Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.092
Filter
1.
Sci Rep ; 14(1): 10477, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714743

ABSTRACT

Endothelial glycocalyx (eGC) covers the inner surface of the vessels and plays a role in vascular homeostasis. Syndecan is considered the "backbone" of this structure. Several studies have shown eGC shedding in sepsis and its involvement in organ dysfunction. Matrix metalloproteinases (MMP) contribute to eGC shedding through their ability for syndecan-1 cleavage. This study aimed to investigate if doxycycline, a potent MMP inhibitor, could protect against eGC shedding in lipopolysaccharide (LPS)-induced sepsis and if it could interrupt the vascular hyperpermeability, neutrophil transmigration, and microvascular impairment. Rats that received pretreatment with doxycycline before LPS displayed ultrastructural preservation of the eGC observed using transmission electronic microscopy of the lung and heart. In addition, these animals exhibited lower serum syndecan-1 levels, a biomarker of eGC injury, and lower perfused boundary region (PBR) in the mesenteric video capillaroscopy, which is inversely related to the eGC thickness compared with rats that only received LPS. Furthermore, this study revealed that doxycycline decreased sepsis-related vascular hyperpermeability in the lung and heart, reduced neutrophil transmigration in the peritoneal lavage and inside the lungs, and improved some microvascular parameters. These findings suggest that doxycycline protects against LPS-induced eGC shedding, and it could reduce vascular hyperpermeability, neutrophils transmigration, and microvascular impairment.


Subject(s)
Doxycycline , Glycocalyx , Lipopolysaccharides , Sepsis , Glycocalyx/metabolism , Glycocalyx/drug effects , Animals , Sepsis/drug therapy , Sepsis/metabolism , Doxycycline/pharmacology , Rats , Male , Capillary Permeability/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects , Syndecan-1/metabolism , Rats, Wistar , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Neutrophils/metabolism , Neutrophils/drug effects , Matrix Metalloproteinase Inhibitors/pharmacology
2.
Respir Res ; 25(1): 205, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730297

ABSTRACT

BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.


Subject(s)
Carboxy-Lyases , Endothelial Cells , Lung , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , Succinates , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Obesity/metabolism , Obesity/complications , Male , Succinates/pharmacology , Lung/metabolism , Lung/drug effects , Lung/pathology , Lung/blood supply , Cells, Cultured , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Diet, High-Fat/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Hydro-Lyases
3.
Food Funct ; 15(10): 5485-5495, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38690748

ABSTRACT

Ginsenoside Rk1, one kind of ginsenoside, is a minor ginsenoside found in Panax ginseng and used as traditional Chinese medicine for centuries. It exhibits anti-tumor and anti-aggregation effects. However, little research has been done on its effect on endothelial function. This study investigated whether ginsenoside Rk1 improved endothelial dysfunction in diabetes and the underlying mechanisms in vivo and in vitro. Male C57BL/6 mice were fed with a 12 week high-fat diet (60% kcal % fat), whereas treatment groups were orally administered with ginsenoside Rk1 (10 and 20 mg per kg per day) in the last 4 weeks. Aortas isolated from C57BL/6 mice were induced by high glucose (HG; 30 mM) and co-treated with or without ginsenoside Rk1 (1 and 10 µM) for 48 h ex vivo. Moreover, primary rat aortic endothelial cells (RAECs) were cultured and stimulated by HG (44 mM) to mimic hyperglycemia, with or without the co-treatment of ginsenoside Rk1 (10 µM) for 48 h. Endothelium-dependent relaxations of mouse aortas were damaged with elevated oxidative stress and downregulation of three isoforms of peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-ß/δ, and PPAR-γ, as well as endothelial nitric oxide synthase (eNOS) phosphorylation due to HG or high-fat diet stimulation, which also existed in RAECs. However, after the treatment with ginsenoside Rk1, these impairments were all ameliorated significantly. Moreover, the vaso-protective and anti-oxidative effects of ginsenoside Rk1 were abolished by PPAR antagonists (GSK0660, GW9662 or GW6471). In conclusion, this study reveals that ginsenoside Rk1 ameliorates endothelial dysfunction and suppresses oxidative stress in diabetic vasculature through activating the PPAR/eNOS pathway.


