Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci ; 44(6)2019 Dec.
Article in English | MEDLINE | ID: mdl-31894119

ABSTRACT

Sweet taste receptor (STR) is a C GPCR family member and a suggested drug target for metabolic disorders such as diabetes. Detailed characteristics of the molecule as well as its ligand interactions mode are yet considerably unclear due to experimental study limitations of transmembrane proteins. An in silico study was designed to find the putative carbohydrate binding sites on STR. To this end, α-D-glucose and its α-1,4-oligomers (degree of polymerization up to 14) were chosen as probes and docked into an ensemble of different conformations of the extracellular region of STR monomers (T1R2 and T1R3), using AutoDock Vina. Ensembles had been sampled from an MD simulation experiment. Best poses were further energy-minimized in the presence of water molecules with Amber14 forcefield. For each monomer, four distinct binding regions consisting of one or two binding pockets could be distinguished. These regions were further investigated with regard to hydrophobicity and hydrophilicity of the residues, as well as residue compositions and non-covalent interactions with ligands. Popular binding regions showed similar characteristics to carbohydrate binding modules (CBM). Observation of several conserved or semi-conserved residues in these binding regions suggests a possibility to extrapolate the results to other C GPCR family members. In conclusion, presence of CBM in STR and, by extrapolation, in other C GPCR family members is suggested, similar to previously proposed sites in gut fungal C GPCRs, through transcriptome analyses. STR modes of interaction with carbohydrates are also discussed and characteristics of non-covalent interactions in C GPCR family are highlighted.


Subject(s)
Carbohydrates/chemistry , Receptors, G-Protein-Coupled/chemistry , Taste/genetics , Binding Sites/genetics , Carbohydrate Biochemistry , Carbohydrates/genetics , Computer Simulation , Endothelial Protein C Receptor/chemistry , Endothelial Protein C Receptor/genetics , Glucose/metabolism , Humans , Ligands , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Water/chemistry
2.
Integr Biol (Camb) ; 10(11): 696-704, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30281048

ABSTRACT

Endothelial cell protein C receptor (EPCR), the cellular receptor for protein C (PC), facilitates PC activation through the thrombin/thrombomodulin complex and regulates thrombin generation. Under pathophysiological conditions like sepsis, the interactions between EPCR and PC become impaired. Previous studies have demonstrated that the EPCR contains a phospholipid in the antigen-binding groove that is responsible for the structural stability of the EPCR and for PC recognition. However, an understanding at the atomic level during ligand recognition is not fully developed. Molecular dynamics simulations along with potential of mean force (PMF) calculations were carried out in order to provide molecular insight into the dynamics and free energies of EPCR-PC in the absence/presence of phospholipid, namely lysophosphatidylcholine (lysoPCh) and phosphatidylcholine (PCh) in the antigen-binding groove of the EPCR. Our data reveal that the presence of lipid maintains the optimal conformation of the EPCR for PC binding. PMF data further suggest that the PCh system is the most stable in comparison with the other systems (lysoPCh and no lipid). With regards to the two hydrophobic tails of PCh, one lipid tail regulates EPCR conformation while the other promotes ligand recognition by interacting with the keel residue (Phe-4) of PC. Due to the lack of one hydrophobic tail for the lysoPCh system, the EPCR conformation is retained but the affinity of the EPCR towards the ligand (PC) is reduced. Our studies for the first time explore the possible mode of ligand recognition by the EPCR via the involvement of phosphatidylcholine within its hydrophobic groove. The present work provides insight into PCh-dependent ligand recognition and hence regulation of the protein C/EPCR complex formation.


Subject(s)
Blood Coagulation Factors/chemistry , Endothelial Protein C Receptor/chemistry , Phospholipids/chemistry , Receptors, Cell Surface/chemistry , Cell Membrane/metabolism , Computational Biology , Computer Simulation , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Lipids/chemistry , Lysophosphatidylcholines/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Protein Binding , Protein Conformation , Protein Interaction Mapping , Software , Temperature , Thermodynamics
3.
Sci Rep ; 7: 44596, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28294177

