Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93.859
Filter
1.
Int Heart J ; 65(3): 386-394, 2024.
Article in English | MEDLINE | ID: mdl-38825489

ABSTRACT

Periodontitis is a common chronic infection and is associated with cardiovascular disease. This study evaluated whether basic oral care for periodontal disease could improve endothelial function in patients with acute coronary syndrome (ACS).This study enrolled 54 patients with acute coronary syndrome admitted to Kagoshima City Hospital and who had undergone percutaneous coronary intervention. Flow-mediated endothelium-dependent dilatation (FMD) was measured before discharge (initial FMD) and at 8 months after percutaneous coronary intervention (follow-up FMD). The following periodontal characteristics were measured: periodontal pocket depth (PPD, mm), plaque control record (%), and bleeding on probing (%). All patients received basic oral care instructions from dentists. The oral health condition was generally poor in the participants and there were 24 patients (44.4%) who had severe PPD. Despite the intervention of basic oral care, the periodontal characteristics did not improve during the study period; initial FMD and follow-up FMD did not significantly differ (4.38 ± 2.74% versus 4.56 ± 2.51%, P = 0.562). However, the follow-up FMD was significantly lower in patients with severe PPD (≥ 6.0 mm, n = 24) than in patients without severe PPD (≤ 5.0 mm, n = 30) (FMD: 3.58 ± 1.91% versus 5.37 ± 2.67%, P = 0.007). FMD tended to be worse in patients with severe PPD than in patients without severe PPD (ΔFMD: -0.55 ± 2.12 versus 0.81 ± 2.77 %, P = 0.055). In conclusion, during the use of basic oral care, endothelial function improved in patients without severe PPD, while it worsened in patients with severe PPD.


Subject(s)
Acute Coronary Syndrome , Endothelium, Vascular , Percutaneous Coronary Intervention , Humans , Acute Coronary Syndrome/physiopathology , Acute Coronary Syndrome/therapy , Acute Coronary Syndrome/complications , Male , Female , Endothelium, Vascular/physiopathology , Aged , Middle Aged , Percutaneous Coronary Intervention/methods , Periodontitis/therapy , Periodontitis/physiopathology , Periodontitis/complications , Oral Hygiene , Oral Health
2.
Clin Sci (Lond) ; 138(11): 687-697, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835256

ABSTRACT

Endothelin A and B receptors, together with sodium-glucose cotransporter-2 (SGLT-2) channels are important targets in improving endothelial function and intervention with inhibitors has been the subject of multiple mechanistic and clinical outcome trials over recent years. Notable successes include the treatment of pulmonary hypertension with endothelin receptor antagonists, and the treatment of heart failure and chronic kidney disease with SGLT-2 inhibitors. With distinct and complementary mechanisms, in this review, we explore the logic of combination therapy for a number of diseases which have endothelial dysfunction at their heart.


Subject(s)
Endothelin-1 , Endothelium, Vascular , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Endothelin-1/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Animals , Drug Therapy, Combination , Endothelin Receptor Antagonists/therapeutic use , Heart Failure/drug therapy , Heart Failure/physiopathology
4.
BMC Cardiovasc Disord ; 24(1): 292, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840064

ABSTRACT

BACKGROUND: Tobacco use is recognized as a major cause of cardiovascular disease, which is associated with endothelial dysfunction. Endothelial function is evaluated using flow-mediated dilation (FMD), which is a noninvasive method. This meta-analysis aimed to investigate the association between smoking exposure and endothelial function evaluated using FMD values. METHODS: We searched the PubMed, Embase, Web of Science, and Cochrane Library databases for cohort studies of smokers or passive smokers that used FMD to assess endothelial function. The primary outcome of the study was the change in the rate of FMD. The risk of bias was evaluated using the Cochrane Collaboration tool and Newcastle-Ottawa Scale. Further, the weighted mean difference was used to analyze the continuous data. RESULTS: Overall, 14 of 1426 articles were included in this study. The results of these articles indicated that smoking is a major cause of endothelial dysfunction and altered FMD; a pooled effect size of - 3.15 was obtained with a 95% confidence interval of (- 3.84, - 2.46). Notably, pregnancy status, Asian ethnicity, or health status did not affect heterogeneity. CONCLUSIONS: We found that smoking has a significant negative impact on FMD, and measures such as medication or education for smoking cessation may improve endothelial function and reduce the risk of cardiovascular disease. TRIAL REGISTRATION: The meta-analysis was registered with PROSPERO on April 5th, 2023 (CRD42023414654).