Subject(s)
Endothelium, Vascular , Ginsenosides , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptors , Ginsenosides/pharmacology , Animals , Male , Mice , Rats , Peroxisome Proliferator-Activated Receptors/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Oxidative Stress/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Aorta/drug effects , Aorta/metabolism , Nitric Oxide Synthase Type III/metabolism , Panax/chemistry , Diet, High-Fat
4.
Arq Bras Cardiol ; 121(4): e20230236, 2024 Apr.
Article in Portuguese, English | MEDLINE | ID: mdl-38695407

ABSTRACT

BACKGROUND: Vascular dysfunction constitutes the etiology of many diseases, such as myocardial infarction and hypertension, with the disruption of redox homeostasis playing a role in the imbalance of the vasomotor control mechanism. Our group previously has shown that thyroid hormones exert protective effects on the aortic tissue of infarcted rats by improving angiogenesis signaling. OBJECTIVE: Investigate the role of triiodothyronine (T3) on vascular response, exploring its effects on isolated aortas and whether there is an involvement of vascular redox mechanisms. METHODS: Isolated aortic rings (intact- and denuded-endothelium) precontracted with phenylephrine were incubated with T3 (10-8, 10-7, 10-6, 10-5, and 10-4 M), and tension was recorded using a force-displacement transducer coupled with an acquisition system. To assess the involvement of oxidative stress, aortic rings were preincubated with T3 and subsequently submitted to an in vitro reactive oxygen species (ROS) generation system. The level of significance adopted in the statistical analysis was 5%. RESULTS: T3 (10-4 M) promoted vasorelaxation of phenylephrine precontracted aortic rings in both intact- and denuded-endothelium conditions. Aortic rings preincubated in the presence of T3 (10-4 M) also showed decreased vasoconstriction elicited by phenylephrine (1 µM) in intact-endothelium preparations. Moreover, T3 (10-4 M) vasorelaxation effect persisted in aortic rings preincubated with NG-nitro-L-arginine methylester (L-NAME, 10 µM), a nonspecific NO synthase (NOS) inhibitor. Finally, T3 (10-4 M) exhibited, in vitro, an antioxidant role by reducing NADPH oxidase activity and increasing SOD activity in the aorta's homogenates. CONCLUSION: T3 exerts dependent- and independent-endothelium vasodilation effects, which may be related to its role in maintaining redox homeostasis.


FUNDAMENTO: A disfunção vascular constitui a etiologia de diversas doenças, incluindo infarto do miocárdio e hipertensão, diante da ruptura da homeostase oxi-redutiva ("redox"), desempenhando um papel no desequilíbrio do mecanismo de controle vasomotor. Nosso grupo demonstrou anteriormente que os hormônios tireoidianos melhoram a sinalização da angiogênese, exercendo efeitos protetores sobre o tecido aórtico de ratos infartados. OBJETIVOS: Investigar o papel da triiodotironina (T3) na resposta vascular, explorando seus efeitos em aortas isoladas e a presença de mecanismos redox vasculares. MÉTODOS: Anéis aórticos isolados (endotélio intacto e desnudado) pré-contraídos com fenilefrina foram incubados com T3 (10-8, 10-7, 10-6, 10-5 e 10-4 M) e a tensão foi registrada usando um transdutor de deslocamento de força acoplado a um sistema de coleta. Para avaliar o envolvimento do estresse oxidativo, os anéis aórticos foram pré-incubados com T3 e posteriormente submetidos a um sistema de geração de espécies reativas de oxigênio (ROS) in vitro. O nível de significância adotado na análise estatística foi de 5%. RESULTADOS: A T3 (10-4 M) promoveu o vasorrelaxamento dos anéis aórticos pré-contraídos com fenilefrina em endotélio intacto e desnudado. Os anéis aórticos pré-incubados na presença de T3 (10-4 M) também mostraram diminuição da vasoconstrição provocada pela fenilefrina (1 µM) em preparações de endotélio intacto. Além disso, o efeito vasorrelaxante da T3 (10-4 M) persistiu em anéis aórticos pré-incubados com éster metílico de NG-nitro-L-arginina (L-NAME, 10 µM), um inibidor inespecífico da NO sintase (NOS). Por fim, a T3 (10-4 M) exibiu, in vitro, um papel antioxidante ao reduzir a atividade da NADPH oxidase e aumentar a atividade da SOD nos homogenatos aórticos. CONCLUSÃO: A T3 exerce efeitos dependentes e independentes de endotélio, o que pode estar relacionado ao seu papel na manutenção da homeostase redox.


