Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.660
Filter
1.
PLoS Pathog ; 20(5): e1011835, 2024 May.
Article in English | MEDLINE | ID: mdl-38758969

ABSTRACT

A novel group of biocidal compounds are the Crystal 3D (Cry) and Cytolytic (Cyt) proteins produced by Bacillus thuringiensis (Bt). Some Bt Cry proteins have a selective nematocidal activity, with Cry5B being the most studied. Cry5B kills nematode parasites by binding selectively to membrane glycosphingolipids, then forming pores in the cell membranes of the intestine leading to damage. Cry5B selectively targets multiple species of nematodes from different clades and has no effect against mammalian hosts. Levamisole is a cholinergic anthelmintic that acts by selectively opening L-subtype nicotinic acetylcholine receptor ion-channels (L-AChRs) that have been found on muscles of nematodes. A synergistic nematocidal interaction between levamisole and Cry5B at the whole-worm level has been described previously, but the location, mechanism and time-course of this synergism is not known. In this study we follow the timeline of the effects of levamisole and Cry5B on the Ca2+ levels in enterocyte cells in the intestine of Ascaris suum using fluorescence imaging. The peak Ca2+ responses to levamisole were observed after approximately 10 minutes while the peak responses to activated Cry5B were observed after approximately 80 minutes. When levamisole and Cry5B were applied simultaneously, we observed that the responses to Cry5B were bigger and occurred sooner than when it was applied by itself. It is proposed that the synergism is due to the cytoplasmic Ca2+ overload that is induced by the combination of levamisole opening Ca2+ permeable L-subtype nAChRs and the Ca2+ permeable Cry5B toxin pores produced in the enterocyte plasma membranes. The effect of levamisole potentiates and speeds the actions of Cry5B that gives rise to bigger Ca2+ overloads that accelerates cell-death of the enterocytes.


Subject(s)
Ascaris suum , Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Levamisole , Levamisole/pharmacology , Animals , Bacillus thuringiensis Toxins/pharmacology , Endotoxins/pharmacology , Endotoxins/metabolism , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Bacterial Proteins/metabolism , Ascaris suum/drug effects , Anthelmintics/pharmacology , Intestines/drug effects , Intestines/parasitology , Drug Synergism , Antinematodal Agents/pharmacology , Bacillus thuringiensis/drug effects
2.
Pestic Biochem Physiol ; 201: 105881, 2024 May.
Article in English | MEDLINE | ID: mdl-38685247

ABSTRACT

Insect pests cause immense agronomic losses worldwide. One of the most destructive of major crops is the Fall Armyworm (Spodoptera frugiperda, FAW). The ability to migrate long distances, a prodigious appetite, and a demonstrated ability to develop resistance to insecticides, make it a difficult target to control. Insecticidal proteins, for example those produced by the bacterium Bacillus thuringiensis, are among the safest and most effective insect control agents. Genetically modified (GM) crops expressing such proteins are a key part of a successful integrated pest management (IPM) program for FAW. However, due to the development of populations resistant to commercialized GM products, new GM traits are desperately needed. Herein, we describe a further characterization of the newly engineered trait protein eCry1Gb.1Ig. Similar to other well characterized Cry proteins, eCry1Gb.1Ig is shown to bind FAW midgut cells and induce cell-death. Binding competition assays using trait proteins from other FAW-active events show a lack of competition when binding FAW brush border membrane vesicles (BBMVs) and when utilizing non-pore-forming versions as competitors in in vivo bioassays. Similarly, insect cell lines expressing SfABCC2 and SfABCC3 (well characterized receptors of existing commercial Cry proteins) are insensitive to eCry1Gb.1Ig. These findings are consistent with results from our previous work showing that eCry1Gb.1Ig is effective in controlling insects with resistance to existing traits. This underscores the value of eCry1Gb.1Ig as a new GM trait protein with a unique site-of-action and its potential positive impact to global food production.


