Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.170
Filter
1.
Rev Med Suisse ; 20(872): 866-871, 2024 May 01.
Article in French | MEDLINE | ID: mdl-38693798

ABSTRACT

Multi-resistant Enterobacterales (MRE) are on the increase worldwide, with the main mechanism of resistance acquisition being horizontal transfer of plasmids coding for extended-spectrum betalactamase and/or carbapenemase. Low- and middle-income countries are the most affected, but surveillance in low-endemicity countries, such as Switzerland, is essential. International travel is one of the sources of MRE dissemination in the community, with the main risk factors for acquiring MRE being a stay in South or Southeast Asia and the use of antibiotics during travel. Other factors, notably animal and environmental, also explain this increase. Measures encompassing a One Health approach are therefore needed to address this issue.


Les entérobactéries multirésistantes (EMR) sont en augmentation dans le monde, avec comme mécanisme principal d'acquisition de résistance le transfert horizontal de plasmides codant pour une bêtalactamase à spectre étendu et/ou une carbapénèmase. Les pays à bas et moyens revenus sont les plus touchés, mais une surveillance dans les pays à faible endémicité, comme la Suisse, est essentielle. Les voyages internationaux sont l'une des sources de dissémination d'EMR dans la communauté, avec comme facteurs de risque principaux d'acquisition d'EMR un séjour en Asie du Sud ou du Sud-Est et l'utilisation d'antibiotiques durant le voyage. D'autres facteurs, notamment animaliers et environnementaux, expliquent aussi cette augmentation. Ainsi, il est nécessaire que des mesures englobant une approche « One Health ¼ répondent à cette problématique.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Travel , Humans , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Risk Factors , Animals , One Health , Plasmids , beta-Lactamases/genetics
2.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702700

ABSTRACT

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Enterobacteriaceae Infections , beta-Lactamases , Animals , Cats , Dogs , Cat Diseases/microbiology , Cat Diseases/epidemiology , beta-Lactamases/genetics , Argentina/epidemiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Microbial Sensitivity Tests , Pets , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Escherichia coli/drug effects , Escherichia coli/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology
3.
J Med Life ; 17(1): 41-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38737657

ABSTRACT

Multi-drug resistant (MDR) Enterobacterales remain a major clinical problem. Infections caused by carbapenem-resistant strains are particularly difficult to treat. This study aimed to assess the clinical and epidemiological characteristics of MDR Enterobacterales isolates. A total of 154 non-repetitive clinical isolates, including Escherichia coli (n = 66), Klebsiella pneumoniae (n = 70), and other Enterobacterales (n = 18), were collected from the Diagnostic Microbiology Laboratory at King Fahad Hospital of the University. Most E. coli isolates were collected from urine specimens (n = 50, 75.8%) and resistance against the third and fourth-generation cephalosporins (ceftriaxone, ceftazidime, cefixime, and cefepime) and fluoroquinolones (ciprofloxacin and levofloxacin) was assessed. Clonal relatedness analysis using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) revealed two clones (E. coli A and B), each comprising two strains. Most K. pneumoniae samples were collected from respiratory specimens (27.1%, 20 samples), and the strains showed overall resistance to most of the antimicrobials tested (54%‒100%). Moreover, clonal-relatedness analysis using ERIC-PCR revealed seven major clones of K. pneumoniae. These findings suggest nosocomial transmission among some identical strains and emphasize the importance of strict compliance with infection prevention and control policies and regulations. Environmental reservoirs could facilitate this indirect transmission, which needs to be investigated.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Humans , Drug Resistance, Multiple, Bacterial/genetics , Saudi Arabia/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Male , Female , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Cross Infection/microbiology , Cross Infection/epidemiology , Cross Infection/drug therapy , Adult , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/genetics , Middle Aged , Hospitals, University
4.
PLoS One ; 19(5): e0303753, 2024.
Article in English | MEDLINE | ID: mdl-38758757

