Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.002
Filter
1.
Gut Microbes ; 16(1): 2350150, 2024.
Article in English | MEDLINE | ID: mdl-38841888

ABSTRACT

Comensal Bacteroidota (Bacteroidota) and Enterobacteriacea are often linked to gut inflammation. However, the causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism in Bacteroidota remain unclear. By using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-rfb-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification, we characterized the integrity and conservancy of the entire rfb operon in Bacteroidota. Through exploratory analysis of complete genomes and metagenomes, we discovered that most Bacteroidota have the rfb operon fragmented into nonrandom patterns of gene-singlets and doublets/triplets, termed 'rfb-gene-clusters', or rfb-'minioperons' if predicted as transcriptional. To reflect global operon integrity, contiguity, duplication, and fragmentation principles, we propose a six-category (infra/supra-numerary) cataloging system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in gut-wall specific micro-niches or micropathologies. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes. DNA insertions, overrepresenting DNA-exchange-avid (Bacteroides) species, impact our interpretation of functional metagenomics data by inflating by inflating gene-based pathway inference and by overestimating 'extra-species' abundance. Of disease relevance, Bacteroidota species isolated from cavitating/cavernous fistulous tract (CavFT) microlesions in Crohn's Disease have supra-numerary fragmented operons, stimulate TNF-alpha from macrophages with low potency, and do not induce hyperacute peritonitis in mice compared to CavFT Enterobacteriaceae. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism/opportunism requires further studies to elucidate their potential for novel diagnostics and therapeutics, and to elucidate the role of co-existing pathobionts in Crohn's disease microlesions.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Metagenomics , Operon , Mice , Animals , Humans , Crohn Disease/microbiology , Crohn Disease/genetics , Bacteroidetes/genetics , Bacteroidetes/classification , Antigens, Bacterial/genetics , Genome, Bacterial , Enterobacteriaceae/genetics , Enterobacteriaceae/classification
2.
PLoS Pathog ; 20(6): e1012235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843111

ABSTRACT

Amikacin and piperacillin/tazobactam are frequent antibiotic choices to treat bloodstream infection, which is commonly fatal and most often caused by bacteria from the family Enterobacterales. Here we show that two gene cassettes located side-by-side in and ancestral integron similar to In37 have been "harvested" by insertion sequence IS26 as a transposon that is widely disseminated among the Enterobacterales. This transposon encodes the enzymes AAC(6')-Ib-cr and OXA-1, reported, respectively, as amikacin and piperacillin/tazobactam resistance mechanisms. However, by studying bloodstream infection isolates from 769 patients from three hospitals serving a population of 1.2 million people in South West England, we show that increased enzyme production due to mutation in an IS26/In37-derived hybrid promoter or, more commonly, increased transposon copy number is required to simultaneously remove these two key therapeutic options; in many cases leaving only the last-resort antibiotic, meropenem. These findings may help improve the accuracy of predicting piperacillin/tazobactam treatment failure, allowing stratification of patients to receive meropenem or piperacillin/tazobactam, which may improve outcome and slow the emergence of meropenem resistance.


Subject(s)
Anti-Bacterial Agents , DNA Transposable Elements , Humans , Anti-Bacterial Agents/pharmacology , DNA Transposable Elements/genetics , Drug Resistance, Multiple, Bacterial/genetics , Piperacillin/pharmacology , Amikacin/pharmacology , Microbial Sensitivity Tests , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Integrons/genetics , Bacteremia/microbiology , Bacteremia/drug therapy , Bacteremia/genetics
3.
Rev Med Suisse ; 20(872): 866-871, 2024 May 01.
Article in French | MEDLINE | ID: mdl-38693798

ABSTRACT

Multi-resistant Enterobacterales (MRE) are on the increase worldwide, with the main mechanism of resistance acquisition being horizontal transfer of plasmids coding for extended-spectrum betalactamase and/or carbapenemase. Low- and middle-income countries are the most affected, but surveillance in low-endemicity countries, such as Switzerland, is essential. International travel is one of the sources of MRE dissemination in the community, with the main risk factors for acquiring MRE being a stay in South or Southeast Asia and the use of antibiotics during travel. Other factors, notably animal and environmental, also explain this increase. Measures encompassing a One Health approach are therefore needed to address this issue.


