Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 954
Filter
1.
J Clin Invest ; 134(9)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38690732

ABSTRACT

Epigenetic regulatory mechanisms are underappreciated, yet are critical for enteric nervous system (ENS) development and maintenance. We discovered that fetal loss of the epigenetic regulator Bap1 in the ENS lineage caused severe postnatal bowel dysfunction and early death in Tyrosinase-Cre Bap1fl/fl mice. Bap1-depleted ENS appeared normal in neonates; however, by P15, Bap1-deficient enteric neurons were largely absent from the small and large intestine of Tyrosinase-Cre Bap1fl/fl mice. Bowel motility became markedly abnormal with disproportionate loss of cholinergic neurons. Single-cell RNA sequencing at P5 showed that fetal Bap1 loss in Tyrosinase-Cre Bap1fl/fl mice markedly altered the composition and relative proportions of enteric neuron subtypes. In contrast, postnatal deletion of Bap1 did not cause enteric neuron loss or impaired bowel motility. These findings suggest that BAP1 is critical for postnatal enteric neuron differentiation and for early enteric neuron survival, a finding that may be relevant to the recently described human BAP1-associated neurodevelopmental disorder.


Subject(s)
Cell Differentiation , Enteric Nervous System , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Animals , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Mice , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Mice, Knockout , Female , Gastrointestinal Motility/genetics , Humans
2.
Nat Metab ; 6(5): 837-846, 2024 May.
Article in English | MEDLINE | ID: mdl-38570627

ABSTRACT

Sodium is essential for all living organisms1. Animals including insects and mammals detect sodium primarily through peripheral taste cells2-7. It is not known, however, whether animals can detect this essential micronutrient independently of the taste system. Here, we report that Drosophila Ir76b mutants that were unable to detect sodium2 became capable of responding to sodium following a period of salt deprivation. From a screen for cells required for the deprivation-induced sodium preference, we identified a population of anterior enteric neurons, which we named internal sodium-sensing (INSO) neurons, that are essential for directing a behavioural preference for sodium. Enteric INSO neurons innervate the gut epithelia mainly through their dendritic processes and send their axonal projections along the oesophagus to the brain and to the crop duct. Through calcium imaging and CaLexA experiments, we found that INSO neurons respond immediately and specifically to sodium ions. Notably, the sodium-evoked responses were observed only after a period of sodium deprivation. Taken together, we have identified a taste-independent sodium sensor that is essential for the maintenance of sodium homeostasis.


Subject(s)
Drosophila Proteins , Neurons , Sodium , Animals , Sodium/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Neurons/metabolism , Postprandial Period , Drosophila melanogaster , Enteric Nervous System/metabolism , Taste/physiology , Mutation , Drosophila , Sodium Channels , Receptors, Ionotropic Glutamate
3.
Eur J Neurosci ; 59(10): 2465-2482, 2024 May.
Article in English | MEDLINE | ID: mdl-38487941

ABSTRACT

The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Dopaminergic Neurons , Enteric Nervous System , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopaminergic Neurons/metabolism , Mice , Enteric Nervous System/metabolism , Enteric Nervous System/cytology , Mice, Transgenic , Tyrosine 3-Monooxygenase/metabolism , Dopamine/metabolism , Male , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/genetics
4.
Biomolecules ; 14(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540765

ABSTRACT

Phosphatase and tensin homolog (Pten) is a key regulator of cell proliferation and a potential target to stimulate postnatal enteric neuro- and/or gliogenesis. To investigate this, we generated two tamoxifen-inducible Cre recombinase murine models in which Pten was conditionally ablated, (1) in glia (Plp1-expressing cells) and (2) in neurons (Calb2-expressing cells). Tamoxifen-treated adult (7-12 weeks of age; n = 4-15) mice were given DSS to induce colitis, EdU to monitor cell proliferation, and were evaluated at two timepoints: (1) early (3-4 days post-DSS) and (2) late (3-4 weeks post-DSS). We investigated gut motility and evaluated the enteric nervous system. Pten inhibition in Plp1-expressing cells elicited gliogenesis at baseline and post-DSS (early and late) in the colon, and neurogenesis post-DSS late in the proximal colon. They also exhibited an increased frequency of colonic migrating motor complexes (CMMC) and slower whole gut transit times. Pten inhibition in Calb2-expressing cells did not induce enteric neuro- or gliogenesis, and no alterations were detected in CMMC or whole gut transit times when compared to the control at baseline or post-DSS (early and late). Our results merit further research into Pten modulation where increased glia and/or slower intestinal transit times are desired (e.g., short-bowel syndrome and rapid-transit disorders).