Subject(s)
Oxidation-Reduction , Oxidative Stress , Rats, Wistar , Reactive Oxygen Species , Triiodothyronine , Vasodilation , Animals , Vasodilation/drug effects , Vasodilation/physiology , Male , Triiodothyronine/pharmacology , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Phenylephrine/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Rats , Reproducibility of Results , Vasoconstrictor Agents/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , In Vitro Techniques , Vasoconstriction/drug effects , Vasoconstriction/physiology
5.
Clin Interv Aging ; 19: 953-970, 2024.
Article in English | MEDLINE | ID: mdl-38807636

ABSTRACT

Purpose: This study investigated the effect of consumption of table eggs enriched with n-3 polyunsaturated fatty acids (n-3 PUFA), lutein, vitamin E and selenium on microvascular function, oxidative stress and inflammatory mediators in patients after acute coronary syndrome (ACS). Patients and Methods: In a prospective, randomized, interventional, double-blind clinical trial, ACS patients were assigned to either the Nutri4 (N=15, mean age: 57.2 ± 9.2 years), or the Control group (N=13; mean age 56.8 ± 9.6 years). The Nutri4 group consumed three enriched hen eggs daily for three weeks, providing approximately 1.785 mg of vitamin E, 0.330 mg of lutein, 0.054 mg of selenium and 438 mg of n-3 PUFAs. Biochemical parameters, including serum lipids, liver enzymes, nutrient concentrations, serum antioxidant enzyme activity (catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD)), and markers of oxidative stress (thiobarbituric acid reactive substances (TBARS) and ferric reducing ability (FRAP)), were assessed before and after the dietary interventions. Additionally, arterial blood pressure, heart rate, body composition, fluid status, anthropometric measurements, and skin microvascular blood flow responses to various stimuli (postocclusive reactive hyperemia (PORH), acetylcholine- (Ach ID), and sodium nitroprusside- (SNP ID)) were measured using laser Doppler flowmetry (LDF) throughout the study. Results: The intake of Nutri4 eggs led to a significant reduction in LDL cholesterol levels, while the levels of total cholesterol remained within the established reference values. Consuming Nutri4 eggs resulted in a 12.7% increase in serum vitamin E levels, an 8.6% increase in selenium levels, and demonstrated a favorable impact on microvascular reactivity, as evidenced by markedly improved PORH and ACh ID. Nutri4 eggs exerted a significant influence on the activity of GPx and SOD, with no observed changes in TBARS or FRAP values. Conclusion: The consumption of Nutri4 eggs positively influenced microvascular function in individuals with ACS, without eliciting adverse effects on oxidative stress.


Subject(s)
Acute Coronary Syndrome , Eggs , Fatty Acids, Omega-3 , Lutein , Oxidative Stress , Selenium , Vitamin E , Humans , Middle Aged , Oxidative Stress/drug effects , Female , Male , Double-Blind Method , Prospective Studies , Vitamin E/administration & dosage , Animals , Fatty Acids, Omega-3/administration & dosage , Aged , Lutein/administration & dosage , Selenium/administration & dosage , Antioxidants , Endothelium, Vascular/drug effects , Superoxide Dismutase/blood , Chickens , Food, Fortified
6.
Life Sci ; 349: 122723, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754816

ABSTRACT

Endothelial dysfunction is the most common pathological feature of cardiovascular diseases, including diabetes mellitus, hypertension and atherosclerosis. It affects both macro- and micro-vasculatures, causing functional impairment of multiple organs. Pien Tze Huang (PZH) is a well-studied traditional Chinese medicine (TCM) with multiple pharmacological properties that produces therapeutic benefits against colorectal cancer, non-alcoholic steatohepatitis and neurodegenerative diseases. However, it is unknown how PZH affects vascular function under pathological conditions. Therefore, this study aimed to investigate the effect of PZH on endothelial function and the underlying mechanisms in db/db diabetic mice. The results showed that chronic treatment of PZH (250 mg/kg/day, 5 weeks) improved endothelial function by restoring endothelium-dependent relaxation through the activation of the Akt-eNOS pathway and inhibition of endothelial oxidative stress, which increased nitric oxide bioavailability. Furthermore, PZH treatment increased insulin sensitivity and suppressed inflammation in diabetic mice. These new findings suggest that PZH may have vaso-protective properties and the potential to protect against diabetic vasculopathy by preserving endothelial function.


Subject(s)
Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Endothelium, Vascular , Oxidative Stress , Animals , Mice , Drugs, Chinese Herbal/pharmacology , Male , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Oxidative Stress/drug effects , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Insulin Resistance
7.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38757914