Les entérobactéries multirésistantes (EMR) sont en augmentation dans le monde, avec comme mécanisme principal d'acquisition de résistance le transfert horizontal de plasmides codant pour une bêtalactamase à spectre étendu et/ou une carbapénèmase. Les pays à bas et moyens revenus sont les plus touchés, mais une surveillance dans les pays à faible endémicité, comme la Suisse, est essentielle. Les voyages internationaux sont l'une des sources de dissémination d'EMR dans la communauté, avec comme facteurs de risque principaux d'acquisition d'EMR un séjour en Asie du Sud ou du Sud-Est et l'utilisation d'antibiotiques durant le voyage. D'autres facteurs, notamment animaliers et environnementaux, expliquent aussi cette augmentation. Ainsi, il est nécessaire que des mesures englobant une approche « One Health ¼ répondent à cette problématique.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Travel , Humans , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Risk Factors , Animals , One Health , Plasmids , beta-Lactamases/genetics
4.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702700

ABSTRACT

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Enterobacteriaceae Infections , beta-Lactamases , Animals , Cats , Dogs , Cat Diseases/microbiology , Cat Diseases/epidemiology , beta-Lactamases/genetics , Argentina/epidemiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Microbial Sensitivity Tests , Pets , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Escherichia coli/drug effects , Escherichia coli/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology
5.
PLoS One ; 19(5): e0302000, 2024.
Article in English | MEDLINE | ID: mdl-38709720

ABSTRACT

Wastewater surveillance represents an alternative approach to regulating contamination and the early detection of infectious agents and outbreaks of diseases of public health importance. This study evaluated domestic wastewater effects on recreational waters in estuarine and seawater bodies in Guayas and Santa Elena provinces in Ecuador, South America. Fecal indicator bacteria (thermotolerant coliforms) served as key indicators for evaluation. Physical, chemical, and microbiological quality markers following the Ecuadorian environmental quality standard and the discharge of effluents to the water resource were analyzed. Samples were collected from 44 coastal sites and 2 oxidation lagoons during the dry and rainy seasons of 2020 and 2021, respectively. SARS-CoV-2 RNA was detected in samples with higher E. coli concentrations using reverse transcription quantitative PCR to detect the genes N and ORF1ab. All samples analyzed for SARS-CoV-2 showed Ct ˂ 40 for at least one gene. Four samples showed at least 20 genome copies of gene N per reaction. These were at an artisanal fishing port, an estuarine area (Palmar), a recreational bay, and an oxidation lagoon. A moderate correlation was found between SARS-CoV-2 RNA, thermotolerant coliform and E. coli (p-value ≤ 0.0037), and a strong and positive correlation between thermotolerant coliform and E. coli. (p-value ≤ 0.00001), highlighting the utility of these established parameters as a proxy of the virus. Significant differences were found in the concentrations of thermotolerant coliforms between seasons (p-value = 0.016) and sites (p-value = 0.005). The highest levels of coliforms were found in the dry season (63000 MPN/100 mL) in Anconcito and during the rainy season (14000 MPN/100 mL) at Esterillo in Playas County. It is recommended that the decentralized autonomous governments of the surveyed provinces in Ecuador implement urgent corrective actions and establish medium-term mechanisms to minimize a potential contamination route. Additional parameters must be included in the monitoring, such as Enterococcus and intestinal parasites, due to their public health implications. In the oxidation lagoons, maintenance actions must be carried out, including the dissolution of sediments, an increase in water retention times, and in situ treatment of the sludge, to improve the system's performance.


Subject(s)
COVID-19 , RNA, Viral , SARS-CoV-2 , Sewage , Water Quality , Ecuador , Sewage/virology , Sewage/microbiology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA, Viral/analysis , COVID-19/epidemiology , COVID-19/virology , Humans , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Water Microbiology , Environmental Monitoring/methods , Seawater/virology , Seawater/microbiology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Wastewater/virology , Wastewater/microbiology
6.
Clin Exp Dent Res ; 10(3): e890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816943

ABSTRACT

OBJECTIVE: This study aimed to clarify the relationship between oral frailty and oral dysbiosis among hospitalized patients aged ≥ 50 years. METHODS: A prospective observational study was conducted. Number of teeth, masticatory ability, articulatory oral motor skill, tongue pressure, swallowing pressure, and choking were used to assess oral frailty. Saliva samples were collected from the oral cavity for bacterial culture. RESULTS: A total 103 in patients enrolled and 53.4% suffered from oral frailty. Oral frailty was found to have a 3.07-fold correlation with the presence of Enterobacterales in the oral cavity (p = 0.037), especially in poor articulatory oral motor skill, which showed at greater risk of Enterobacterales isolated from the oral cavity by 5.58-fold (p = 0.01). CONCLUSION: Half of hospitalized patients was found to have oral frailty that was related to more Enterobacterales in the oral cavity. This evidence suggests that the enhancement of articulatory oral motor skills may serve as a potential strategy for mitigating the presence of Enterobacterales within the oral cavity.