Subject(s)
Bacterial Proteins , Spodoptera , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Hemolysin Proteins/genetics , Endotoxins/pharmacology , Endotoxins/metabolism , Bacillus thuringiensis Toxins/pharmacology , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Insecticides/pharmacology , Plants, Genetically Modified , Pest Control, Biological/methods
3.
Front Immunol ; 15: 1373255, 2024.
Article in English | MEDLINE | ID: mdl-38585266

ABSTRACT

Acting through a combination of direct and indirect pathogen clearance mechanisms, blood-derived antimicrobial compounds (AMCs) play a pivotal role in innate immunity, safeguarding the host against invading microorganisms. Besides their antimicrobial activity, some AMCs can neutralize endotoxins, preventing their interaction with immune cells and avoiding an excessive inflammatory response. In this study, we aimed to investigate the influence of unfractionated heparin, a polyanionic drug clinically used as anticoagulant, on the endotoxin-neutralizing and antibacterial activity of blood-derived AMCs. Serum samples from healthy donors were pre-incubated with increasing concentrations of heparin for different time periods and tested against pathogenic bacteria (Acinetobacter baumannii, Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus) and endotoxins from E. coli, K. pneumoniae, and P. aeruginosa. Heparin dose-dependently decreased the activity of blood-derived AMCs. Consequently, pre-incubation with heparin led to increased activity of LPS and higher values of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6). Accordingly, higher concentrations of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa were observed as well. These findings underscore the neutralizing effect of unfractionated heparin on blood-derived AMCs in vitro and may lead to alternative affinity techniques for isolating and characterizing novel AMCs with the potential for clinical translation.


Subject(s)
Anti-Infective Agents , Heparin , Heparin/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Endotoxins/pharmacology , Klebsiella pneumoniae
4.
J Agric Food Chem ; 72(13): 7291-7298, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507714

ABSTRACT

Bacillus thuringiensis (Bt) is widely used to produce biological pesticides. However, its persistence is limited because of ultraviolet (UV) rays. In our previous study, we found that exogenous intermediates of the urea cycle were beneficial to Bt for survival under UV stress. To further explore the effect of the urea cycle on the resistance mechanism of Bt, the rocF/argG gene, encoding arginase and argininosuccinate synthase, respectively, were knocked out and recovered in this study. After the target genes were removed, respectively, the urea cycle in the tested Bt was inhibited to varying degrees. The UV stress test showed that the urea cycle disorder could reduce the resistance of Bt under UV stress. Meanwhile, the antioxidant enzyme activities of Bt were also decreased to varying degrees due to the knockout of the target genes. All of these results revealed that the urea cycle can metabolically regulate the stress resistance of Bt.


Subject(s)
Bacillus thuringiensis , Bacillus thuringiensis/genetics , Urea , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Endotoxins/pharmacology
5.
Nitric Oxide ; 147: 1-5, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547960

ABSTRACT

Endotoxin tolerance (ET) is the hyporesponsiveness to lipopolysaccharide (LPS) after prior exposure. It is characterized by the downregulation of pro-inflammatory cytokine levels. Although ET protects against inflammation, its abolishment or recovery is critical for immunity. Nitric oxide (NO) plays various roles in the development of ET; however, its specific role in ET recovery remains unknown. To induce ET, RAW264.7 cells (a murine macrophage cell line) were pre-exposed to LPS (LPS1, 100 ng/mL for 24 h) and subsequently re-stimulated with LPS (LPS2, 100 ng/mL for 24 h). Expression of cytokines, NO, nitrite and inducible NO synthase (iNOS) were measured after 0, 12, 24, and 36 h of resting after LPS1 treatment with or without the iNOS-specific inhibitor, 1400W. LPS2-induced tumor necrosis factor-⍺ (TNF-⍺) and interleukin-6 (IL-6) were downregulated after LPS1 treatment, confirming the development of ET. Notably, TNF-⍺ and IL-6 levels spontaneously rebounded after 12-24 h of resting following LPS1 treatment. In contrast, levles of NO, nitrite and iNOS increased during ET development and decreased during ET recovery. Moreover, 1400W inhibited ET development and blocked the early production of NO (<12 h) during ET recovery. Our findings suggest a negative correlation between iNOS-induced NO and cytokine levels in the abolishment of ET.