ABSTRACT

Surgeries that require general anesthesia occur in 1.5-2% of gestations. Isoflurane is frequently used because of its lower possibility of affecting fetal growth. Therefore, we examined the isoflurane anesthesia-induced effects on maternal hemodynamic and vascular changes. We hypothesized that isoflurane would enhance endothelium-dependent vasodilation as a consequence of increased nitric oxide and decreased metalloproteinases (MMPs). Female rats (n=28) were randomized into 4 groups (7 rats/group): conscious (non-anesthetized) non-pregnant group, non-pregnant anesthetized group, conscious pregnant group, and pregnant anesthetized group. Anesthesia was performed on the 20th pregnancy day, and hemodynamic parameters were monitored. Nitric oxide metabolites, gelatinolytic activity of MMP-2 and MMP-9, and the vascular function were assessed. Isoflurane caused no significant hemodynamic changes in pregnant compared with non-pregnant anesthetized group. Impaired acetylcholine-induced relaxations were observed only in conscious non-pregnant group (by approximately 62%) versus 81% for other groups. Phenylephrine-induced contractions were greater in endothelium-removed aorta segments of both pregnant groups (with or without isoflurane) compared with non-pregnant groups. Higher nitric oxide metabolites were observed in anesthetized pregnant in comparison with the other groups. Reductions in the 75 kDa activity and concomitant increases in 64 kDa MMP-2 isoforms were observed in aortas of pregnant anesthetized (or not) groups compared with conscious non-pregnant group. Isoflurane anesthesia shows stable effects on hemodynamic parameters and normal MMP-2 activation in pregnancy. Furthermore, there were increases in nitric oxide bioavailability, suggesting that isoflurane provides protective actions to the endothelium in pregnancy.


Subject(s)
Isoflurane , Matrix Metalloproteinase 2 , Nitric Oxide , Vasodilation , Animals , Female , Pregnancy , Isoflurane/pharmacology , Nitric Oxide/metabolism , Matrix Metalloproteinase 2/metabolism , Rats , Vasodilation/drug effects , Matrix Metalloproteinase 9/metabolism , Rats, Sprague-Dawley , Anesthetics, Inhalation/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Hemodynamics/drug effects
8.
Braz J Med Biol Res ; 57: e13304, 2024.
Article in English | MEDLINE | ID: mdl-38775546

ABSTRACT

Arthritis has important cardiovascular repercussions. Phenylephrine-induced vasoconstriction is impaired in rat aortas in the early phase of the adjuvant-induced arthritis (AIA), around the 15th day post-induction. Therefore, the present study aimed to verify the effects of AIA on hyporesponsiveness to phenylephrine in rat aortas. AIA was induced by intradermal injection of Mycobacterium tuberculosis (3.8 mg/dL) in the right hind paw of male Wistar rats (n=27). Functional experiments in isolated aortas were carried out 15 days after AIA induction. Morphometric and stereological analyses of the aortas were also performed 36 days after the induction of AIA. AIA did not promote structural modifications in the aortas at any of the time points studied. AIA reduced phenylephrine-induced contraction in endothelium-intact aortas, but not in endothelium-denuded aortas. However, AIA did not change KCl-induced contraction in either endothelium-intact or denuded aortas. L-NAME (non-selective NOS inhibitor), 1400W (selective iNOS inhibitor), and ODQ (guanylyl cyclase inhibitor) reversed AIA-induced hyporesponsiveness to phenylephrine in intact aortas. 7-NI (selective nNOS inhibitor) increased the contraction induced by phenylephrine in aortas from AIA rats. In summary, the hyporesponsiveness to phenylephrine induced by AIA was endothelium-dependent and mediated by iNOS-derived NO through activation of the NO-guanylyl cyclase pathway.


Subject(s)
Arthritis, Experimental , Nitric Oxide , Phenylephrine , Rats, Wistar , Animals , Male , Phenylephrine/pharmacology , Arthritis, Experimental/physiopathology , Arthritis, Experimental/chemically induced , Nitric Oxide/metabolism , Vasoconstriction/drug effects , Endothelium, Vascular/drug effects , Vasoconstrictor Agents/pharmacology , Rats , Aorta/drug effects
9.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664801

ABSTRACT

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Subject(s)
Caveolin 1 , Diet, High-Fat , Endothelial Cells , Endothelium, Vascular , Mice, Inbred C57BL , Nitric Oxide Synthase Type III , Vasodilation , Animals , Male , Mice , Aorta/enzymology , Aorta/physiopathology , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Caveolin 1/metabolism , Caveolin 1/deficiency , Caveolin 1/genetics , Cells, Cultured , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/physiopathology , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/enzymology , Endothelium, Vascular/drug effects , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Obesity/enzymology , Obesity/physiopathology , Obesity/metabolism , Signal Transduction , Sterol Esterase/metabolism , Sterol Esterase/genetics , Ubiquitination , Vasodilation/drug effects
10.
Cells ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667287

ABSTRACT

Endothelial cell activation, injury, and dysfunction underlies the pathophysiology of vascular diseases and infections associated with vascular dysfunction, including human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome. Despite viral suppression with combination antiretroviral therapy (ART), people living with HIV (PLWH) are prone to many comorbidities, including neurological and neuropsychiatric complications, cardiovascular and metabolic diseases, premature aging, and malignancies. HIV and viral proteins can directly contribute to the development of these comorbidities. However, with the continued high prevalence of these comorbidities despite viral suppression, it is likely that ART or some antiretroviral (ARVs) drugs contribute to the development and persistence of comorbid diseases in PLWH. These comorbid diseases often involve vascular activation, injury, and dysfunction. The purpose of this manuscript is to review the current literature on ARVs and the vascular endothelium in PLWH, animal models, and in vitro studies. I also summarize evidence of an association or lack thereof between ARV drugs or drug classes and the protection or injury/dysfunction of the vascular endothelium and vascular diseases.