Subject(s)
Dysbiosis , Hospitalization , Mouth , Saliva , Humans , Female , Aged , Male , Prospective Studies , Middle Aged , Dysbiosis/microbiology , Saliva/microbiology , Mouth/microbiology , Hospitalization/statistics & numerical data , Frailty/microbiology , Aged, 80 and over , Mastication/physiology , Enterobacteriaceae/isolation & purification
7.
J Med Life ; 17(1): 41-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38737657

ABSTRACT

Multi-drug resistant (MDR) Enterobacterales remain a major clinical problem. Infections caused by carbapenem-resistant strains are particularly difficult to treat. This study aimed to assess the clinical and epidemiological characteristics of MDR Enterobacterales isolates. A total of 154 non-repetitive clinical isolates, including Escherichia coli (n = 66), Klebsiella pneumoniae (n = 70), and other Enterobacterales (n = 18), were collected from the Diagnostic Microbiology Laboratory at King Fahad Hospital of the University. Most E. coli isolates were collected from urine specimens (n = 50, 75.8%) and resistance against the third and fourth-generation cephalosporins (ceftriaxone, ceftazidime, cefixime, and cefepime) and fluoroquinolones (ciprofloxacin and levofloxacin) was assessed. Clonal relatedness analysis using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) revealed two clones (E. coli A and B), each comprising two strains. Most K. pneumoniae samples were collected from respiratory specimens (27.1%, 20 samples), and the strains showed overall resistance to most of the antimicrobials tested (54%‒100%). Moreover, clonal-relatedness analysis using ERIC-PCR revealed seven major clones of K. pneumoniae. These findings suggest nosocomial transmission among some identical strains and emphasize the importance of strict compliance with infection prevention and control policies and regulations. Environmental reservoirs could facilitate this indirect transmission, which needs to be investigated.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Humans , Drug Resistance, Multiple, Bacterial/genetics , Saudi Arabia/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Male , Female , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Cross Infection/microbiology , Cross Infection/epidemiology , Cross Infection/drug therapy , Adult , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/genetics , Middle Aged , Hospitals, University
8.
PLoS One ; 19(5): e0303753, 2024.
Article in English | MEDLINE | ID: mdl-38758757

ABSTRACT

NDM-producing carbapenem-resistant bacterial infections became a challenge for clinicians. Combination therapy of aztreonam and ceftazidime-avibactam is a prudent choice for these infections. However, there is still no recommendation of a practically feasible method for testing aztreonam and ceftazidime-avibactam synergy. We proposed a simple method for testing aztreonam and ceftazidime-avibactam synergy and compared it with reference broth micro-dilution and other methods. Carbapenem-resistant Enterobacterales clinical isolates were screened for the presence of the NDM gene by the Carba R test. NDM harbouring isolates were tested for aztreonam and ceftazidime-avibactam synergy by broth microdilution (reference method), E strip-disc diffusion, double disc diffusion, and disc replacement methods. In the newly proposed method, the MHA medium was supplemented with ceftazidime-avibactam (corresponding to an aztreonam concentration of 4µg/ml). The MHA medium was then inoculated with the standard inoculum (0.5 McFarland) of the test organism. An AZT disc (30 µg) was placed on the supplemented MHA medium, and the medium was incubated overnight at 37°C. Aztreonam zone diameter on the supplemented MHA medium (in the presence of ceftazidime-avibactam) was compared with that from a standard disc diffusion plate (without ceftazidime-avibactam), performed in parallel. Interpretation of synergy was based on the restoration of aztreonam zone diameter (in the presence of ceftazidime-avibactam) crossing the CLSI susceptibility breakpoint, i.e., ≥ 21 mm. Of 37 carbapenem-resistant NDM-producing isolates, 35 (94.6%) were resistant to aztreonam and tested synergy positive by the proposed method. Its sensitivity and specificity were 97.14% and 100%, respectively. Cohen's kappa value showed substantial agreement of the reference method with the proposed method (κ = 0.78) but no other methods. The proposed method is simple, easily interpretable, and showed excellent sensitivity, specificity, and agreement with the reference method. Therefore, the new method is feasible and reliable for testing aztreonam synergy with avibactam in NDM-producing Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Ceftazidime , Drug Combinations , Enterobacteriaceae , Microbial Sensitivity Tests , beta-Lactamases , Ceftazidime/pharmacology , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Humans , Drug Synergism , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy
9.
West Afr J Med ; 41(3): 301-310, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38788127