Subject(s)
Enteric Nervous System , Animals , Mice , Enteric Nervous System/metabolism , Neurogenesis/physiology , Proteolipids/metabolism , Tamoxifen/pharmacology , Tensins/metabolism
5.
Stem Cells Transl Med ; 13(5): 490-504, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38387006

ABSTRACT

Regenerative cell therapy to replenish the missing neurons and glia in the aganglionic segment of Hirschsprung disease represents a promising treatment option. However, the success of cell therapies for this condition are hindered by poor migration of the transplanted cells. This limitation is in part due to a markedly less permissive extracellular environment in the postnatal gut than that of the embryo. Coordinated interactions between enteric neural crest-derived cells (ENCDCs) and their local environment drive migration along the embryonic gut during development of the enteric nervous system. Modifying transplanted cells, or the postnatal extracellular environment, to better recapitulate embryonic ENCDC migration could be leveraged to improve the engraftment and coverage of stem cell transplants. We compared the transcriptomes of ENCDCs from the embryonic intestine to that of postnatal-derived neurospheres and identified 89 extracellular matrix (ECM)-associated genes that are differentially expressed. Agrin, a heparin sulfate proteoglycan with a known inhibitory effect on ENCDC migration, was highly over-expressed by postnatal-derived neurospheres. Using a function-blocking antibody and a shRNA-expressing lentivirus, we show that inhibiting agrin promotes ENCDC migration in vitro and following cell transplantation ex vivo and in vivo. This enhanced migration is associated with an increased proportion of GFAP + cells, whose migration is especially enhanced.


Subject(s)
Agrin , Cell Movement , Neural Stem Cells , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/transplantation , Mice , Agrin/metabolism , Enteric Nervous System/metabolism , Enteric Nervous System/cytology , Colon/metabolism , Colon/cytology , Neural Crest/metabolism , Neural Crest/cytology , Hirschsprung Disease/metabolism , Hirschsprung Disease/therapy , Stem Cell Transplantation/methods
6.
Sci Rep ; 14(1): 3686, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355947

ABSTRACT

The enteric nervous system (ENS) is a large and complex part of the peripheral nervous system, and it is vital for gut homeostasis. To study the ENS, different hyper- and hypo-innervated model systems have been developed. The NSE-Noggin mouse model was described as one of the few models with a higher enteric neuronal density in the colon. However, in our hands NSE-Noggin mice did not present with a hyperganglionic phenotype. NSE-Noggin mice were phenotyped based on fur appearance, genotyped and DNA sequenced to demonstrate transgene and intact NSE-Noggin-IRES-EGFP construct presence, and RNA expression of Noggin was shown to be upregulated. Positive EGFP staining in the plexus of NSE-Noggin mice also confirmed Noggin protein expression. Myenteric plexus preparations of the colon were examined to quantify both the overall density of enteric neurons and the proportions of enteric neurons expressing specific subtype markers. The total number of enteric neurons in the colonic myenteric plexus of transgenic mice did not differ significantly from wild types, nor did the proportion of calbindin, calretinin, or serotonin immunoreactive myenteric neurons. Possible reasons as to why the hyperinnervated phenotype could not be observed in contrast with original studies using this mouse model are discussed, including study design, influence of microbiota, and other environmental variables.