Subject(s)
Anti-Retroviral Agents , Endothelium, Vascular , HIV Infections , Animals , Humans , Anti-HIV Agents/adverse effects , Anti-HIV Agents/therapeutic use , Anti-Retroviral Agents/adverse effects , Anti-Retroviral Agents/therapeutic use , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Endothelium, Vascular/virology , HIV Infections/complications , HIV Infections/drug therapy
12.
Biomed Pharmacother ; 174: 116564, 2024 May.
Article in English | MEDLINE | ID: mdl-38608525

ABSTRACT

During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.


Subject(s)
Docosahexaenoic Acids , Hypertension , Mice, Inbred C57BL , Obesity , Vascular Remodeling , Animals , Male , Humans , Docosahexaenoic Acids/pharmacology , Hypertension/metabolism , Hypertension/drug therapy , Obesity/complications , Obesity/metabolism , Vascular Remodeling/drug effects , Mice , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Diet, High-Fat/adverse effects , Angiotensin II , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/drug therapy , Inflammation Mediators/metabolism , Mice, Obese , Vasoconstriction/drug effects , Inflammation/pathology , Inflammation/metabolism , Macrophages/drug effects , Macrophages/metabolism , Disease Models, Animal
13.
High Blood Press Cardiovasc Prev ; 31(2): 113-126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38630421

ABSTRACT

INTRODUCTION: Coenzyme Q10 (CoQ10) has gained attention as a potential therapeutic agent for improving endothelial function. Several randomized clinical trials have investigated CoQ10 supplementation's effect on endothelial function. However, these studies have yielded conflicting results, therefore this systematic review and meta-analysis were conducted. AIM: This systematic review and meta-analysis were conducted to assess the effects of CoQ10 supplementation on endothelial factors. METHODS: A comprehensive search was done in numerous databases until July 19th, 2023. Quantitative data synthesis was performed using a random-effects model, with weight mean difference (WMD) and 95% confidence intervals (CI). Standard methods were used for the assessment of heterogeneity, meta-regression, sensitivity analysis, and publication bias. RESULTS: 12 studies comprising 489 subjects were included in the meta-analysis. The results demonstrated significant increases in Flow Mediated Dilation (FMD) after CoQ10 supplementation (WMD: 1.45; 95% CI: 0.55 to 2.36; p < 0.02), but there is no increase in Vascular cell adhesion protein (VCAM), and Intercellular adhesion molecule (ICAM) following Q10 supplementation (VCAM: SMD: - 0.34; 95% CI: - 0.74 to - 0.06; p < 0.10) (ICAM: SMD: - 0.18; 95% CI: - 0.82 to 0.46; p < 0.57). The sensitivity analysis showed that the effect size was robust in FMD and VCAM. In meta-regression, changes in FMD percent were associated with the dose of supplementation (slope: 0.01; 95% CI: 0.004 to 0.03; p = 0.006). CONCLUSIONS: CoQ10 supplementation has a positive effect on FMD in a dose-dependent manner. Our findings show that CoQ10 has an effect on FMD after 8 weeks of consumption. Additional research is warranted to establish the relationship between CoQ10 supplementation and endothelial function.


Subject(s)
Dietary Supplements , Endothelium, Vascular , Ubiquinone , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Randomized Controlled Trials as Topic , Treatment Outcome , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Vascular Cell Adhesion Molecule-1/blood , Vascular Cell Adhesion Molecule-1/metabolism , Vasodilation/drug effects
14.
Chin J Nat Med ; 22(4): 293-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658093