ABSTRACT

INTRODUCTION: According to the World Health Organization, antimicrobial resistance (AMR) is a silent global pandemic that plagues everyone. It makes therapy of infectious diseases more difficult and eventually increases morbidity and mortality. AIM: The purpose of this work is to examine existing data on plasmid-mediated quinolone resistance (PMQR), to assess the prevalence of PMQR genes in Enterobacterales, and to determine any knowledge gaps from sub-Saharan Africa. METHODOLOGY: The Preferred Reporting Items of Systematic Reviews and Meta-analyses (PRISMA) standard was followed when conducting this systematic review. The main internet databases examined for pertinent publications were PubMed, Google Scholar, and Ajol. A set of qualifying criteria were used to evaluate the qualified articles. Using the eligibility criteria, 56 full-text articles were chosen for screening. RESULT: Thirty-two (32) articles with the majority originating from West and North Africa and only one article reporting a study carried out in Central Africa were selected for this review. Escherichia coli and Ciprofloxacin were the most reported Enterobacterales and Quinolone respectively. The PMQR genes include qnr (qnrA,qnrB, qnrC, qnrD, and qnrS), aac (6') Ib, aac (6') Ib-cr, oqxAB and qepA gene. The most prevalent PMQR gene is the aac (6') Ib-cr gene (32%) followed by qnrS (26%). CONCLUSION: This study highlighted the requirement for an efficient antimicrobial resistance surveillance system in the continent and revealed a significant incidence of PMQR genes.


INTRODUCTION: Selon l'Organisation mondiale de la santé, la résistance aux antimicrobiens (RAM) est une pandémie mondiale silencieuse qui touche tout le monde. Elle rend le traitement des maladies infectieuses plus difficile et finit par augmenter la morbidité et la mortalité. OBJECTIF: L'objectif de ce travail est d'examiner les données existantes sur la résistance plasmidique aux quinolones (PMQR), d'évaluer la prévalence des gènes PMQR chez les Enterobacterales et de déterminer d'éventuelles lacunes de connaissances en Afrique subsaharienne. MÉTHODOLOGIE: La norme Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) a été suivie lors de la réalisation de cette revue systématique. Les principales bases de données Internet examinées pour des publications pertinentes étaient PubMed, Google Scholar et Ajol. Un ensemble de critères d'admissibilité a été utilisé pour évaluer les articles qualifiés. En utilisant les critères d'éligibilité, 56 articles en texte intégral ont été choisis pour le dépistage. RÉSULTAT: Trente-deux (32) articles, dont la majorité provient d'Afrique de l'Ouest et du Nord, et un seul article rapportant une étude menée en Afrique centrale, ont été sélectionnés pour cette revue. Escherichia coli et la ciprofloxacine étaient les Enterobacterales et les quinolones les plus signalées respectivement. Les gènes PMQR comprennent les gènes qnr (qnrA, qnrB, qnrC, qnrD et qnrS), aac (6 ') Ib, aac (6 ') Ib-cr, oqxAB et qepA. Le gène PMQR le plus prévalent est le gène aac (6 ') Ib-cr (32 %), suivi de qnrS (26 %). CONCLUSION: Cette étude a souligné la nécessité d'un système efficace de surveillance de la résistance aux antimicrobiens sur le continen`t et a révélé une incidence significative des gènes PMQR. MOTS-CLÉS: Enterobacterales, Escherichia coli, Quinolone, Ciprofloxacine, PMQR, "aac(6')-Ib", "aac(6')-Ib-cr", "qnr", "qepA", "oqxAB", "résistance aux antibiotiques".


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Fluoroquinolones , Plasmids , Humans , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Africa/epidemiology
10.
R I Med J (2013) ; 107(6): 7-9, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38810006

ABSTRACT

Raoultella ornithinolytica is a rare, gram-negative environmental enterobacterium. Although infections in humans caused by R. ornithinolytica are uncommon, there are increasing reports implicating it in urinary tract infections, hepatobiliary infections, and bacteremia, designating it as an emerging pathogen. Its habitat is primarily in aquatic environments and soil, with seafood frequently identified as a potential source of infection. While these infections have predominantly been described in immunocompromised patients previously, our case suggests that advanced age may be a significant risk factor. We describe a case of a 73-year-old man presenting with encephalopathy who then was found to have R. ornithinolytica bacteremia from a genitourinary source. Following antibiotic treatment, the infection resolved and the neurologic symptoms improved. To the best of our knowledge, this is the first documented case in the medical literature of R. ornithinolytica featuring a primary neurologic presentation.