Subject(s)
Lipopolysaccharides , Nitric Oxide Synthase Type II , Nitric Oxide , Tumor Necrosis Factor-alpha , Animals , Nitric Oxide/metabolism , Mice , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Interleukin-6/metabolism , Endotoxins/pharmacology , Macrophages/drug effects , Macrophages/metabolism
6.
J Econ Entomol ; 117(2): 537-544, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38366888

ABSTRACT

Larvae of the southern corn rootworm (SCR) Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae) are primary pests of peanut in the Virginia-Carolina region of the United States, and are relatively sporadic pests in southern states such as Georgia, Alabama, and Florida. Peanuts have strict quality standards which, when they are not met, can diminish crop value by more than 65%. Management of direct pests like SCR is therefore crucial to maintaining the economic viability of the crop. The soil-dwelling nature of SCR larvae complicates management due to difficulties associated with monitoring and predicting infestations. Nonchemical management options are limited in this system; preventative insecticide applications are the most reliable management strategy for at-risk fields. Chlorpyrifos was the standard product for larval SCR management in peanut until its registration was revoked in 2022, leaving no effective chemical management option for larvae. We tested a novel insecticide, isocycloseram, for its ability to reduce pod scarring, pod penetration, and non-SCR pod damage in field studies conducted in Suffolk, Virginia in 2020-2022. Overall injury was low in 2020 and 2022, and in 2022 there was not a significant effect of treatment. In 2021, 2 simulated chemigation applications of isocycloseram in July significantly reduced pod scarring and overall pod injury relative to chlorpyrifos and the untreated control. Our results suggest that isocycloseram may become an effective option for managing SCR in peanut, although more work is needed to understand the mechanisms by which it is effective as a soil-applied insecticide.


Subject(s)
Chlorpyrifos , Coleoptera , Insecticides , Animals , Coleoptera/physiology , Insecticides/pharmacology , Arachis , Cicatrix , Larva/physiology , Soil , Zea mays/physiology , Plants, Genetically Modified , Endotoxins/pharmacology
7.
Reprod Biomed Online ; 48(4): 103625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402675

ABSTRACT

RESEARCH QUESTION: Can the addition of progesterone and neurotensin, molecular agents found in the female reproductive tract, after sperm washing increase the fertilization potential of human spermatozoa? DESIGN: (i) Cohort study of 24 men. Spermatozoa selected by swim-up were incubated in either progesterone or neurotensin (0.1-100 µM) for 1-4 h, and hyperactive motility and binding to hyaluronan (0.1-100 µM) were assessed. The effect of progesterone 10 µM on sperm function was assessed in a blinded manner, including: hyperactive motility, binding to hyaluronan, tyrosine phosphorylation, acrosome reaction and oxidative DNA damage. (i) Embryo safety testing [one-cell mouse embryo assay (MEA), endotoxin and sterility counts (n = 3)] in preclinical embryo models of IVF (murine and porcine, n = 7 each model) and a small preliminary human study (n = 4) of couples undergoing standard IVF with oocytes inseminated with spermatozoa ± 10 µM progesterone. RESULTS: Progesterone 10 µM increased sperm binding to hyaluronan, hyperactive motility and tyrosine phosphorylation (all P < 0.05). Neurotensin had no effect (P > 0.05). Progesterone 10 µM in human embryo culture media passed embryo safety testing (MEA, endotoxin concentration and sterility plate count). In preclinical models of IVF, the exposure of spermatozoa to progesterone 10 µM and oocytes to progesterone 1 µM was not detrimental, and increased the fertilization rate in mice and the blastocyst cell number in mice and pigs (all P ≤ 0.03). In humans, every transferred blastocyst that had been produced from spermatozoa exposed to progesterone resulted in a live birth. CONCLUSION: The addition of progesterone to sperm preparation media shows promise as an adjunct to current methods for increasing fertilization potential. Randomized controlled trials are required to determine the clinical utility of progesterone for improving IVF outcomes.


Subject(s)
Infertility , Progesterone , Humans , Male , Female , Animals , Mice , Swine , Progesterone/pharmacology , Progesterone/metabolism , Fertilization in Vitro/methods , Neurotensin/metabolism , Neurotensin/pharmacology , Hyaluronic Acid/pharmacology , Cohort Studies , Semen , Spermatozoa/metabolism , Infertility/metabolism , Tyrosine/metabolism , Endotoxins/metabolism , Endotoxins/pharmacology
8.
Pest Manag Sci ; 80(7): 3326-3333, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38380740