Subject(s)
Cardiovascular Diseases , Endothelium, Vascular , Vasodilation , Humans , Endothelium, Vascular/physiopathology , Female , Male , Middle Aged , Adult , Risk Assessment , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Cardiovascular Diseases/epidemiology , Aged , Risk Factors , Tobacco Smoke Pollution/adverse effects , Predictive Value of Tests , Smoking/adverse effects , Smoking/physiopathology , Young Adult , Smokers , Brachial Artery/physiopathology , Brachial Artery/diagnostic imaging , Heart Disease Risk Factors
5.
Drug Des Devel Ther ; 18: 1821-1832, 2024.
Article in English | MEDLINE | ID: mdl-38845851

ABSTRACT

Aim: Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods: Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results: The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1ß levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1ß inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion: Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.


Subject(s)
Atherosclerosis , Cholecalciferol , Diet, High-Fat , Gastrointestinal Microbiome , Ginsenosides , Inflammation , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Rats , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/pathology , Diet, High-Fat/adverse effects , Male , Cholecalciferol/pharmacology , Cholecalciferol/administration & dosage , Inflammation/drug therapy , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism
6.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 171-177, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836663

ABSTRACT

Chronic heart disease (CHD) is still a major global cause of morbidity and mortality, necessitating effective therapeutic interventions to mitigate its progression. Omega-3 fatty acids (FAs) have garnered attention for their potential anti-inflammatory and endothelial-protective properties in CHD management. The present study aims to assess the efficacy of Omega-3 FA supplementation on markers of inflammation and endothelial function in patients with CHD. To achieve this, we used the relevant keywords to search international databases (Web of Science, PubMed, Embase, and Scopus) and extract publications evaluating the effectiveness of omega-3 FA supplementation on inflammation markers and endothelial function in patients with CHD. STATA (version 15) and the random and fixed-effects models were used to evaluate the collected data. Thirteen clinical trial studies met inclusion criteria, with a total sample size of 853 individuals (406 cases and 447 controls). The cases had a mean age of 58 ± 10.3 years. The pooled results indicated that omega-3 Omega-3 FA supplementation significantly reduced the level of circulating IL-6 (SMD = -0.47, 95% CI -1.29 to 0.35, %, p < 0.001), hs-CRP (SMD = -0.21, 95% CI -0.70 to 0.28, p = 0.01), and TNF-α (SMD = -0.56, 95% CI -1.14 to 0.01, p < 0.001) in patients with CHD. Also, findings revealed that a daily supplement of omega-3 significantly increased FMD by 0.34% (95% CI: 0.14-0.54%, p < 0.001) as compared with placebo by a fixed-effect model in patients with CHD. These findings underscore the potential therapeutic utility of omega-3 fatty acid supplementation in modulating inflammation and endothelial dysfunction in patients with CHD.


Subject(s)
Biomarkers , Dietary Supplements , Fatty Acids, Omega-3 , Inflammation , Humans , Middle Aged , Biomarkers/blood , Chronic Disease , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-3/pharmacology , Heart Diseases/drug therapy , Heart Diseases/blood , Inflammation/drug therapy , Inflammation/blood , Aged
7.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38839106