Subject(s)
Anti-Bacterial Agents , Brain Diseases , Enterobacteriaceae Infections , Enterobacteriaceae , Humans , Aged , Male , Enterobacteriaceae Infections/diagnosis , Enterobacteriaceae Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae/isolation & purification , Brain Diseases/microbiology , Brain Diseases/drug therapy , Brain Diseases/diagnosis , Bacteremia/drug therapy , Bacteremia/microbiology , Bacteremia/diagnosis
11.
Nat Commun ; 15(1): 4571, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811551

ABSTRACT

Evolution results from the interaction of stochastic and deterministic processes that create a web of historical contingency, shaping gene content and organismal function. To understand the scope of this interaction, we examine the relative contributions of stochasticity, determinism, and contingency in shaping gene inactivation in 34 lineages of endosymbiotic bacteria, Sodalis, found in parasitic lice, Columbicola, that are independently undergoing genome degeneration. Here we show that the process of genome degeneration in this system is largely deterministic: genes involved in amino acid biosynthesis are lost while those involved in providing B-vitamins to the host are retained. In contrast, many genes encoding redundant functions, including components of the respiratory chain and DNA repair pathways, are subject to stochastic loss, yielding historical contingencies that constrain subsequent losses. Thus, while selection results in functional convergence between symbiont lineages, stochastic mutations initiate distinct evolutionary trajectories, generating diverse gene inventories that lack the functional redundancy typically found in free-living relatives.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Phylogeny , Stochastic Processes , Symbiosis , Symbiosis/genetics , Genome, Bacterial/genetics , Animals , Enterobacteriaceae/genetics , Enterobacteriaceae/metabolism , Mutation
12.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791176

ABSTRACT

Extensive microbial interactions occur within insect hosts. However, the interactions between the Huanglongbing (HLB) pathogen and endosymbiotic bacteria within the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) in wild populations remain elusive. Thus, this study aimed to detect the infection rates of HLB in the ACP across five localities in China, with a widespread prevalence in Ruijin (RJ, 58%), Huidong (HD, 28%), and Lingui (LG, 15%) populations. Next, microbial communities of RJ and LG populations collected from citrus were analyzed via 16S rRNA amplicon sequencing. The results revealed a markedly higher microbial diversity in the RJ population compared to the LG population. Moreover, the PCoA analysis identified significant differences in microbial communities between the two populations. Considering that the inter-population differences of Bray-Curtis dissimilarity in the RJ population exceeded those between populations, separate analyses were performed. Our findings indicated an increased abundance of Enterobacteriaceae in individuals infected with HLB in both populations. Random forest analysis also identified Enterobacteriaceae as a crucial indicator of HLB infection. Furthermore, the phylogenetic analysis suggested a potential regulatory role of ASV4017 in Enterobacteriaceae for ACP, suggesting its possible attractant activity. This research contributes to expanding the understanding of microbial communities associated with HLB infection, holding significant implications for HLB prevention and treatment.


Subject(s)
Enterobacteriaceae , Hemiptera , Phylogeny , Plant Diseases , RNA, Ribosomal, 16S , Animals , Hemiptera/microbiology , Enterobacteriaceae/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/pathogenicity , RNA, Ribosomal, 16S/genetics , Plant Diseases/microbiology , China/epidemiology , Citrus/microbiology , Microbiota
13.
Surg Infect (Larchmt) ; 25(4): 335-337, 2024 May.
Article in English | MEDLINE | ID: mdl-38696669

ABSTRACT

Background: Raoultella planticola is an uncommon gram-negative organism found in the environment. Patients and Methods: The patient, an 81-year-old female who had undergone total cystectomy and bilateral ureteral stoma surgery, presented to the hospital with a fever. It was determined that Raoultella planticola was responsible for the bacteremia. Results: Rapid identification of bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in blood culture samples and appropriate antibacterial treatment was begun and the patient was discharged three days later. Conclusions: This case emphasizes the presence of a rare pathogen as the cause of bacteremia and underscores the importance of utilizing rapid methods for bacterial identification to establish an accurate diagnosis.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Blood Culture , Enterobacteriaceae Infections , Enterobacteriaceae , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Female , Bacteremia/diagnosis , Bacteremia/microbiology , Aged, 80 and over , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/diagnosis , Enterobacteriaceae Infections/microbiology , Blood Culture/methods , Anti-Bacterial Agents/therapeutic use
14.
PLoS One ; 19(5): e0303872, 2024.
Article in English | MEDLINE | ID: mdl-38771780