Subject(s)
Enteric Nervous System , Neurons , Mice , Animals , Neurons/metabolism , Enteric Nervous System/metabolism , Carrier Proteins/metabolism , Myenteric Plexus , Mice, Transgenic , Colon
7.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38279293

ABSTRACT

The brain-gut axis has been identified as an important contributor to the physiopathology of Parkinson's disease. In this pathology, inflammation is thought to be driven by the damage caused by aggregation of α-synuclein in the brain. Interestingly, the Braak's theory proposes that α-synuclein misfolding may originate in the gut and spread in a "prion-like" manner through the vagus nerve into the central nervous system. In the enteric nervous system, enteric glial cells are the most abundant cellular component. Several studies have evaluated their role in Parkinson's disease. Using samples obtained from patients, cell cultures, or animal models, the studies with specific antibodies to label enteric glial cells (GFAP, Sox-10, and S100ß) seem to indicate that activation and reactive gliosis are associated to the neurodegeneration produced by Parkinson's disease in the enteric nervous system. Of interest, Toll-like receptors, which are expressed on enteric glial cells, participate in the triggering of immune/inflammatory responses, in the maintenance of intestinal barrier integrity and in the configuration of gut microbiota; thus, these receptors might contribute to Parkinson's disease. External factors like stress also seem to be relevant in its pathogenesis. Some authors have studied ways to reverse changes in EGCs with interventions such as administration of Tryptophan-2,3-dioxygenase inhibitors, nutraceuticals, or physical exercise. Some researchers point out that beyond being activated during the disease, enteric glial cells may contribute to the development of synucleinopathies. Thus, it is still necessary to further study these cells and their role in Parkinson's disease.


Subject(s)
Enteric Nervous System , Parkinson Disease , Animals , Humans , Parkinson Disease/etiology , Parkinson Disease/pathology , alpha-Synuclein/metabolism , Brain/metabolism , Inflammation/pathology , Neuroglia/metabolism , Enteric Nervous System/metabolism
8.
Int J Mol Sci ; 25(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255890

ABSTRACT

Current pharmacological treatments for depression fail to produce adequate remission in a significant proportion of patients. Increasingly, other systems, such as the microbiome-gut-brain axis, are being looked at as putative novel avenues for depression treatment. Dysbiosis and dysregulation along this axis are highly comorbid with the severity of depression symptoms. The endogenous extracellular matrix protein reelin is present in all intestinal layers as well as in myenteric and submucosal ganglia, and its receptors are also present in the gut. Reelin secretion from subepithelial myofibroblasts regulates cellular migration along the crypt-villus axis in the small intestine and colon. Reelin brain expression is downregulated in mood and psychotic disorders, and reelin injections have fast antidepressant-like effects in animal models of depression. This review seeks to discuss the roles of reelin in the gastrointestinal system and propose a putative role for reelin actions in the microbiota-gut-brain axis in the pathogenesis and treatment of depression, primarily reflecting on alterations in gut epithelial cell renewal and in the clustering of serotonin transporters.


Subject(s)
Antidepressive Agents , Brain-Gut Axis , Depression , Enteric Nervous System , Reelin Protein , Animals , Humans , Affect , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/metabolism , Enteric Nervous System/metabolism , Reelin Protein/metabolism
9.
J Am Heart Assoc ; 13(3): e033279, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38258657