ABSTRACT

Icariin, a flavonoid glycoside, is extracted from Epimedium. This study aimed to investigate the vascular protective effects of icariin in type 1 diabetic rats by inhibiting high-mobility group box 1 (HMGB1)-related inflammation and exploring its potential mechanisms. The impact of icariin on vascular dysfunction was assessed in streptozotocin (STZ)-induced diabetic rats through vascular reactivity studies. Western blotting and immunofluorescence assays were performed to measure the expressions of target proteins. The release of HMGB1 and pro-inflammation cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that icariin administration enhanced acetylcholine-induced vasodilation in the aortas of diabetic rats. It also notably reduced the release of pro-inflammatory cytokines, including interleukin-8 (IL-8), IL-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). The results also unveiled that the pro-inflammatory cytokines in the culture medium of HUVECs could be increased by rHMGB1. The increased release of HMGB1 and upregulated expressions of HMGB1-related inflammatory factors, including advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and phosphorylated p65 (p-p65) in diabetic rats and HG-induced HUVECs, were remarkably suppressed by icariin. Notably, HMGB1 translocation from the nucleus to the cytoplasm in HUVECs under HG was inhibited by icariin. Meanwhile, icariin could activate G protein-coupled estrogen receptor (GPER) and sirt1. To explore the role of GPER and Sirt1 in the inhibitory effect of icariin on HMGB1 release and HMGB-induced inflammation, GPER inhibitor and Sirt1 inhibitor were used in this study. These inhibitors diminished the effects of icariin on HMGB1 release and HMGB1-induced inflammation. Specifically, the GPER inhibitor also negated the activation of Sirt1 by icariin. These findings suggest that icariin activates GPER and increases the expression of Sirt1, which in turn reduces HMGB1 translocation and release, thereby improving vascular endothelial function in type 1 diabetic rats by inhibiting inflammation.


Subject(s)
Diabetes Mellitus, Experimental , Flavonoids , HMGB1 Protein , Rats, Sprague-Dawley , Receptors, Cannabinoid , Receptors, G-Protein-Coupled , Signal Transduction , Sirtuin 1 , Animals , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Flavonoids/pharmacology , Signal Transduction/drug effects , Rats , Male , Humans , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Receptors, G-Protein-Coupled/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Cytokines/metabolism , Epimedium/chemistry
15.
Nitric Oxide ; 148: 13-22, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38642795

ABSTRACT

Endothelial dysfunction, underlying the vascular complications of diabetes and other cardiovascular disorders, may result from uncoupling of endothelial nitric oxide synthase (eNOS) activity due to decreased levels of tetrahydrobiopterin (BH4), a critical co-factor for eNOS. Some clinical trials attempting to deliver exogenous BH4 as a potential therapeutic strategy in vascular disease states have failed due to oxidation of BH4 in the circulation. We sought to develop a means of protecting BH4 from oxidation while delivering it to dysfunctional endothelial cells. Polymeric and solid lipid nanoparticles (NPs) loaded with BH4 were delivered by injection or oral gavage, respectively, to streptozotocin-induced diabetic rats. BH4 was measured in coronary endothelial cells and endothelium-dependent vascular reactivity was assessed in vascular rings. Lymphatic uptake of orally delivered lipid NPs was verified by sampling mesenteric lymph. BH4-loaded polymeric NPs maintained nitric oxide production by cultured endothelial cells under conditions of oxidative stress. BH4-loaded NPs, delivered via injection or ingestion, increased coronary endothelial BH4 concentration and improved endothelium-dependent vasorelaxation in diabetic rats. Pharmacodynamics assessment indicated peak concentration of solid lipid NPs in the systemic bloodstream 6 hours after ingestion, with disappearance noted by 48 hours. These studies support the feasibility of utilizing NPs to deliver BH4 to dysfunctional endothelial cells to increase nitric oxide bioavailability. BH4-loaded NPs could provide an innovative tool to restore redox balance in blood vessels and modulate eNOS-mediated vascular function to reverse or retard vascular disease in diabetes.


Subject(s)
Biopterins , Diabetes Mellitus, Experimental , Endothelium, Vascular , Nanoparticles , Animals , Biopterins/analogs & derivatives , Biopterins/pharmacology , Biopterins/administration & dosage , Biopterins/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Male , Nanoparticles/chemistry , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Rats , Rats, Sprague-Dawley , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism
16.
PLoS One ; 19(4): e0302512, 2024.
Article in English | MEDLINE | ID: mdl-38687730

ABSTRACT

The effects of Covid-19 vaccines on vascular function are still controversial. We evaluated the effects of BNT162b2 vaccine (BioNTech and Pfizer) on endothelial function assessed by flow-mediated vasodilation (FMD) and vascular smooth muscle function assessed by nitroglycerine-induced vasodilation (NID). This study was a prospective observational study. A total of 23 medical staff at Hiroshima University Hospital were enrolled in this study. FMD and NID were measured before vaccination and two weeks and six months after the 2nd dose of vaccination. FMD was significantly smaller two weeks after the 2nd dose of vaccination than before vaccination (6.5±2.4% and 8.2±2.6%, p = 0.03). FMD was significantly larger at six months than at two weeks after the 2nd dose of vaccination (8.2±3.0% and 6.5±2.4%, p = 0.03). There was no significant difference between FMD before vaccination and that at six months after the 2nd dose of vaccination (8.2±2.6% to 8.2±3.0%, p = 0.96). NID values were similar before vaccination and at two weeks, and six months after vaccination (p = 0.89). The BNT162b2 Covid-19 vaccine temporally impaired endothelial function but not vascular smooth muscle function, and the impaired endothelial function returned to the baseline level within six months after vaccination.