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is among the top public health concerns in the globe. Estimating the prevalence of multidrug resistance (MDR), MDR index (MDR-I) and extended-spectrum beta-lactamase (ESBL)-producing lactose fermenting Enterobacteriaceae (LFE) is important in designing strategies to combat AMR. Thus, this study was designed to determine the status of MDR, MDR-I and ESBL-producing LFE isolated from the human-dairy interface in the northwestern part of Ethiopia, where such information is lacking. METHODOLOGY: A cross-sectional study was conducted from June 2022 to August 2023 by analyzing 362 samples consisting of raw pooled milk (58), milk container swabs (58), milker's hand swabs (58), farm sewage (57), milker's stool (47), and cow's feces (84). The samples were analyzed using standard bacteriological methods. The antimicrobial susceptibility patterns and ESBL production ability of the LFE isolates were screened using the Kirby-Bauer disk diffusion method, and candidate isolates passing the screening criteria were phenotypically confirmed by using cefotaxime (30 µg) and cefotaxime /clavulanic acid (30 µg/10 µg) combined-disk diffusion test. The isolates were further characterized genotypically using multiplex polymerase chain reaction targeting the three ESBL-encoding- genes namely blaTEM, blaSHV, and blaCTX-M. RESULTS: A total of 375 bacterial isolates were identified and the proportion of MDR and ESBL-producing bacterial isolates were 70.7 and 21.3%, respectively. The MDR-I varied from 0.0 to 0.81 with an average of 0.30. The ESBL production was detected in all sample types. Genotypically, the majority of the isolates (97.5%), which were positive on the phenotypic test, were carrying one or more of the three genes. CONCLUSION: A high proportion of the bacterial isolates were MDR; had high MDR-I and were positive for ESBL production. The findings provide evidence that the human-dairy interface is one of the important reservoirs of AMR traits. Therefore, the implementation of AMR mitigation strategies is highly needed in the area.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae , Lactose , beta-Lactamases , Humans , Ethiopia , beta-Lactamases/genetics , beta-Lactamases/metabolism , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/enzymology , Lactose/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Animals , Microbial Sensitivity Tests , Cattle , Enterobacteriaceae Infections/microbiology , Cefotaxime/pharmacology , Milk/microbiology , Fermentation , Feces/microbiology
15.
Ann Intern Med ; 177(5): JC52, 2024 May.
Article in English | MEDLINE | ID: mdl-38710092

ABSTRACT

SOURCE CITATION: López-Cortés LE, Delgado-Valverde M, Moreno-Mellado E, et al; SIMPLIFY study group. Efficacy and safety of a structured de-escalation from antipseudomonal ß-lactams in bloodstream infections due to Enterobacterales (SIMPLIFY): an open-label, multicentre, randomised trial. Lancet Infect Dis. 2024;24:375-385. 38215770.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Enterobacteriaceae Infections , beta-Lactams , Humans , Bacteremia/drug therapy , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/drug therapy , beta-Lactams/therapeutic use , Enterobacteriaceae/drug effects , Male , Female , Middle Aged , Aged , Drug Administration Schedule
16.
Adv Microb Physiol ; 84: 51-82, 2024.
Article in English | MEDLINE | ID: mdl-38821634

ABSTRACT

Formic acid (HCOOH) and dihydrogen (H2) are characteristic products of enterobacterial mixed-acid fermentation, with H2 generation increasing in conjunction with a decrease in extracellular pH. Formate and acetyl-CoA are generated by radical-based and coenzyme A-dependent cleavage of pyruvate catalysed by pyruvate formate-lyase (PflB). Formate is also the source of H2, which is generated along with carbon dioxide through the action of the membrane-associated, cytoplasmically-oriented formate hydrogenlyase (FHL-1) complex. Synthesis of the FHL-1 complex is completely dependent on the cytoplasmic accumulation of formate. Consequently, formate determines its own disproportionation into H2 and CO2 by the FHL-1 complex. Cytoplasmic formate levels are controlled by FocA, a pentameric channel that translocates formic acid/formate bidirectionally between the cytoplasm and periplasm. Each protomer of FocA has a narrow hydrophobic pore through which neutral formic acid can pass. Two conserved amino acid residues, a histidine and a threonine, at the center of the pore control directionality of translocation. The histidine residue is essential for pH-dependent influx of formic acid. Studies with the formate analogue hypophosphite and amino acid variants of FocA suggest that the mechanisms of formic acid efflux and influx differ. Indeed, current data suggest, depending on extracellular formate levels, two separate uptake mechanisms exist, both likely contributing to maintain pH homeostasis. Bidirectional formate/formic acid translocation is dependent on PflB and influx requires an active FHL-1 complex. This review describes the coupling of formate and H2 production in enterobacteria.