ABSTRACT

BACKGROUND: Gut dysmotility is common after ischemic stroke, but the mechanism underlying this response is unknown. Under homeostasis, gut motility is regulated by the neurons of the enteric nervous system that control contractile/relaxation activity of muscle cells in the gut wall. More recently, studies of gut inflammation revealed interactions of macrophages with enteric neurons are also involved in modulating gut motility. However, whether poststroke gut dysmotility is mediated by direct signaling to the enteric nervous system or indirectly via inflammatory macrophages is unknown. METHODS AND RESULTS: We examined these hypotheses by using a clinically relevant permanent intraluminal midcerebral artery occlusion experimental model of stroke. At 24 hours after stroke, we performed in vivo and ex vivo gut motility assays, flow cytometry, immunofluorescence, and transcriptomic analysis. Stroke-induced gut dysmotility was associated with recruitment of muscularis macrophages into the gastrointestinal tract and redistribution of muscularis macrophages away from myenteric ganglia. The permanent intraluminal midcerebral artery occlusion model caused changes in gene expression in muscularis macrophages consistent with an altered phenotype. While the size of myenteric ganglia after stroke was not altered, myenteric neurons from post-permanent intraluminal midcerebral artery occlusion mice showed a reduction in neuronal nitric oxide synthase expression, and this response was associated with enhanced intestinal smooth muscle contraction ex vivo. Finally, chemical sympathectomy with 6-hydroxydopamine prevented the loss of myenteric neuronal nitric oxide synthase expression and stroke-induced slowed gut transit. CONCLUSIONS: Our findings demonstrate that activation of the sympathetic nervous system after stroke is associated with reduced neuronal nitric oxide synthase expression in myenteric neurons, resulting in impaired smooth muscle relaxation and dysregulation of gut transit.


Subject(s)
Enteric Nervous System , Stroke , Mice , Animals , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Enteric Nervous System/metabolism , Neurons/physiology , Muscle Relaxation , Stroke/metabolism
10.
Sci China Life Sci ; 67(1): 41-50, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37672184

ABSTRACT

The gut is the largest digestive and absorptive organ, which is essential for induction of mucosal and systemic immune responses, and maintenance of metabolic-immune homeostasis. The intestinal components contain the epithelium, stromal cells, immune cells, and enteric nervous system (ENS), as well as the outers, such as gut microbiota, metabolites, and nutrients. The dyshomeostasis of intestinal microenvironment induces abnormal intestinal development and functions, even colon diseases including dysplasia, inflammation and tumor. Several recent studies have identified that ENS plays a crucial role in maintaining the immune homeostasis of gastrointestinal (GI) microenvironment. The crosstalk between ENS and immune cells, mainly macrophages, T cells, and innate lymphoid cells (ILCs), has been found to exert important regulatory roles in intestinal tissue programming, homeostasis, function, and inflammation. In this review, we mainly summarize the critical roles of the interactions between ENS and immune cells in intestinal homeostasis during intestinal development and diseases progression, to provide theoretical bases and ideas for the exploration of immunotherapy for gastrointestinal diseases with the ENS as potential novel targets.


Subject(s)
Enteric Nervous System , Immunity, Innate , Humans , Lymphocytes , Enteric Nervous System/metabolism , Inflammation/metabolism , Homeostasis , Macrophages/metabolism
11.
Cell Prolif ; 57(1): e13536, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37551711

ABSTRACT

Enteric glial cells in the enteric nervous system are critical for the regulation of gastrointestinal homeostasis. Increasing evidence suggests two-way communication between enteric glial cells and both enteric neurons and immune cells. These interactions may be important in the pathogenesis of Crohn's disease (CD), a chronic relapsing disease characterized by a dysregulated immune response. Structural abnormalities in glial cells have been identified in CD. Furthermore, classical inflammatory pathways associated with CD (e.g., the nuclear factor kappa-B pathway) function in enteric glial cells. However, the specific mechanisms by which enteric glial cells contribute to CD have not been summarized in detail. In this review, we describe the possible roles of enteric glial cells in the pathogenesis of CD, including the roles of glia-immune interactions, neuronal modulation, neural plasticity, and barrier integrity. Additionally, the implications for the development of therapeutic strategies for CD based on enteric glial cell-mediated pathogenic processes are discussed.