ABSTRACT

BACKGROUND: With the increasing incidence of pest resistance to transgenic crops producing Bacillus thuringiensis (Bt) proteins in the field, elucidating the molecular basis of resistance is important for monitoring, delaying and countering pest resistance. Previous work revealed that mutation or down-regulated expression of the cadherin gene (PgCad1) is associated with pink bollworm (Pectinophora gossypiella) resistance to Cry1Ac, and 20 mutant PgCad1 alleles (r1-r20) were characterized. Here, we tested the hypothesis that the ABC transporter PgABCC2 is a functional receptor for the Bt toxin Cry1Ac and that a mutation is associated with resistance. RESULTS: We identified and characterized the first resistance allele (rC2) of PgABCC2 in the laboratory-selected Cry1Ac-resistant strain AQ-C2 of pink bollworm. The rC2 allele had a one-base deletion in exon20, resulting in a frameshift and the introduction of a premature stop codon. This resulting PgABCC2 protein had a truncated C-terminus, including the loss of the NBD2 domain. AQ-C2 exhibited 20.2-fold greater resistance to Cry1Ac than the susceptible strain, and its inheritance of Cry1Ac resistance was recessive and genetically linked to PgABCC2. When produced in cultured insect cells, recombinant wild-type and rC2 mutant PgABCC2 proteins localized within the cell plasma membrane, although substantial cytoplasmic retention was also observed for the mutant protein, while the mutant PgABCC2 caused a 13.9-fold decrease in Cry1Ac toxicity versus the wild-type PgABCC2. CONCLUSIONS: PgABCC2 is a functional receptor of Cry1Ac and the loss of its carboxyl terminus (including its NBD2 domain) confers low-level resistance to Cry1Ac in both larvae and in cultured cells. © 2024 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Insecticide Resistance , Moths , Mutation , Animals , Bacillus thuringiensis Toxins/pharmacology , Insecticide Resistance/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/metabolism , Endotoxins/pharmacology , Endotoxins/genetics , Hemolysin Proteins/pharmacology , Hemolysin Proteins/genetics , Moths/genetics , Moths/drug effects , Moths/growth & development , Larva/genetics , Larva/growth & development , Larva/drug effects , Insect Proteins/genetics , Insect Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Insecticides/pharmacology
9.
Int J Mol Sci ; 25(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338861

ABSTRACT

Urbanization with reduced microbial exposure is associated with an increased burden of asthma and atopic symptoms. Conversely, environmental exposure to endotoxins in childhood can protect against the development of allergies. Our study aimed to investigate whether the renaturation of the indoor environment with aerosolized radiation-detoxified lipopolysaccharide (RD-LPS) has a preventative effect against the development of ragweed-induced Th2-type airway inflammation. To explore this, cages of six-week-old BALB/c mice were treated daily with aerosolized native LPS (N-LPS) or RD-LPS. After a 10-week treatment period, mice were sensitized and challenged with ragweed pollen extract, and inflammatory cell infiltration into the airways was observed. As dendritic cells (DCs) play a crucial role in the polarization of T-cell responses, in our in vitro experiments, the effects of N-LPS and RD-LPS were compared on human monocyte-derived DCs (moDCs). Mice in RD-LPS-rich milieu developed significantly less allergic airway inflammation than mice in N-LPS-rich or common environments. The results of our in vitro experiments demonstrate that RD-LPS-exposed moDCs have a higher Th1-polarizing capacity than moDCs exposed to N-LPS. Consequently, we suppose that the aerosolized, non-toxic RD-LPS applied in early life for the renaturation of urban indoors may be suitable for the prevention of Th2-mediated allergies in childhood.


Subject(s)
Endotoxins , Hypersensitivity , Mice , Humans , Animals , Endotoxins/pharmacology , Lipopolysaccharides/pharmacology , Ambrosia , Th2 Cells , Inflammation , Mice, Inbred BALB C , Ovalbumin/pharmacology , Dendritic Cells
10.
Insect Biochem Mol Biol ; 166: 104073, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215915