Subject(s)
Enterobacteriaceae , Fermentation , Formates , Hydrogen , Formates/metabolism , Hydrogen/metabolism , Enterobacteriaceae/metabolism , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Formate Dehydrogenases , Hydrogenase , Multienzyme Complexes
18.
Elife ; 122024 May 31.
Article in English | MEDLINE | ID: mdl-38820052

ABSTRACT

Bacteria of the family Enterobacteriaceae are associated with gastrointestinal (GI) bleeding and bacteremia and are a leading cause of death, from sepsis, for individuals with inflammatory bowel diseases. The bacterial behaviors and mechanisms underlying why these bacteria are prone to bloodstream entry remain poorly understood. Herein, we report that clinical isolates of non-typhoidal Salmonella enterica serovars, Escherichia coli, and Citrobacter koseri are rapidly attracted toward sources of human serum. To simulate GI bleeding, we utilized an injection-based microfluidics device and found that femtoliter volumes of human serum are sufficient to induce bacterial attraction to the serum source. This response is orchestrated through chemotaxis and the chemoattractant L-serine, an amino acid abundant in serum that is recognized through direct binding by the chemoreceptor Tsr. We report the first crystal structures of Salmonella Typhimurium Tsr in complex with L-serine and identify a conserved amino acid recognition motif for L-serine shared among Tsr orthologues. We find Tsr to be widely conserved among Enterobacteriaceae and numerous World Health Organization priority pathogens associated with bloodstream infections. Lastly, we find that Enterobacteriaceae use human serum as a source of nutrients for growth and that chemotaxis and the chemoreceptor Tsr provide a competitive advantage for migration into enterohemorrhagic lesions. We define this bacterial behavior of taxis toward serum, colonization of hemorrhagic lesions, and the consumption of serum nutrients as 'bacterial vampirism', which may relate to the proclivity of Enterobacteriaceae for bloodstream infections.


Sepsis is the leading cause of death in patients with inflammatory bowel disease. Individuals with this condition can experience recurrent episodes of intestinal bleeding, giving intestinal (or enteric) bacteria an entry point into the bloodstream. This puts patients at risk of developing fatal infections ­ particularly from infections caused by bacteria belonging to the Enterobacteriaceae family. However, it is not well understood why this family of bacteria are particularly prone to entering the bloodstream. Enteric bacteria commonly respond to chemicals (or chemical stimuli) in their environment. This process, known as chemotaxis, helps bacteria with a variety of tasks, such as monitoring their environment, moving to different areas within their environment or colonizing their host. Chemical stimuli are classed as 'attractants' or 'repellents', with attractants luring the bacteria to an area and repellents discouraging the bacteria from being in a specific place. Intestinal bleeds will release serum (the liquid part of blood) into the gut, which could serve as a source of chemical stimuli to attract Enterobacteriaceae into the bloodstream. To find out more, Glen, Gentry-Lear et al. first used a microfluidic device to simulate an intestinal bleed and tested the response of Enterobacteriaceae bacteria to serum. Using chemotaxis, bacteria were found to be attracted to the amino acid L-serine in the serum to which they were able to attach through a receptor called Tsr. They also consumed nutrients present in the human serum to help them grow. Experiments with intestinal tissue showed that chemotaxis attracted bacteria to bleeding blood vessels and the Tsr receptor helped them to infiltrate the blood vessels. Glen et al. termed this attraction to and feeding upon blood serum as 'bacterial vampirism'. These findings suggest that chemotaxis of Enterobacteriaceae towards L-serine in serum may be linked to their tendency to enter the bloodstream. Developing therapies that target chemotaxis in Enterobacteriaceae may provide a method for managing bloodstream infections.