Subject(s)
Crohn Disease , Enteric Nervous System , Humans , Crohn Disease/metabolism , Neuroglia/pathology , Neurons/pathology , Enteric Nervous System/metabolism , Enteric Nervous System/pathology
12.
Arthritis Rheumatol ; 76(1): 92-99, 2024 01.
Article in English | MEDLINE | ID: mdl-37530745

ABSTRACT

OBJECTIVE: Autoantibodies are clinically useful in phenotyping patients with systemic sclerosis (SSc). Gastrointestinal (GI) function is regulated by the enteric nervous system (ENS) and commonly impaired in SSc, suggesting that the SSc autoimmune response may target ENS antigens. We sought to identify novel anti-ENS autoantibodies with an aim to clinically phenotype SSc GI dysfunction. METHODS: Serum from a patient with SSc with GI dysfunction but without defined SSc-associated autoantibodies was used for autoantibody discovery. Immunoprecipitations performed with murine myenteric plexus lysates were on-bead digested, and autoantigens were identified by mass spectrometry. Prevalence was determined, and clinical features associated with novel autoantibodies were evaluated in a SSc cohort using regression analyses. The expression of gephyrin in human GI tract tissue was examined by immunohistochemistry. RESULTS: We identified gephyrin as a novel SSc autoantigen. Anti-gephyrin antibodies were present in 9% of patients with SSc (16/188) and absent in healthy controls (0/46). Anti-gephyrin antibody-positive patients had higher constipation scores (1.00 vs 0.50, P = 0.02) and were more likely to have severe constipation and severe distention/bloating (46% vs 15%, P = 0.005; 54% vs 25%, P = 0.023, respectively). Anti-gephyrin antibody levels were significantly higher among patients with severe constipation (0.04 vs 0.00; P = 0.001) and severe distention and bloating (0.03 vs 0.004; P = 0.010). Severe constipation was associated with anti-gephyrin antibodies even in the adjusted model. Importantly, gephyrin was expressed in the ENS, which regulates gut motility. CONCLUSION: Gephyrin is a novel ENS autoantigen that is expressed in human myenteric ganglia. Anti-gephyrin autoantibodies are associated with the presence and severity of constipation in patients with SSc.


Subject(s)
Autoantibodies , Membrane Proteins , Scleroderma, Systemic , Membrane Proteins/metabolism , Autoantigens/metabolism , Scleroderma, Systemic/immunology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/physiopathology , Autoantibodies/analysis , Gastrointestinal Tract/innervation , Gastrointestinal Tract/physiopathology , Humans , Animals , Mice , Neurons/metabolism , Enteric Nervous System/metabolism , Enteric Nervous System/physiopathology
13.
Microsc Res Tech ; 87(2): 373-386, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37855309

ABSTRACT

Since gastrointestinal disorders are early consequences of Parkinson's disease (PD), this disease is clearly not restricted to the central nervous system (CNS), but also significantly affects the enteric nervous system (ENS). Large aggregates of the protein α-synuclein forming Lewy bodies, the prototypical cytopathological marker of this disease, have been observed in enteric nervous plexuses. However, their value in early prognosis is controversial. The Golgi complex (GC) of nigral neurons appears fragmented in Parkinson's disease, a characteristic common in most neurodegenerative diseases. In addition, the distribution and levels of regulatory proteins such as Rabs and SNAREs are altered, suggesting that PD is a membrane traffic-related pathology. Whether the GC of enteric dopaminergic neurons is affected by the disease has not yet been analyzed. In the present study, dopaminergic neurons in colon nervous plexuses behave as nigral neurons in a hemiparkinsonian rat model based on the injection of the toxin 6-OHDA. Their GCs are fragmented, and some regulatory proteins' distribution and expression levels are altered. The putative mechanisms of the transmission of the neurotoxin to the ENS are discussed. Our results support the possibility that GC structure and the level of some proteins, especially syntaxin 5, could be helpful as early indicators of the disease. RESEARCH HIGHLIGHTS: The Golgi complexes of enteric dopaminergic neurons appear fragmented in a Parkinson's disease rat model. Our results support the hypothesis that the Golgi complex structure and levels of Rab1 and syntaxin 5 could be helpful as early indicators of the disease.