Subject(s)
BNT162 Vaccine , COVID-19 , Vasodilation , Humans , BNT162 Vaccine/administration & dosage , Male , Female , Vasodilation/drug effects , Adult , COVID-19/prevention & control , Middle Aged , COVID-19 Vaccines/administration & dosage , Prospective Studies , SARS-CoV-2/immunology , Endothelium, Vascular/drug effects , Muscle, Smooth, Vascular/drug effects , Vaccination
17.
J Physiol ; 602(9): 1923-1937, 2024 May.
Article in English | MEDLINE | ID: mdl-38568933

ABSTRACT

A key mechanism promoting vascular endothelial dysfunction is mitochondrial-derived reactive oxygen species (mtROS). Aerobic exercise preserves endothelial function in preclinical models by lowering mtROS. However, the effects of mtROS on endothelial function in exercising and non-exercising adults is limited. In a double-blind, randomized, placebo-controlled crossover study design 23 (10 M/13 F, age 62.1 ± 11.5 years) middle-aged and older (MA/O, ≥45 years) adults were divided into two groups: exercisers (EX, n = 11) and non-exercisers (NEX, n = 12). All participants had endothelial function (brachial artery flow-mediated dilatation, FMDBA) measured before and ∼1 h after mitoquinone mesylate (MitoQ) (single dose, 80 mg) and placebo supplementation. A two-way repeated measures ANOVA was used to determine the effects of MitoQ and placebo on FMDBA. Pearson correlations assessed the association between the change in FMDBA with MitoQ and baseline FMDBA and cardiorespiratory fitness (CRF). Compared with placebo, MitoQ increased FMDBA in NEX by + 2.1% (MitoQ pre: 4.9 ± 0.4 vs. post: 7.0 ± 0.4 %, P = 0.004, interaction) but not in EX (P = 0.695, interaction). MitoQ also increased endothelial function in adults with a FMDBA <6% (P < 0.0001, interaction) but not >6% (P = 0.855, interaction). Baseline FMDBA and CRF were correlated (r = 0.44, P = 0.037), whereas the change in FMDBA with MitoQ was inversely correlated with CRF (r = -0.66, P < 0.001) and baseline FMDBA (r = -0.73, P < 0.0001). The relationship between the change in FMDBA and baseline FMDBA remained correlated after adjusting for CRF (r = -0.55, P = 0.007). These data demonstrate that MitoQ acutely improves FMDBA in NEX and EX adults who have a baseline FMDBA <6%. KEY POINTS: A key age-related change contributing to increased cardiovascular disease (CVD) risk is vascular endothelial dysfunction due to increased mitochondrial-derived reactive oxygen species (mtROS). Aerobic exercise preserves endothelial function via suppression of mtROS in preclinical models but the evidence in humans is limited. In the present study, a single dose of the mitochondria-targeted antioxidant, mitoquinone mesylate (MitoQ), increases endothelial function in non-exercisers with lower cardiorespiratory fitness (CRF) but not in exercisers with higher CRF. The acute effects of MitoQ on endothelial function in middle-aged and older adults (MA/O) are influenced by baseline endothelial function independent of CRF. These data provide initial evidence that the acute MitoQ-enhancing effects on endothelial function in MA/O adults are influenced, in part, via CRF and baseline endothelial function.


Subject(s)
Brachial Artery , Cardiorespiratory Fitness , Cross-Over Studies , Endothelium, Vascular , Organophosphorus Compounds , Ubiquinone , Ubiquinone/analogs & derivatives , Humans , Male , Ubiquinone/pharmacology , Middle Aged , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Female , Aged , Organophosphorus Compounds/pharmacology , Double-Blind Method , Brachial Artery/drug effects , Brachial Artery/physiology , Vasodilation/drug effects , Exercise/physiology
18.
Food Funct ; 15(8): 4180-4192, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38506030