Subject(s)
Chemotaxis , Serum , Humans , Serine/metabolism , Enterobacteriaceae , Animals , Mice , Salmonella enterica , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
19.
Ann Clin Microbiol Antimicrob ; 23(1): 47, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796461

ABSTRACT

BACKGROUND: Aztreonam-avibactam (ATM-AVI) combination shows promising effectiveness on most carbapenemase-producing Gram-negatives, yet standardized antibiotic susceptibility testing (AST) methods for evaluating the combination in clinical laboratories is lacking. We aimed to evaluate different ATM-AVI AST approaches. METHODS: 96 characterized carbapenem-resistant clinical isolates belonging to 9 Enterobacterales (EB; n = 80) and P. aeruginosa (PA; n = 16) species, including 90 carbapenemase producers and 72 strains resistant to both CAZ-AVI and ATM, were tested. Paper disk elution (DE; Bio-Rad) and E-test gradient strips stacking (SS; bioMérieux) were performed for the ATM + CAZ-AVI combination. MIC Test Strip (MTS; Liofilchem) was evaluated for ATM-AVI MIC determination. Results were interpreted applying ATM clinical breakpoints of the EUCAST guidelines and compared to the broth microdilution method (Sensititre, Thermofisher). RESULTS: According to broth microdilution method, 93% of EB and 69% of PA were tested susceptible to ATM-AVI. The synergistic effect of ATM-AVI was of 95% for EB, but of only 17% for PA. The MTS method yielded higher categorical and essential agreement (CA/EA) rates for both EB (89%/91%) and PA (94%/94%) compared to SS, where the rates were 87%/83% for EB and 81%/81% for PA. MTS and SS yielded 2 and 3 major discrepancies, respectively, while 3 very major discrepancies each were observed for both methods. Concerning the DE method, CA reached 91% for EB and 81% for PA, but high number of very major discrepancies were observed for EB (n = 6; 8%) and for PA (n = 3; 19%). CONCLUSIONS: The ATM-AVI association displayed excellent in vitro activity against highly resistant clinical Enterobacterales strains. MTS method offers accurate ATM-AVI AST results, while the SS method might serve as better alternative then DE method in assessing the efficacy of ATM + CAZ-AVI combination. However, further investigation is needed to confirm the methods' ability to detect ATM-AVI resistance.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Microbial Sensitivity Tests , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Humans , Gram-Negative Bacteria/drug effects , Drug Combinations , Pseudomonas aeruginosa/drug effects , beta-Lactamases/metabolism , Enterobacteriaceae/drug effects , Bacterial Proteins , Gram-Negative Bacterial Infections/microbiology
20.
Diagn Microbiol Infect Dis ; 109(3): 116335, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703531

ABSTRACT

OBJECTIVES: The objective of this study was to provide the clinic with rapid and accurate results of antimicrobial susceptibility testing for the treatment of patients with bloodstream infections. To achieve this, we applied the Clinical and Laboratory Standards Institute (CLSI) blood culture direct rapid antimicrobial susceptibility test (rAST) to assess the susceptibility of the most common Enterobacterales found in blood cultures. METHODS: In this study, we utilized the CLSI blood culture direct rapid antimicrobial susceptibility test to assess the susceptibility (rAST) of the most common Enterobacterales present in blood cultures. We chose this method for its simplicity in analysis, and our aim was to predict minimum inhibitory concentrations (MICs) using the rAST. As a benchmark, we assumed that Broth Macrodilution method (BMD) results were 100% accurate. For data evaluation, we employed the terms categorical agreement (CA), very major errors (VME), and major errors (ME). RESULTS: Our findings demonstrate that the CLSI rAST method is reliable for rapidly determining the in vitro susceptibility of Enterobacterales to common antimicrobial drugs in bloodstream infections. We achieved a concordance rate of 90% in classification within a 10-hour timeframe. We identified a total of 112 carbapenem-resistant Enterobacterales (CRE) strains, and there was no significant difference in the detection rate of CRE at 6, 10, and 16 hours. This suggests that CRE can be identified as early as 6 hours. CONCLUSION: The CLSI rAST is a valuable tool that can be utilized in clinical practice to quickly determine the susceptibility of Enterobacterales to antimicrobial drugs within 10 hours. This capability can greatly assist in the clinical management of patients with bloodstream infections.


Subject(s)
Anti-Bacterial Agents , Blood Culture , Enterobacteriaceae Infections , Enterobacteriaceae , Microbial Sensitivity Tests , Humans , Microbial Sensitivity Tests/standards , Microbial Sensitivity Tests/methods , Blood Culture/methods , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Bacteremia/microbiology , Bacteremia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...