ABSTRACT

Targeted therapies against mutant BRAF are effectively used in combination with MEK inhibitors (MEKi) to treat advanced melanoma. However, treatment success is affected by resistance and adverse events (AEs). Approved BRAF inhibitors (BRAFi) show high levels of target promiscuity, which can contribute to these effects. The blood vessel lining is in direct contact with high plasma concentrations of BRAFi, but effects of the inhibitors in this cell type are unknown. Hence, we aimed to characterize responses to approved BRAFi for melanoma in the vascular endothelium. We showed that clinically approved BRAFi induced a paradoxical activation of endothelial MAPK signaling. Moreover, phosphoproteomics revealed distinct sets of off-targets per inhibitor. Endothelial barrier function and junction integrity were impaired upon treatment with vemurafenib and the next-generation dimerization inhibitor PLX8394, but not with dabrafenib or encorafenib. Together, these findings provide insights into the surprisingly distinct side effects of BRAFi on endothelial signaling and functionality. Better understanding of off-target effects could help to identify molecular mechanisms behind AEs and guide the continued development of therapies for BRAF-mutant melanoma.


Subject(s)
Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Signal Transduction , Vemurafenib , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Melanoma/drug therapy , Melanoma/metabolism , Signal Transduction/drug effects , Vemurafenib/pharmacology , Oximes/pharmacology , Sulfonamides/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Imidazoles/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , MAP Kinase Signaling System/drug effects , Carbamates/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Cell Line, Tumor , Mutation
8.
Front Immunol ; 15: 1395714, 2024.
Article in English | MEDLINE | ID: mdl-38840921

ABSTRACT

Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites. Interestingly, there is a growing body of evidence showing that the family of ß-galactoside-binding lectins, known as galectins, can also play pivotal roles in the adhesion of circulating cells to the vascular endothelium. In this review, we present contemporary knowledge on the significant roles of host- and/or tumor-derived galectin (Gal)-3, -8, and -9 in facilitating the adhesion of circulating cells to the vascular endothelium either directly by acting as bridging molecules or indirectly by triggering signaling pathways to express adhesion molecules on ECs. We also explore strategies for interfering with galectin-mediated adhesion to attenuate inflammation or hinder the metastatic seeding of CTCs, which are often rich in galectins and/or their glycan ligands.


Subject(s)
Cell Adhesion , Endothelium, Vascular , Galectins , Humans , Galectins/metabolism , Animals , Endothelium, Vascular/metabolism , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/pathology , Endothelial Cells/metabolism , Neoplasms/pathology , Neoplasms/immunology , Neoplasms/metabolism
9.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38847494

ABSTRACT

Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.


Subject(s)
Cadherins , Morphogenesis , Zebrafish Proteins , Zebrafish , beta Catenin , Animals , Zebrafish/embryology , Zebrafish/metabolism , beta Catenin/metabolism , Cadherins/metabolism , Cadherins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Adherens Junctions/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Endothelium, Vascular/metabolism , Endothelium, Vascular/cytology , Antigens, CD
10.
Sci Rep ; 14(1): 10477, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714743

ABSTRACT

Endothelial glycocalyx (eGC) covers the inner surface of the vessels and plays a role in vascular homeostasis. Syndecan is considered the "backbone" of this structure. Several studies have shown eGC shedding in sepsis and its involvement in organ dysfunction. Matrix metalloproteinases (MMP) contribute to eGC shedding through their ability for syndecan-1 cleavage. This study aimed to investigate if doxycycline, a potent MMP inhibitor, could protect against eGC shedding in lipopolysaccharide (LPS)-induced sepsis and if it could interrupt the vascular hyperpermeability, neutrophil transmigration, and microvascular impairment. Rats that received pretreatment with doxycycline before LPS displayed ultrastructural preservation of the eGC observed using transmission electronic microscopy of the lung and heart. In addition, these animals exhibited lower serum syndecan-1 levels, a biomarker of eGC injury, and lower perfused boundary region (PBR) in the mesenteric video capillaroscopy, which is inversely related to the eGC thickness compared with rats that only received LPS. Furthermore, this study revealed that doxycycline decreased sepsis-related vascular hyperpermeability in the lung and heart, reduced neutrophil transmigration in the peritoneal lavage and inside the lungs, and improved some microvascular parameters. These findings suggest that doxycycline protects against LPS-induced eGC shedding, and it could reduce vascular hyperpermeability, neutrophils transmigration, and microvascular impairment.