ABSTRACT

Until now, the beneficial vascular properties of Hop reported in the literature have been mainly attributed to specific compound classes, such as tannins and phenolic acids. However, the potential vascular action of a Hop subfraction containing a high amount of α or ß acids remains completely understood. Therefore, this study aims to investigate the vascular effects of the entire Hop extract and to fraction the Hop extract to identify the main bioactive vascular compounds. A pressure myograph was used to perform vascular reactivity studies on mouse resistance arteries. Phytocomplex fractionation was performed on a semi-prep HPLC system and characterized by UHPLC-PDA-MS/MS coupled to mass spectrometry. Western blot analysis was performed to characterize the phosphorylation site enrolled. The entire Hop extract exerts a direct dose-dependent endothelial vascular action. The B1 subfraction, containing a high concentration of α acids, recapitulates the vascular effect of the crude extract. Its vasorelaxant action is mediated by the opening of Transient Receptor Potential Vanilloid type 4 (TRPV4), potentiated by PKCα, and subsequent involvement of endothelial small-conductance calcium-activated potassium channels (SKCa) and intermediate-conductance calcium-activated potassium channels (IKCa) that drives endothelium-dependent hyperpolarization (EDH) through heterocellular myoendothelial gap junctions (MEGJs). This is the first comprehensive investigation of the vascular function of Hop-derived α acids in resistance arteries. Overall, our data suggest that the B1 subfraction from Hop extracts, containing only α acids, has great potential to be translated into the useful armamentarium of natural bioactive compounds with cardiovascular benefits.


Subject(s)
Humulus , Plant Extracts , Protein Kinase C-alpha , TRPV Cation Channels , Vasodilator Agents , Humulus/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Protein Kinase C-alpha/metabolism , TRPV Cation Channels/metabolism , Mice , Vasodilator Agents/pharmacology , Vasodilator Agents/chemistry , Male , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Vasodilation/drug effects , Mice, Inbred C57BL
19.
Phytomedicine ; 128: 155557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547622

ABSTRACT

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Subject(s)
AMP-Activated Protein Kinases , Anthraquinones , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Human Umbilical Vein Endothelial Cells , Nitric Oxide Synthase Type III , Signal Transduction , Thrombospondin 1 , Animals , Humans , Anthraquinones/pharmacology , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Thrombospondin 1/metabolism , Nitric Oxide Synthase Type III/metabolism , Male , Rats , Mice , Rats, Sprague-Dawley , Endothelium, Vascular/drug effects , Glucose/metabolism , Mice, Inbred C57BL
20.
Biomed Pharmacother ; 174: 116466, 2024 May.
Article in English | MEDLINE | ID: mdl-38552439

ABSTRACT

Here, by using in vitro and ex vivo approaches, we elucidate the impairment of the hydrogen sulfide (H2S) pathway in vascular complications associated with metabolic syndrome (MetS). In the in vitro model simulating hyperlipidemic/hyperglycemic conditions, we observe significant hallmarks of endothelial dysfunction, including eNOS/NO signaling impairment, ROS overproduction, and a reduction in CSE-derived H2S. Transitioning to an ex vivo model using db/db mice, a genetic MetS model, we identify a downregulation of CBS and CSE expression in aorta, coupled with a diminished L-cysteine-induced vasorelaxation. Molecular mechanisms of eNOS/NO signaling impairment, dissected using pharmacological and molecular approaches, indicate an altered eNOS/Cav-1 ratio, along with reduced Ach- and Iso-induced vasorelaxation and increased L-NIO-induced contraction. In vivo treatment with the H2S donor Erucin ameliorates vascular dysfunction observed in db/db mice without impacting eNOS, further highlighting a specific action on smooth muscle component rather than the endothelium. Analyzing the NO signaling pathway in db/db mice aortas, reduced cGMP levels were detected, implicating a defective sGC/cGMP signaling. In vivo Erucin administration restores cGMP content. This beneficial effect involves an increased sGC activity, due to enzyme persulfidation observed in sGC overexpressed cells, coupled with PDE5 inhibition. In conclusion, our study demonstrates a pivotal role of reduced cGMP levels in impaired vasorelaxation in a murine model of MetS involving an impairment of both H2S and NO signaling. Exogenous H2S supplementation through Erucin represents a promising alternative in MetS therapy, targeting smooth muscle cells and supporting the importance of lifestyle and nutrition in managing MetS.


Subject(s)
Cyclic GMP , Hydrogen Sulfide , Metabolic Syndrome , Mice, Inbred C57BL , Soluble Guanylyl Cyclase , Animals , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Cyclic GMP/metabolism , Metabolic Syndrome/metabolism , Mice , Male , Soluble Guanylyl Cyclase/metabolism , Vasodilation/drug effects , Signal Transduction/drug effects , Nitric Oxide Synthase Type III/metabolism , Humans , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Nitric Oxide/metabolism , Aorta/drug effects , Aorta/metabolism , Vascular Diseases/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...