Subject(s)
Enteric Nervous System , Parkinson Disease , Rats , Animals , Parkinson Disease/metabolism , Parkinson Disease/pathology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Golgi Apparatus/pathology , Qa-SNARE Proteins/metabolism
14.
Neurogastroenterol Motil ; 36(1): e14693, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882149

ABSTRACT

BACKGROUND: Accurately reporting the identity and representation of enteric nervous system (ENS) neuronal subtypes along the length of the gastrointestinal (GI) tract is critical to advancing our understanding of ENS control of GI function. Reports of varying proportions of subtype marker expression have employed different dissection techniques to achieve wholemount muscularis preparations of myenteric plexus. In this study, we asked whether differences in GI dissection methods could introduce variability into the quantification of marker expression. METHODS: We compared three commonly used methods of ENS wholemount dissection: two flat-sheet preparations that differed in the order of microdissection and fixation and a third rod-mounted peeling technique. We also tested a reversed orientation variation of flat-sheet peeling, two step-by-step variations of the rod peeling technique, and whole-gut fixation as a tube. We assessed marker expression using immunohistochemistry, genetic reporter lines, confocal microscopy, and automated image analysis. KEY RESULTS AND CONCLUSIONS: We found no significant differences between the two flat-sheet preparation methods in the expression of calretinin or neuronal nitric oxide synthase (nNOS) as a proportion of total neurons in ileum myenteric plexus. However, the rod-mounted peeling method resulted in decreased proportion of neurons labeled for both calretinin and nNOS. This method also resulted in decreased transgenic reporter fluorescent protein (tdTomato) for substance P in distal colon and choline acetyltransferase (ChAT) in both ileum and distal colon. These results suggest that labeling among some markers, both native protein and transgenic fluorescent reporters, is decreased by the rod-mounted mechanical method of peeling. The step-by-step variations of this method point to mechanical manipulation of the tissue as the likely cause of decreased labeling. Our study thereby demonstrates a critical variability in wholemount muscularis dissection methods.


Subject(s)
Enteric Nervous System , Myenteric Plexus , Mice , Animals , Myenteric Plexus/chemistry , Calbindin 2/metabolism , Enteric Nervous System/metabolism , Neurons/metabolism , Colon
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166991, 2024 03.
Article in English | MEDLINE | ID: mdl-38128843

ABSTRACT

Hirschsprung disease (HSCR) is a complex genetic disorder characterized by the absence of enteric nervous system (ENS) in the distal region of the intestine. Down Syndrome (DS) patients have a >50-fold higher risk of developing HSCR than the general population, suggesting that overexpression of human chromosome 21 (Hsa21) genes contribute to HSCR etiology. However, identification of responsible genes remains challenging. Here, we describe a genetic screening of potential candidate genes located on Hsa21, using the zebrafish. Candidate genes were located in the DS-HSCR susceptibility region, expressed in the human intestine, were known potential biomarkers for DS prenatal diagnosis, and were present in the zebrafish genome. With this approach, four genes were selected: RCAN1, ITSN1, ATP5PO and SUMO3. However, only overexpression of ATP5PO, coding for a component of the mitochondrial ATPase, led to significant reduction of ENS cells. Paradoxically, in vitro studies showed that overexpression of ATP5PO led to a reduction of ATP5PO protein levels. Impaired neuronal differentiation and reduced mitochondrial ATP production, were also detected in vitro, after overexpression of ATP5PO in a neuroblastoma cell line. Finally, epistasis was observed between ATP5PO and ret, the most important HSCR gene. Taken together, our results identify ATP5PO as the gene responsible for the increased risk of HSCR in DS patients in particular if RET variants are also present, and show that a balanced expression of ATP5PO is required for normal ENS development.


Subject(s)
Down Syndrome , Enteric Nervous System , Hirschsprung Disease , Animals , Humans , Hirschsprung Disease/genetics , Hirschsprung Disease/metabolism , Down Syndrome/genetics , Down Syndrome/metabolism , Zebrafish/genetics , Enteric Nervous System/metabolism , Biomarkers/metabolism
16.
Biomolecules ; 13(12)2023 11 23.
Article in English | MEDLINE | ID: mdl-38136560