Subject(s)
Doxycycline , Glycocalyx , Lipopolysaccharides , Sepsis , Glycocalyx/metabolism , Glycocalyx/drug effects , Animals , Sepsis/drug therapy , Sepsis/metabolism , Doxycycline/pharmacology , Rats , Male , Capillary Permeability/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects , Syndecan-1/metabolism , Rats, Wistar , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Neutrophils/metabolism , Neutrophils/drug effects , Matrix Metalloproteinase Inhibitors/pharmacology
11.
J Am Heart Assoc ; 13(9): e032698, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38690710

ABSTRACT

BACKGROUND: Provoked anger is associated with an increased risk of cardiovascular disease events. The underlying mechanism linking provoked anger as well as other core negative emotions including anxiety and sadness to cardiovascular disease remain unknown. The study objective was to examine the acute effects of provoked anger, and secondarily, anxiety and sadness on endothelial cell health. METHODS AND RESULTS: Apparently healthy adult participants (n=280) were randomized to an 8-minute anger recall task, a depressed mood recall task, an anxiety recall task, or an emotionally neutral condition. Pre-/post-assessments of endothelial health including endothelium-dependent vasodilation (reactive hyperemia index), circulating endothelial cell-derived microparticles (CD62E+, CD31+/CD42-, and CD31+/Annexin V+) and circulating bone marrow-derived endothelial progenitor cells (CD34+/CD133+/kinase insert domain receptor+ endothelial progenitor cells and CD34+/kinase insert domain receptor+ endothelial progenitor cells) were measured. There was a group×time interaction for the anger versus neutral condition on the change in reactive hyperemia index score from baseline to 40 minutes (P=0.007) with a mean±SD change in reactive hyperemia index score of 0.20±0.67 and 0.50±0.60 in the anger and neutral conditions, respectively. For the change in reactive hyperemia index score, the anxiety versus neutral condition group by time interaction approached but did not reach statistical significance (P=0.054), and the sadness versus neutral condition group by time interaction was not statistically significant (P=0.160). There were no consistent statistically significant group×time interactions for the anger, anxiety, and sadness versus neutral condition on endothelial cell-derived microparticles and endothelial progenitor cells from baseline to 40 minutes. CONCLUSIONS: In this randomized controlled experimental study, a brief provocation of anger adversely affected endothelial cell health by impairing endothelium-dependent vasodilation.


Subject(s)
Anger , Anxiety , Endothelium, Vascular , Vasodilation , Humans , Male , Female , Adult , Endothelium, Vascular/physiopathology , Anxiety/psychology , Endothelial Progenitor Cells/metabolism , Middle Aged , Sadness , Cell-Derived Microparticles/metabolism , Hyperemia/physiopathology , Emotions , Young Adult , Time Factors , Endothelial Cells
12.
Lasers Med Sci ; 39(1): 122, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703271

ABSTRACT

Pulsed dye lasers are used effectively in the treatment of psoriasis with long remission time and limited side effects. It is, however, not completely understood which biological processes underlie its favorable outcome. Pulsed dye laser treatment at 585-595 nm targets hemoglobin in the blood, inducing local hyperthermia in surrounding blood vessels and adjacent tissues. While the impact of destructive temperatures on blood vessels has been well studied, the effects of lower temperatures on the function of several cell types within the blood vessel wall and its periphery are not known. The aim of our study is to assess the functionality of isolated blood vessels after exposure to moderate hyperthermia (45 to 60°C) by evaluating the function of endothelial cells, smooth muscle cells, and vascular nerves. We measured blood vessel functionality of rat mesenteric arteries (n=19) by measuring vascular contraction and relaxation before and after heating vessels in a wire myograph. To this end, we elicited vascular contraction by addition of either high potassium solution or the thromboxane analogue U46619 to stimulate smooth muscle cells, and electrical field stimulation (EFS) to stimulate nerves. For measurement of endothelium-dependent relaxation, we used methacholine. Each vessel was exposed to one temperature in the range of 45-60°C for 30 seconds and a relative change in functional response after hyperthermia was determined by comparison with the response per stimulus before heating. Non-linear regression was used to fit our dataset to obtain the temperature needed to reduce blood vessel function by 50% (Half maximal effective temperature, ET50). Our findings demonstrate a substantial decrease in relative functional response for all three cell types following exposure to 55°C-60°C. There was no significant difference between the ET50 values of the different cell types, which was between 55.9°C and 56.9°C (P>0.05). Our data show that blood vessel functionality decreases significantly when exposed to temperatures between 55°C-60°C for 30 seconds. The results show functionality of endothelial cells, smooth muscle cells, and vascular nerves is similarly impaired. These results help to understand the biological effects of hyperthermia and may aid in tailoring laser and light strategies for selective photothermolysis that contribute to disease modification of psoriasis after pulsed dye laser treatment.