ABSTRACT

The peritrophic matrix (or peritrophic membrane, PM) is present in most insects where it acts as a barrier to mechanical insults and pathogens, as well as a facilitator of digestive processes. The PM is formed by the binding of structural PM proteins, referred to as peritrophins, to chitin fibrils and spans the entire midgut in lepidopterans. To investigate the role of peritrophins in a highly polyphagous lepidopteran pest, namely the cotton leafworm (Spodoptera littoralis), we generated Insect Intestinal Mucin (IIM-) and non-mucin Peritrophin (PER-) mutant strains via CRISPR/Cas9 mutagenesis. Both strains exhibited deformed PMs and retarded developmental rates. Bioassays conducted with Bacillus thuringiensis (Bt) and nucleopolyhedrovirus (SpliNPV) formulations showed that both the IIM- and PER- mutant larvae were more susceptible to these bioinsecticides compared to the wild-type (WT) larvae with intact PM. Interestingly, the provision of chitin-binding agent Calcofluor (CF) in the diet lowered the toxicity of Bt formulations in both WT and IIM- larvae and the protective effect of CF was significantly lower in PER- larvae. This suggested that the interaction of CF with PER is responsible for Bt resistance mediated by CF. In contrast, the provision of CF caused increased susceptibility to SpliNPV in both mutants and WT larvae. The study showed the importance of peritrophins in the defense against pathogens in S. littoralis and revealed novel insights into CF-mediated resistance to Cry toxin.


Subject(s)
Bacillus thuringiensis , Moths , Nucleopolyhedroviruses , Animals , Bacillus thuringiensis/metabolism , Spodoptera/metabolism , Nucleopolyhedroviruses/metabolism , Moths/metabolism , Larva/metabolism , Endotoxins/pharmacology , Chitin/metabolism , Bacterial Proteins/pharmacology , Hemolysin Proteins/pharmacology
11.
J Agric Food Chem ; 72(4): 2263-2276, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38235648

ABSTRACT

Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.


Subject(s)
Bacillus thuringiensis , Insecticides , MicroRNAs , Moths , Animals , Moths/genetics , Moths/metabolism , Larva/genetics , Larva/metabolism , Trypsin/genetics , Trypsin/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Bacillus thuringiensis/chemistry , Endotoxins/genetics , Endotoxins/pharmacology , Endotoxins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Insecticide Resistance/genetics
12.
Adv Sci (Weinh) ; 11(6): e2307650, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38087901

ABSTRACT

Bioinsecticides and transgenic crops based on the bacterial pathogen Bacillus thuringiensis (Bt) can effectively control diverse agricultural insect pests, nevertheless, the evolution of resistance without obvious fitness costs has seriously eroded the sustainable use of these Bt products. Recently, it has been discovered that an increased titer of juvenile hormone (JH) favors an insect host (Plutella xylostella) to enhance fitness whilst resisting the Bt pathogen, however, the underlying regulatory mechanisms of the increased JH titer are obscure. Here, the involvement of N6 -methyladenosine (m6 A) RNA modification in modulating the availability of JH in this process is defined. Specifically, it is found that two m6 A methyltransferase subunit genes, PxMettl3 and PxMettl14, repress the expression of a key JH-degrading enzyme JH esterase (JHE) to induce an increased JH titer, mitigating the fitness costs associated with a robust defense against the Bt pathogen. This study identifies an as-yet uncharacterized m6 A-mediated epigenetic regulator of insect hormones for maintaining fitness during pathogen defense and unveils an emerging Bt resistance-related m6 A methylation atlas in insects, which further expands the functional landscape of m6 A modification and showcases the pivotal role of epigenetic regulation in host-pathogen interactions.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Moths/genetics , Moths/metabolism , RNA/metabolism , Epigenesis, Genetic/genetics , Endotoxins/genetics , Endotoxins/metabolism , Endotoxins/pharmacology , Bacillus thuringiensis Toxins/metabolism , Insecta , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Juvenile Hormones/metabolism , Methylation
13.
Pest Manag Sci ; 80(4): 1728-1739, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009289