ABSTRACT

In addition to its procoagulant and proinflammatory functions mediated by cleavage of fibrinogen and PAR1, the trypsin-like protease thrombin activates the anticoagulant protein C in a reaction that requires the cofactor thrombomodulin and the endothelial protein C receptor. Once in the circulation, activated protein C functions as an anticoagulant, anti-inflammatory and regenerative factor. Hence, availability of a protein C activator would afford a therapeutic for patients suffering from thrombotic disorders and a diagnostic tool for monitoring the level of protein C in plasma. Here, we present a fusion protein where thrombin and the EGF456 domain of thrombomodulin are connected through a peptide linker. The fusion protein recapitulates the functional and structural properties of the thrombin-thrombomodulin complex, prolongs the clotting time by generating pharmacological quantities of activated protein C and effectively diagnoses protein C deficiency in human plasma. Notably, these functions do not require exogenous thrombomodulin, unlike other anticoagulant thrombin derivatives engineered to date. These features make the fusion protein an innovative step toward the development of protein C activators of clinical and diagnostic relevance.


Subject(s)
Protein C Deficiency/blood , Protein C/isolation & purification , Recombinant Fusion Proteins/genetics , Thrombomodulin/chemistry , Endothelial Protein C Receptor/chemistry , Endothelial Protein C Receptor/genetics , Humans , Peptides/blood , Peptides/chemistry , Protein C/chemistry , Protein C/genetics , Protein C Deficiency/genetics , Recombinant Fusion Proteins/chemistry , Thrombomodulin/genetics
4.
J Thromb Haemost ; 15(3): 507-512, 2017 03.
Article in English | MEDLINE | ID: mdl-28035745

ABSTRACT

Essentials The lack of factor (F) VIIa-endothelial protein C receptor (EPCR) binding in mice is unresolved. A single substitution of Leu4 to Phe in mouse FVIIa (mFVIIa) enables its interaction with EPCR. mFVIIa with a Phe4 shows EPCR binding-dependent enhanced hemostatic function in vivo vs. mFVIIa. Defining the FVIIa-EPCR interaction in mice allows for further investigating its biology in vivo. SUMMARY: Background Human activated factor VII (hFVIIa), which is used in hemophilia treatment, binds to the endothelial protein C (PC) receptor (EPCR) with unclear hemostatic consequences. Interestingly, mice lack the activated FVII (FVIIa)-EPCR interaction. Therefore, to investigate the hemostatic consequences of this interaction in hemophilia, we previously engineered a mouse FVIIa (mFVIIa) molecule that bound mouse EPCR (mEPCR) by using three substitutions from mouse PC (mPC), i.e. Leu4→Phe, Leu8→Met, and Trp9→Arg. The resulting molecule, mFVIIa-FMR, modeled the EPCR-binding properties of hFVIIa and showed enhanced hemostatic capacity in hemophilic mice versus mFVIIa. These data implied a role of EPCR in the action of hFVIIa in hemophilia treatment. However, the substitutions in mFVIIa-FMR only broadly defined the sequence determinants for its mEPCR interaction and enhanced function in vivo. Objectives To determine the individual contributions of mPC Phe4, Met8 and Arg9 to the in vitro/in vivo properties of mFVIIa-FMR. Methods The mEPCR-binding properties of single amino acid variants of mFVIIa or mPC at position 4, 8 or 9 were investigated. Results and conclusions Phe4 in mFVIIa or mPC was solely critical for interaction with mEPCR. In hemophilic mice, administration of mFVIIa harboring a Phe4 resulted in a 1.9-2.5-fold increased hemostatic capacity versus mFVIIa that was EPCR binding-dependent. This recapitulated previous observations made with triple-mutant mFVIIa-FMR. As Leu8 is crucial for hFVIIa-EPCR binding, we describe the sequence divergence of this interaction in mice, now allowing its further characterization in vivo. We also illustrate that modulation of the EPCR-FVIIa interaction may lead to improved FVIIa therapeutics.


Subject(s)
Endothelial Protein C Receptor/chemistry , Factor VII/chemistry , Factor VIIa/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , DNA, Complementary/metabolism , Endothelial Protein C Receptor/metabolism , Factor VII/metabolism , Factor VIIa/metabolism , HEK293 Cells , Hemophilia A/genetics , Hemostasis , Humans , Leucine/chemistry , Mice , Phenylalanine/chemistry , Plasmids/metabolism , Protein Binding , Protein Domains , Receptors, Cell Surface/metabolism , Thrombin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...