Subject(s)
Lasers, Dye , Animals , Rats , Male , Lasers, Dye/therapeutic use , Myocytes, Smooth Muscle/physiology , Myocytes, Smooth Muscle/radiation effects , Vasodilation/radiation effects , Vasodilation/physiology , Temperature , Muscle, Smooth, Vascular/radiation effects , Muscle, Smooth, Vascular/physiology , Endothelial Cells/radiation effects , Endothelial Cells/physiology , Vasoconstriction/radiation effects , Vasoconstriction/physiology , Endothelium, Vascular/radiation effects , Rats, Wistar
13.
Gac Med Mex ; 160(1): 23-31, 2024.
Article in English | MEDLINE | ID: mdl-38753572

ABSTRACT

BACKGROUND: Endothelial dysfunction (ED) suspicion will allow to prevent accelerated atherosclerosis and premature death. OBJECTIVE: To establish the usefulness of thermography for endothelial function screening in adults with cardiovascular risk factors. MATERIAL AND METHODS: Cross-sectional, analytical diagnostic test. A brachial arterial diameter (BAD) increase < 11% at one-minute post-ischemia meant probable ED and was confirmed if BAD was ≥ 11% post-sublingual nitroglycerin. Thermographic photographs of the palmar region were obtained at one minute. Descriptive statistics, ROC curve, Mann-Whitney's U-test, chi-square test, or Fisher's exact test were used. RESULTS: Thirty-eight subjects with a median age of 50 years, and with 624 thermographic measurements were included. Nine had ED (flow-mediated vasodilation [FMV]: 2.5%). The best cutoff point for normal endothelial function in subjects with cardiovascular risk factors was ≥ 36 °C at one minute of ischemia, with 85% sensitivity, 70% specificity, positive and negative predictive values of 78 and 77%, area under the curve of 0.796, LR+ 2.82, LR- 0.22. CONCLUSION: An infrared thermography-measured temperature in the palmar region greater than or equal to 36 °C after one minute of ischemia is practical, non-invasive, and inexpensive for normal endothelial function screening in adults with cardiovascular risk factors.


ANTECEDENTES: La sospecha de disfunción endotelial (DE) permitirá prevenir la aterosclerosis acelerada y la muerte prematura. OBJETIVO: Establecer la utilidad de la termografía en el cribado de la función endotelial en adultos con factores de riesgo cardiovascular. MATERIAL Y MÉTODOS: Estudio transversal analítico de prueba diagnóstica. El incremento del diámetro de la arteria braquial < 11 % a un minuto posisquemia significó probable DE, confirmada si el diámetro fue ≥ 11 % posnitroglicerina sublingual. Se obtuvieron fotografías termográficas al minuto de la región palmar. Se aplicó estadística descriptiva, curva ROC, pruebas U de Mann-Whitney, chi cuadrada o exacta de Fisher. RESULTADOS: Se incluyeron 38 sujetos, mediana de edad de 50 años, con 624 mediciones termográficas; nueve presentaron DE (vasodilatación mediada por flujo de 2.5 %). El mejor punto de corte para la función endotelial normal en sujetos con factores de riesgo cardiovascular fue ≥ 36 °C al minuto de isquemia, con sensibilidad de 85%, especificidad de 70%, valores predictivos positivo y negativo de 78 y 77%, área bajo la curva de 0.796, razón de verisimilitud positiva de 2.82 y razón de verisimilitud negativa de 0.22. CONCLUSIÓN: La medición de la temperatura en la región palmar mediante termografía infrarroja ≥ 36 °C tras un minuto de isquemia es práctica, no invasiva y económica para el cribado de la función endotelial normal en adultos con factores de riesgo cardiovascular.