ABSTRACT

BACKGROUND: The commercialized Bt (Bacillus thuringiensis) crops accumulate Bt protein within cells, but the intracellular interactions of foreign protein with endogenous protein inevitably result in large or small unintended effects. In this study, the Bt gene Cry1Ca was linked with the sequences of extracellular secretion signal peptide and carbohydrate binding module 11 to constitute a fusion gene SP-Cry1Ca-CBM11, and the fusion gene driven by constitutive promoters was used for secreting and anchoring onto the cell wall to minimize unintended effects. RESULTS: The transient expression in tobacco leaves demonstrated that the fusion protein was anchored on cell walls. The Cry1Ca contents of five homozygous rice transformants of single-copy insertion were different and descended in the order leaf > root > stem. The maximum content of Cry1Ca was 17.55 µg g-1 in leaves of transformant 21H037. The bioassay results revealed that the transformants exhibited high resistance to lepidopteran pests. The corrected mortality of pink stem borer (Sesamia inferens) and striped stem borer (Chilo suppressalis) ranged from 96.33% to 100%, and from 83.32% to 100%, respectively, and the corrected mortality of rice leaf roller (Cnaphalocrocis medinalis) was 92.53%. Besides, the agronomic traits of the five transformants were normal and similar to that of the recipient, and the transformants were highly resistant to glyphosate at the germination and seedling stages. CONCLUSION: The fusion Bt protein was accumulated on cell walls and endowed the rice with high resistance to lepidopteran pests without unintended effects in agronomic traits. © 2023 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis , Lepidoptera , Moths , Oryza , Animals , Lepidoptera/genetics , Oryza/genetics , Oryza/metabolism , Endotoxins/pharmacology , Bacillus thuringiensis Toxins/metabolism , Bacillus thuringiensis Toxins/pharmacology , Bacterial Proteins/pharmacology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Bacillus thuringiensis/genetics , Pest Control, Biological/methods
14.
Pestic Biochem Physiol ; 197: 105658, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38072533

ABSTRACT

Crystalline (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) are widely used in transgenic crops to control important insect pests. Bt crops have many benefits compared with traditional broad-spectrum insecticides, including improved pest control with reduced negative impacts on off-target organisms and fewer environmental consequences. Transgenic corn and cotton producing Cry2Ab Bt toxin are used globally to control several major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Resistance to the Cry2Ab toxin and to Bt crops producing Cry2Ab is associated with mutations in the midgut ATP-binding cassette transporter ABCA2 gene in several lepidopterans. Gene-editing knockout has further shown that ABCA2 plays an important functional role in Cry2Ab intoxication. However, the precise role of ABCA2 in the mode of action of Cry2Ab has yet to be reported. Here, we used two in vitro expression systems to study the roles of the H. armigera ABCA2 (HaABCA2) protein in Cry2Ab intoxication. Cry2Ab bound to cultured Sf9 insect cells producing HaABCA2, resulting in specific and dose-dependent susceptibility to Cry2Ab. In contrast, Sf9 cells expressing recombinant mutant proteins missing at least one of the extracellular loop regions 1, 3, 4, and 6 or the intracellular loop containing nucleotide-binding domain 1 lost susceptibility to Cry2Ab, indicating these regions are important for receptor function. Consistent with these results, Xenopus laevis oocytes expressing recombinant HaABCA2 showed strong ion membrane flux in the presence of Cry2Ab, suggesting that HaABCA2 is involved in promoting pore formation during Cry2Ab intoxication. Together with previously published data, our results support HaABCA2 being an important receptor of Cry2Ab where it functions to promote intoxication in H. armigera.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Helicoverpa armigera , Endotoxins/genetics , Endotoxins/pharmacology , Endotoxins/metabolism , ATP-Binding Cassette Transporters/genetics , Bacillus thuringiensis Toxins/metabolism , Insecticide Resistance/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/metabolism , Moths/genetics , Moths/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Gossypium/metabolism , Larva/genetics
15.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069125

ABSTRACT

In patients with portal hypertension, there are many complications including cardiovascular abnormalities, hepatorenal syndrome, ascites, variceal bleeding, and hepatic encephalopathy. The underlying mechanisms are not yet completely clarified. It is well known that portal hypertension causes mesenteric congestion which produces reactive oxygen species (ROS). ROS has been associated with intestinal mucosal injury, increased intestinal permeability, enhanced gut bacterial overgrowth, and translocation; all these changes result in increased endotoxin and inflammation. Portal hypertension also results in the development of collateral circulation and reduces liver mass resulting in an overall increase in endotoxin/bacteria bypassing detoxication and immune clearance in the liver. Endotoxemia can in turn aggravate oxidative stress and inflammation, leading to a cycle of gut barrier dysfunction → endotoxemia → organ injury. The phenotype of cardiovascular abnormalities includes hyperdynamic circulation and cirrhotic cardiomyopathy. Oxidative stress is often accompanied by inflammation; thus, blocking oxidative stress can minimize the systemic inflammatory response and alleviate the severity of cardiovascular diseases. The present review aims to elucidate the role of oxidative stress in cirrhosis-associated cardiovascular abnormalities and discusses possible therapeutic effects of antioxidants on cardiovascular complications of cirrhosis including hyperdynamic circulation, cirrhotic cardiomyopathy, and hepatorenal syndrome.