ABSTRACT

The interplay of the enteric nervous system (ENS) and SIP syncytium (smooth muscle cells-interstitial cells of Cajal-PDGFRα+ cells) plays an important role in the regulation of gastrointestinal (GI) motility. This study aimed to investigate the dynamic regulatory mechanisms of the ENS-SIP system on colon motility during postnatal development. Colonic samples of postnatal 1-week-old (PW1), 3-week-old (PW3), and 5-week-old (PW5) mice were characterized by RNA sequencing, qPCR, Western blotting, isometric force recordings (IFR), and colonic motor complex (CMC) force measurements. Our study showed that the transcriptional expression of Pdgfrα, c-Kit, P2ry1, Nos1, and Slc18a3, and the protein expression of nNOS, c-Kit, and ANO1 significantly increased with age from PW1 to PW5. In PW1 and PW3 mice, colonic migrating movement was not fully developed. In PW5 mice, rhythmic CMCs were recorded, similar to the CMC pattern described previously in adult mice. The inhibition of nNOS revealed excitatory and non-propulsive responses which are normally suppressed due to ongoing nitrergic inhibition. During postnatal development, molecular data demonstrated the establishment and expansion of ICC and PDGFRα+ cells, along with nitrergic and cholinergic nerves and purinergic receptors. Our findings are important for understanding the role of the SIP syncytium in generating and establishing CMCs in postnatal, developing murine colons.


Subject(s)
Enteric Nervous System , Receptor, Platelet-Derived Growth Factor alpha , Animals , Mice , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Colon/metabolism , Enteric Nervous System/metabolism , Giant Cells/metabolism , Gene Expression Profiling
17.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958648

ABSTRACT

The enteric nervous system (ENS) is principally derived from vagal neural crest cells that migrate caudally along the entire length of the gastrointestinal tract, giving rise to neurons and glial cells in two ganglionated plexuses. Incomplete migration of enteric neural crest-derived cells (ENCDC) leads to Hirschsprung disease, a congenital disorder characterized by the absence of enteric ganglia along variable lengths of the colorectum. Our previous work strongly supported the essential role of the avian ceca, present at the junction of the midgut and hindgut, in hindgut ENS development, since ablation of the cecal buds led to incomplete ENCDC colonization of the hindgut. In situ hybridization shows bone morphogenetic protein-4 (BMP4) is highly expressed in the cecal mesenchyme, leading us to hypothesize that cecal BMP4 is required for hindgut ENS development. To test this, we modulated BMP4 activity using embryonic intestinal organ culture techniques and retroviral infection. We show that overexpression or inhibition of BMP4 in the ceca disrupts hindgut ENS development, with GDNF playing an important regulatory role. Our results suggest that these two important signaling pathways are required for normal ENCDC migration and enteric ganglion formation in the developing hindgut ENS.


Subject(s)
Colorectal Neoplasms , Enteric Nervous System , Humans , Signal Transduction/physiology , Cell Differentiation/physiology , Enteric Nervous System/metabolism , Cell Movement/physiology , Colorectal Neoplasms/metabolism , Neural Crest/metabolism , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism
18.
Biomolecules ; 13(11)2023 10 27.
Article in English | MEDLINE | ID: mdl-38002268

ABSTRACT

Oxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects. Neurons in the ENS, while essential for normal gut function, appear particularly vulnerable to oxidative damage. Mechanistically, oxidative stress in enteric neurons can result from intrinsic nitrosative injury, mitochondrial dysfunction, or inflammation-related pathways. Although antioxidant-based therapies have shown limited efficacy, recognizing the multifaceted role of oxidative stress in GI diseases offers a promising avenue for future interventions. This comprehensive review summarizes the literature to date implicating oxidative stress as a critical player in the pathophysiology of GI disorders, with a focus on its role in ENS injury and dysfunction, and highlights opportunities for the development of targeted therapeutics for these diseases.