Subject(s)
Endothelium, Vascular , Thermography , Humans , Thermography/methods , Middle Aged , Male , Female , Cross-Sectional Studies , Endothelium, Vascular/physiopathology , Adult , Aged , Heart Disease Risk Factors , Sensitivity and Specificity , Infrared Rays , Brachial Artery/physiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/physiopathology , Vasodilation/physiology , Predictive Value of Tests
15.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702777

ABSTRACT

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Human Umbilical Vein Endothelial Cells , Ion Channels , Mice, Knockout , Nitric Oxide Synthase Type III , Oxidative Stress , Animals , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Diabetes Mellitus, Experimental/metabolism , Ion Channels/metabolism , Ion Channels/genetics , Blood Glucose/metabolism , Nitric Oxide Synthase Type III/metabolism , Mechanotransduction, Cellular , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/deficiency , Cells, Cultured , Cell Proliferation , Apoptosis , Male , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/pathology , Diabetic Angiopathies/genetics , Diabetic Angiopathies/etiology , Cell Movement , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Mice , Streptozocin , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Endothelium, Vascular/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
16.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747291

ABSTRACT

Idiopathic systemic capillary leak syndrome (ISCLS) is a rare, recurrent condition with dramatically increased blood vessel permeability and, therefore, induction of systemic edema, which may lead to organ damage and death. In this issue of the JCI, Ablooglu et al. showed that ISCLS vessels were hypersensitive to agents known to increase vascular permeability, using human biopsies, cell culture, and mouse models. Several endothelium-specific proteins that regulate endothelial junctions were dysregulated and thereby compromised the vascular barrier. These findings suggest that endothelium-intrinsic dysregulation underlies hyperpermeability and implicate the cytoplasmic serine/threonine protein phosphatase 2A (PP2A) as a potential drug target for the treatment of ISCLS.


Subject(s)
Capillary Leak Syndrome , Capillary Permeability , Protein Phosphatase 2 , Humans , Animals , Mice , Capillary Leak Syndrome/pathology , Capillary Leak Syndrome/metabolism , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology
17.
Braz J Med Biol Res ; 57: e13304, 2024.
Article in English | MEDLINE | ID: mdl-38775546

ABSTRACT

Arthritis has important cardiovascular repercussions. Phenylephrine-induced vasoconstriction is impaired in rat aortas in the early phase of the adjuvant-induced arthritis (AIA), around the 15th day post-induction. Therefore, the present study aimed to verify the effects of AIA on hyporesponsiveness to phenylephrine in rat aortas. AIA was induced by intradermal injection of Mycobacterium tuberculosis (3.8 mg/dL) in the right hind paw of male Wistar rats (n=27). Functional experiments in isolated aortas were carried out 15 days after AIA induction. Morphometric and stereological analyses of the aortas were also performed 36 days after the induction of AIA. AIA did not promote structural modifications in the aortas at any of the time points studied. AIA reduced phenylephrine-induced contraction in endothelium-intact aortas, but not in endothelium-denuded aortas. However, AIA did not change KCl-induced contraction in either endothelium-intact or denuded aortas. L-NAME (non-selective NOS inhibitor), 1400W (selective iNOS inhibitor), and ODQ (guanylyl cyclase inhibitor) reversed AIA-induced hyporesponsiveness to phenylephrine in intact aortas. 7-NI (selective nNOS inhibitor) increased the contraction induced by phenylephrine in aortas from AIA rats. In summary, the hyporesponsiveness to phenylephrine induced by AIA was endothelium-dependent and mediated by iNOS-derived NO through activation of the NO-guanylyl cyclase pathway.