Subject(s)
Cardiomyopathies , Cardiovascular Abnormalities , Endotoxemia , Esophageal and Gastric Varices , Hepatorenal Syndrome , Hypertension, Portal , Humans , Esophageal and Gastric Varices/complications , Hepatorenal Syndrome/complications , Reactive Oxygen Species/pharmacology , Endotoxemia/complications , Gastrointestinal Hemorrhage , Liver Cirrhosis/therapy , Hypertension, Portal/complications , Oxidative Stress , Inflammation/complications , Cardiomyopathies/complications , Cardiovascular Abnormalities/complications , Endotoxins/pharmacology
16.
Braz J Biol ; 83: e277899, 2023.
Article in English | MEDLINE | ID: mdl-38126646

ABSTRACT

Transgenic Bt soybean plants have been developed to control insect pests, such as Anticarsia gemmatalis and Chrysodeixis includens. This objective has been achieved successfully; however, recently, some authors claimed that Bt soybean plants have been more susceptible than non-Bt soybean to Bemisia tabaci MEAM1. In addition, it is unknown whether Bt soybean plants infested by B. tabaci become less resistant to target pests. Therefore, this study aimed to evaluate: (i) whether the previous infestation with B. tabaci can compromise Bt and non-Bt soybean resistance to C. includens; (ii) the effects of B. tabaci infestations on Bt and non-Bt soybean plant growth; and (iii) whether B. tabaci feeding reduces contents of chlorophyll and carotenoids of soybean plants. Bt and non-Bt soybean plants pre-infested with B. tabaci showed no changes in resistance to C. includens. Bt soybean plants infested with B. tabaci showed a lower plant height than uninfested plants. Differently, non-Bt soybean plants exhibited no reduction in plant growth due to B. tabaci feeding. Bt soybean plants suffered a reduction in dry matter only under double infestation (B. tabaci and C. includens), while non-Bt soybean plants experienced reduction in dry matter when infested with B. tabaci and C. includens or by C. includens only. B. tabaci feeding did not alter contents of chlorophyll and carotenoids, and perhaps the reduction in plant growth was related to salivary toxins. Concluding, both Bt and non-Bt soybean plants were susceptible to B. tabaci feeding, evidencing necessity of developing soybean cultivars resistant to B. tabaci.


Subject(s)
Glycine max , Moths , Animals , Endotoxins/pharmacology , Bacillus thuringiensis Toxins/pharmacology , Pest Control, Biological , Plants, Genetically Modified , Carotenoids/pharmacology , Chlorophyll
17.
Pestic Biochem Physiol ; 196: 105596, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945246

ABSTRACT

Cry and Vip3 proteins are both pore-forming toxins produced by Bacillus thuringiensis that show synergistic insecticidal activity against different insect pests. However, the synergistic effect of Cry and Vip3 proteins on the midgut in target insects is still unclear. In this study, faster and more serious damage was observed after treatment with both Cry9A and Vip3A proteins in the Chilo suppressalis midgut compared to single-protein treatment. Through RNA sequencing, midgut transcriptomic comparison was performed between dual- and single-protein treatments according to midgut injury. After 6 h, 609 differentially expressed genes were found with the combined Cry9A and Vip3A treatments, which was much more than that in the single treatment, corresponding to faster and more serious damage. These genes were mainly enriched in similar pathways, such as lipid metabolic, oxidation-reduction and carbohydrate metabolic process, peptide secretion and cell-cell adhesion; however, the number and expression level of differentially expressed genes are increased. For specific genes significantly regulated by induction of Cry9A and Vip3A, lipases, phospholipid scramblase, probable tape measure protein and arylsulfatase J were significantly downregulated after 6 h treatment. In addition, regular genes related to the activation and receptor binding of B. thuringiensis toxins were differentially regulated, such as ATP-binding cassette subfamily G member 1 and serine protease. Validation with RT-qPCR showed agreement with the sequencing results. Overall, our results support that stronger and faster midgut responses at the cellular and transcriptional levels are induced by the synergistic toxicity of Cry9A and Vip3A in C. suppressalis.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Animals , Larva , Endotoxins/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/metabolism , Insecticides/toxicity , Insecticides/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins/metabolism , Bacillus thuringiensis Toxins/pharmacology , Hemolysin Proteins/toxicity , Hemolysin Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 120(44): e2306932120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37874855

ABSTRACT

Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.


