IL- 1ß, IL-18, ROS, SOD, MDA, and LDH were measured by enzyme-linked immunosorbent assay. RESULTS: ASIV could promote the secretion of the EPC exosome. LINC01963 was obtained by high-throughput sequencing. It was observed that high glucose could inhibit the proliferation, reduce the level of SOD, the expression of NLRP3, ASC, and caspase- 1, increase the levels of IL-1ß, IL-18, ROS, MDA, and LDH, and promote apoptosis of HUVECs. Whereas LINC01963 could inhibit the apoptosis of HUVECs, the increase the expression of NLRP3, ASC, and caspase-1, and decrease the levels of IL-1ß, IL-18, ROS, MDA, and LDH. CONCLUSION: EPCs exosomal LINC01963 play an inhibitory role in high glucoseinduced pyroptosis and oxidative stress of HUVECs. This study provides new ideas and directions for treating hyperglycemia and researching exosomal lncRNAs.


Subject(s)
Endothelial Progenitor Cells , Hyperglycemia , RNA, Long Noncoding , Saponins , Triterpenes , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Endothelial Progenitor Cells/metabolism , Interleukin-18 , Pyroptosis/genetics , Reactive Oxygen Species/metabolism , Oxidative Stress , Caspase 1 , Glucose/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology
19.
Mol Oral Microbiol ; 39(2): 47-61, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37188376

ABSTRACT

We found that GroEL in Porphyromonas gingivalis accelerated tumor growth and increased mortality in tumor-bearing mice; GroEL promoted proangiogenic function, which may be the reason for promoting tumor growth. To understand the regulatory mechanisms by which GroEL increases the proangiogenic function of endothelial progenitor cells (EPCs), we explored in this study. In EPCs, MTT assay, wound-healing assay, and tube formation assay were performed to analyze its activity. Western blot and immunoprecipitation were used to study the protein expression along with next-generation sequencing for miRNA expression. Finally, a murine tumorigenesis animal model was used to confirm the results of in vitro. The results indicated that thrombomodulin (TM) direct interacts with PI3 K/Akt to inhibit the activation of signaling pathways. When the expression of TM is decreased by GroEL stimulation, molecules in the PI3 K/Akt signaling axis are released and activated, resulting in increased migration and tube formation of EPCs. In addition, GroEL inhibits TM mRNA expression by activating miR-1248, miR-1291, and miR-5701. Losing the functions of miR-1248, miR-1291, and miR-5701 can effectively alleviate the GroEL-induced decrease in TM protein levels and inhibit the proangiogenic abilities of EPCs. These results were also confirmed in animal experiments. In conclusion, the intracellular domain of the TM of EPCs plays a negative regulatory role in the proangiogenic capabilities of EPCs, mainly through direct interaction between TM and PI3 K/Akt to inhibit the activation of signaling pathways. The effects of GroEL on tumor growth can be reduced by inhibiting the proangiogenic properties of EPCs through the inhibition of the expression of specific miRNAs.


Subject(s)
Endothelial Progenitor Cells , MicroRNAs , Neoplasms , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Porphyromonas gingivalis/genetics , Proto-Oncogene Proteins c-akt/metabolism , Thrombomodulin/genetics , Thrombomodulin/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Physiologic/physiology
20.
Tissue Eng Part C Methods ; 30(1): 15-26, 2024 01.
Article in English | MEDLINE | ID: mdl-37756374

ABSTRACT

Insufficient vascularization is still a challenge that impedes bladder tissue engineering and results in unsatisfied smooth muscle regeneration. Since bladder regeneration is a complex articulated process, the aim of this study is to investigate whether combining multiple pathways by exploiting a combination of biomaterials, cells, and bioactive factors, contributes to the improvements of smooth muscle regeneration and vascularization in tissue-engineered bladder. Autologous endothelial progenitor cells (EPCs) and bladder smooth muscle cells (BSMCs) are cultured and incorporated into our previously prepared porcine bladder acellular matrix (BAM) for bladder augmentation in rabbits. Simultaneously, exogenous vascular endothelial growth factor (VEGF) and platelet-derived growth factor BB (PDGF-BB) mixed with Matrigel were injected around the implanted cells-BAM complex. In the results, compared with control rabbits received bladder augmentation with porcine BAM seeded with BSMCs, the experimental animals showed significantly improved smooth muscle regeneration and vascularization, along with more excellent functional recovery of tissue-engineered bladder, due to the additional combination of autologous EPCs and bioactive factors, including VEGF and PDGF-BB. Furthermore, cell tracking suggested that the seeded EPCs could be directly involved in neovascularization. Therefore, it may be an effective method to combine multiple pathways for tissue-engineering urinary bladder.


Subject(s)
Endothelial Progenitor Cells , Urinary Bladder , Swine , Rabbits , Animals , Urinary Bladder/blood supply , Urinary Bladder/metabolism , Endothelial Progenitor Cells/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Becaplermin/pharmacology , Becaplermin/metabolism , Tissue Engineering/methods , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...