Subject(s)
Arthritis, Experimental , Nitric Oxide , Phenylephrine , Rats, Wistar , Animals , Male , Phenylephrine/pharmacology , Arthritis, Experimental/physiopathology , Arthritis, Experimental/chemically induced , Nitric Oxide/metabolism , Vasoconstriction/drug effects , Endothelium, Vascular/drug effects , Vasoconstrictor Agents/pharmacology , Rats , Aorta/drug effects
18.
Front Immunol ; 15: 1390026, 2024.
Article in English | MEDLINE | ID: mdl-38807604

ABSTRACT

Introduction: The pulmonary endothelium is the primary target of lung ischemia-reperfusion injury leading to primary graft dysfunction after lung transplantation. We hypothesized that treating damaged rat lungs by a transient heat stress during ex-vivo lung perfusion (EVLP) to elicit a pulmonary heat shock response could protect the endothelium from severe reperfusion injury. Methods: Rat lungs damaged by 1h warm ischemia were reperfused on an EVLP platform for up to 6h at a constant temperature (T°) of 37°C (EVLP37°C group), or following a transient heat stress (HS) at 41.5°C from 1 to 1.5h of EVLP (EVLPHS group). A group of lungs exposed to 1h EVLP only (pre-heating conditions) was added as control (Baseline group). In a first protocol, we measured lung heat sock protein expression (HSP70, HSP27 and Hsc70) at selected time-points (n=5/group at each time). In a second protocol, we determined (n=5/group) lung weight gain (edema), pulmonary compliance, oxygenation capacity, pulmonary artery pressure (PAP) and vascular resistance (PVR), the expression of PECAM-1 (CD31) and phosphorylation status of Src-kinase and VE-cadherin in lung tissue, as well as the release in perfusate of cytokines (TNFα, IL-1ß) and endothelial biomarkers (sPECAM, von Willebrand Factor -vWF-, sE-selectin and sICAM-1). Histological and immunofluorescent studies assessed perivascular edema and formation of 3-nitrotyrosine (a marker of peroxinitrite) in CD31 lung endothelium. Results: HS induced an early (3h) and persisting expression of HSP70 and HSP27, without influencing Hsc70. Lungs from the EVLP37°C group developed massive edema, low compliance and oxygenation, elevated PAP and PVR, substantial release of TNFα, IL-1ß, s-PECAM, vWF, E-selectin and s-ICAM, as well as significant Src-kinase activation, VE-cadherin phosphorylation, endothelial 3-NT formation and reduced CD31 expression. In marked contrast, all these alterations were either abrogated or significantly attenuated by HS treatment. Conclusion: The therapeutic application of a transient heat stress during EVLP of damaged rat lungs reduces endothelial permeability, attenuates pulmonary vasoconstriction, prevents src-kinase activation and VE-cadherin phosphorylation, while reducing endothelial peroxinitrite generation and the release of cytokines and endothelial biomarkers. Collectively, these data demonstrate that therapeutic heat stress may represent a promising strategy to protect the lung endothelium from severe reperfusion injury.


Subject(s)
Heat-Shock Response , Lung , Perfusion , Animals , Lung/pathology , Lung/metabolism , Rats , Male , Perfusion/methods , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Lung Transplantation/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
19.
Clin Interv Aging ; 19: 953-970, 2024.
Article in English | MEDLINE | ID: mdl-38807636