Subject(s)
Bacillus thuringiensis , Insecticides , Animals , Bacillus thuringiensis/genetics , Spodoptera/genetics , Bacillus thuringiensis Toxins/metabolism , Down-Regulation , Transcription Factors/metabolism , Genome-Wide Association Study , Insecticides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/metabolism , Crops, Agricultural/genetics , Endotoxins/genetics , Endotoxins/pharmacology , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecticide Resistance/genetics , Larva/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
19.
Int J Biol Macromol ; 253(Pt 8): 127668, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37884238

ABSTRACT

Rapid evolution of pest resistance to Bt insecticidal proteins presents a serious threat to the sustainable use of Bt crops. The cotton bollworm has been extensively exposed to Bt cotton worldwide and has evolved resistance in laboratory and field. Previous studies have highlighted the significant roles played by the ABC transporter proteins in Bt resistance. In this study, the ORF of HaABCB1 was cloned and analyzed. The expression of HaABCB1 was detected in all developmental stages and tissues, with the highest expression in third instar larvae stage and hindgut tissue. Compared with susceptible strain, a remarkable decrease of HaABCB1 expression in Cry1Ac resistant strain while no significant change in Cry2Ab resistant strain were found. The HaABCB1 expression reduced after susceptible larvae induced by Cry1Ac, but no obvious expression changes after Cry2Ab exposure. RNAi-mediated down-regulation of HaABCB1 could lead to a significant reduction in larval susceptibility to Cry1Ac, but not to Cry2Ab, in susceptible strain. Genetic linkage analysis confirmed that decreased expression of the HaABCB1 mediates resistance to Cry1Ac, but not Cry2Ab resistance. This knowledge contributes to better understanding of the complex molecular mechanisms underlying Bt resistance and provide theoretical foundation for the development of new strategies for pest resistance management.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Endotoxins/genetics , Endotoxins/pharmacology , Endotoxins/metabolism , Bacillus thuringiensis Toxins/metabolism , Insecticide Resistance/genetics , Moths/genetics , Moths/metabolism , Larva/genetics , Larva/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Gossypium/metabolism
20.
J Econ Entomol ; 116(6): 2146-2153, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37816687

ABSTRACT

Lepidopteran pests have been successfully managed by the adoption of insect resistant transgenic plants expressing Cry and/or Vip insecticidal proteins derived from Bacillus thuringiensis (Bt plants). Among such pests, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is highlighted for its destructive potential in maize crops and for cases of field-evolved resistance to Bt plants. Cry insecticidal proteins expressed in Bt plants are known for their interaction with insect midgut receptors and subsequent midgut cell disruption that leads to target pest death. In the midgut of lepidopteran larval pests such as S. frugiperda, serine proteases are important in dietary protein digestion and activation or degradation of insecticidal proteins. This work was conducted to evaluate if the use of a soybean trypsin inhibitor (SBTI) could disrupt the development of a Bt-susceptible and a Bt-resistant population of S. frugiperda ingesting Bt (expressing Cry1F, Cry1A.105, and Cry2Ab2 Cry proteins) and non-Bt maize plants. The SBTI was produced and purified using recombinant expression in E. coli followed by purification in Ni-Sepharose. Bioassays using non-Bt maize leaves indicated that the development of susceptible and resistant populations of S. frugiperda was not influenced by the ingestion of SBTI. However, when the resistant population consumed Bt maize plants amended with SBTI, high mortality along with a reduction in larval weight and reduced activity of digestive trypsins were observed. Although the mode of action was not elucidated, it is possible that the consumption of SBTI increased susceptibility to Bt maize in the resistant population of S. frugiperda.


Subject(s)
Bacillus thuringiensis , Insecticides , Animals , Spodoptera , Zea mays , Trypsin Inhibitors/pharmacology , Glycine max/genetics , Endotoxins/pharmacology , Escherichia coli/metabolism , Bacillus thuringiensis Toxins , Insecticide Resistance , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Hemolysin Proteins/pharmacology , Hemolysin Proteins/genetics , Insecticides/pharmacology , Bacillus thuringiensis/genetics , Larva/physiology , Plants, Genetically Modified/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...