Subject(s)
Enteric Nervous System , Gastrointestinal Diseases , Inflammatory Bowel Diseases , Humans , Gastrointestinal Diseases/metabolism , Enteric Nervous System/metabolism , Neurons/metabolism , Inflammatory Bowel Diseases/metabolism , Oxidative Stress
19.
Sci Rep ; 13(1): 16902, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803037

ABSTRACT

Patients with spinal cord injury (SCI) suffer from major bowel dysfunction, whose exact pathophysiology, particularly the involvement of the enteric nervous system or epithelial dysfunction is poorly understood. Herein, we aimed to characterize the mucosal biopsies of the right and left colon in SCI patients vs controls (CT): (1) remodeling of key enteric neurotransmitters, (2) remodeling of enteroendocrine cells, and (3) mucosal inflammation compared to those in controls. In SCI, mucosal ACh concentration was lower in the right colon as compared to CT, but no change was observed in the left colon, and AChE expression was lower in both the right and left colons than in CT. While the VIP concentration was similar in the right and left colons, VIP mRNA expression was increased in the right colon and decreased in the left colon, in SCI patients as compared to CT. Interestingly, 5-HT concentration was reduced in the left colon but not in the right colon in SCI patients. Moreover, in SCI patients, as compared to CT, SERT mRNA expression was selectively increased in the left colon while TPH1 mRNA expression was increased in the right and left colons. Although mucosal TNFα and IL-1ß mRNA expression did not significantly differ between SCI and CT groups, we identified a significant positive correlation between TNFα and IL-1ß mRNA expression and left colon transit time in the SCI group. In conclusion, region-specific changes occur in the enteric neurotransmitter, serotonergic, and inflammatory pathways in the colon of SCI patients. The significant correlations between these pathways and clinical parameters in the left colon further set a scientific basis for designing therapeutic targets to improve colonic motor dysfunction in patients.Biobank information: Spinal cord injury patients: PHRC ConstiCAPE-clinical trial NCT02566746. Controls: Anosain-clinical trial NCT03054415 and biobank of the "Institut des Maladies de l'Appareil Digestif (IMAD)" registered under number DC-2008-402.


Subject(s)
Enteric Nervous System , Spinal Cord Injuries , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Colon/pathology , Enteric Nervous System/metabolism , Enteroendocrine Cells , Neurotransmitter Agents/metabolism , RNA, Messenger/metabolism , Spinal Cord
20.
J Histochem Cytochem ; 71(11): 601-630, 2023 11.
Article in English | MEDLINE | ID: mdl-37791513

ABSTRACT

The communication between the intestinal epithelium and the enteric nervous system has been considered indirect. Mechanical or chemical stimuli activate enteroendocrine cells inducing hormone secretion, which act on sub-epithelial nerve ends, activating the enteric nervous system. However, we identified an epithelial cell that expresses NKAIN4, a neuronal protein associated with the ß-subunit of Na+/K+-ATPase. This cell overexpresses Na+/K+-ATPase and ouabain-insensitive Na+-ATPase, enzymes involved in active sodium transport. NKAIN4-positive cells also express neuronal markers as NeuN, acetylcholine-esterase, acetylcholine-transferase, α3- and α7-subunits of ACh receptors, glutamic-decarboxylase, and serotonin-receptor-7, suggesting they are neurons. NKAIN4-positive cells show a polarized shape with an oval body, an apical process finished in a knob-like terminal in contact with the lumen, a basal cilia body at the base of the apical extension, and basal axon-like soma projections connecting sub-epithelial nerve terminals, lymphoid nodules, glial cells, and enterochromaffin cells, forming a network that reaches the epithelial surface. We also showed, using retrograde labeling and immunofluorescence, that these cells receive afferent signals from the enteric nervous system. Finally, we demonstrated that acetylcholine activates NKAIN4-positive cells inducing Ca2+ mobilization and probably serotonin secretion in enterochromaffin cells. NKAIN4-positive cells are neurons that would form a part of a duodenal sensory network for physiological or noxious luminal stimuli.


Subject(s)
Enteric Nervous System , Serotonin , Serotonin/metabolism , Acetylcholine/metabolism , Neurons/metabolism , Intestinal Mucosa/metabolism , Enteric Nervous System/metabolism , Epithelium/metabolism , Adenosine Triphosphatases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...