ABSTRACT

Purpose: This study investigated the effect of consumption of table eggs enriched with n-3 polyunsaturated fatty acids (n-3 PUFA), lutein, vitamin E and selenium on microvascular function, oxidative stress and inflammatory mediators in patients after acute coronary syndrome (ACS). Patients and Methods: In a prospective, randomized, interventional, double-blind clinical trial, ACS patients were assigned to either the Nutri4 (N=15, mean age: 57.2 ± 9.2 years), or the Control group (N=13; mean age 56.8 ± 9.6 years). The Nutri4 group consumed three enriched hen eggs daily for three weeks, providing approximately 1.785 mg of vitamin E, 0.330 mg of lutein, 0.054 mg of selenium and 438 mg of n-3 PUFAs. Biochemical parameters, including serum lipids, liver enzymes, nutrient concentrations, serum antioxidant enzyme activity (catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD)), and markers of oxidative stress (thiobarbituric acid reactive substances (TBARS) and ferric reducing ability (FRAP)), were assessed before and after the dietary interventions. Additionally, arterial blood pressure, heart rate, body composition, fluid status, anthropometric measurements, and skin microvascular blood flow responses to various stimuli (postocclusive reactive hyperemia (PORH), acetylcholine- (Ach ID), and sodium nitroprusside- (SNP ID)) were measured using laser Doppler flowmetry (LDF) throughout the study. Results: The intake of Nutri4 eggs led to a significant reduction in LDL cholesterol levels, while the levels of total cholesterol remained within the established reference values. Consuming Nutri4 eggs resulted in a 12.7% increase in serum vitamin E levels, an 8.6% increase in selenium levels, and demonstrated a favorable impact on microvascular reactivity, as evidenced by markedly improved PORH and ACh ID. Nutri4 eggs exerted a significant influence on the activity of GPx and SOD, with no observed changes in TBARS or FRAP values. Conclusion: The consumption of Nutri4 eggs positively influenced microvascular function in individuals with ACS, without eliciting adverse effects on oxidative stress.


Subject(s)
Acute Coronary Syndrome , Eggs , Fatty Acids, Omega-3 , Lutein , Oxidative Stress , Selenium , Vitamin E , Humans , Middle Aged , Oxidative Stress/drug effects , Female , Male , Double-Blind Method , Prospective Studies , Vitamin E/administration & dosage , Animals , Fatty Acids, Omega-3/administration & dosage , Aged , Lutein/administration & dosage , Selenium/administration & dosage , Antioxidants , Endothelium, Vascular/drug effects , Superoxide Dismutase/blood , Chickens , Food, Fortified
20.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38740432

ABSTRACT

Subclinical vascular impairment can be exacerbated in individuals who experience sustained inflammation after COVID-19 infection. Our study explores the prevalence and impact of autoantibodies on vascular dysfunction in healthy COVID-19 survivors, an area that remains inadequately investigated. Focusing on autoantibodies against the atypical chemokine receptor 1 (ACKR1), COVID-19 survivors demonstrated significantly elevated anti-ACKR1 autoantibodies, correlating with systemic cytokines, circulating damaged endothelial cells, and endothelial dysfunction. An independent cohort linked these autoantibodies to increased vascular disease outcomes during a median 6.7-yr follow-up. We analyzed a single-cell transcriptome atlas of endothelial cells from diverse mouse tissues, identifying enriched Ackr1 expressions in venous regions of the brain and soleus muscle vasculatures, which holds intriguing implications for tissue-specific venous thromboembolism manifestations reported in COVID-19. Functionally, purified immunoglobulin G (IgG) extracted from patient plasma did not trigger cell apoptosis or increase barrier permeability in human vein endothelial cells. Instead, plasma IgG enhanced antibody-dependent cellular cytotoxicity mediated by patient PBMCs, a phenomenon alleviated by blocking peptide or liposome ACKR1 recombinant protein. The blocking peptide uncovered that purified IgG from COVID-19 survivors possessed potential epitopes in the N-terminal extracellular domain of ACKR1, which effectively averted antibody-dependent cellular cytotoxicity. Our findings offer insights into therapeutic development to mitigate autoantibody reactivity in blood vessels in chronic inflammation.


Subject(s)
Autoantibodies , COVID-19 , SARS-CoV-2 , Humans , Autoantibodies/immunology , COVID-19/immunology , Animals , Mice , Female , Male , SARS-CoV-2/immunology , Inflammation/immunology , Middle Aged , Endothelium, Vascular/metabolism , Endothelium, Vascular/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Endothelial Cells/metabolism , Endothelial Cells/immunology , Adult , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...