ABSTRACT

NDM-producing carbapenem-resistant bacterial infections became a challenge for clinicians. Combination therapy of aztreonam and ceftazidime-avibactam is a prudent choice for these infections. However, there is still no recommendation of a practically feasible method for testing aztreonam and ceftazidime-avibactam synergy. We proposed a simple method for testing aztreonam and ceftazidime-avibactam synergy and compared it with reference broth micro-dilution and other methods. Carbapenem-resistant Enterobacterales clinical isolates were screened for the presence of the NDM gene by the Carba R test. NDM harbouring isolates were tested for aztreonam and ceftazidime-avibactam synergy by broth microdilution (reference method), E strip-disc diffusion, double disc diffusion, and disc replacement methods. In the newly proposed method, the MHA medium was supplemented with ceftazidime-avibactam (corresponding to an aztreonam concentration of 4µg/ml). The MHA medium was then inoculated with the standard inoculum (0.5 McFarland) of the test organism. An AZT disc (30 µg) was placed on the supplemented MHA medium, and the medium was incubated overnight at 37°C. Aztreonam zone diameter on the supplemented MHA medium (in the presence of ceftazidime-avibactam) was compared with that from a standard disc diffusion plate (without ceftazidime-avibactam), performed in parallel. Interpretation of synergy was based on the restoration of aztreonam zone diameter (in the presence of ceftazidime-avibactam) crossing the CLSI susceptibility breakpoint, i.e., ≥ 21 mm. Of 37 carbapenem-resistant NDM-producing isolates, 35 (94.6%) were resistant to aztreonam and tested synergy positive by the proposed method. Its sensitivity and specificity were 97.14% and 100%, respectively. Cohen's kappa value showed substantial agreement of the reference method with the proposed method (κ = 0.78) but no other methods. The proposed method is simple, easily interpretable, and showed excellent sensitivity, specificity, and agreement with the reference method. Therefore, the new method is feasible and reliable for testing aztreonam synergy with avibactam in NDM-producing Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Ceftazidime , Drug Combinations , Enterobacteriaceae , Microbial Sensitivity Tests , beta-Lactamases , Ceftazidime/pharmacology , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Humans , Drug Synergism , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy
5.
West Afr J Med ; 41(3): 301-310, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38788127

ABSTRACT

INTRODUCTION: According to the World Health Organization, antimicrobial resistance (AMR) is a silent global pandemic that plagues everyone. It makes therapy of infectious diseases more difficult and eventually increases morbidity and mortality. AIM: The purpose of this work is to examine existing data on plasmid-mediated quinolone resistance (PMQR), to assess the prevalence of PMQR genes in Enterobacterales, and to determine any knowledge gaps from sub-Saharan Africa. METHODOLOGY: The Preferred Reporting Items of Systematic Reviews and Meta-analyses (PRISMA) standard was followed when conducting this systematic review. The main internet databases examined for pertinent publications were PubMed, Google Scholar, and Ajol. A set of qualifying criteria were used to evaluate the qualified articles. Using the eligibility criteria, 56 full-text articles were chosen for screening. RESULT: Thirty-two (32) articles with the majority originating from West and North Africa and only one article reporting a study carried out in Central Africa were selected for this review. Escherichia coli and Ciprofloxacin were the most reported Enterobacterales and Quinolone respectively. The PMQR genes include qnr (qnrA,qnrB, qnrC, qnrD, and qnrS), aac (6') Ib, aac (6') Ib-cr, oqxAB and qepA gene. The most prevalent PMQR gene is the aac (6') Ib-cr gene (32%) followed by qnrS (26%). CONCLUSION: This study highlighted the requirement for an efficient antimicrobial resistance surveillance system in the continent and revealed a significant incidence of PMQR genes.


INTRODUCTION: Selon l'Organisation mondiale de la santé, la résistance aux antimicrobiens (RAM) est une pandémie mondiale silencieuse qui touche tout le monde. Elle rend le traitement des maladies infectieuses plus difficile et finit par augmenter la morbidité et la mortalité. OBJECTIF: L'objectif de ce travail est d'examiner les données existantes sur la résistance plasmidique aux quinolones (PMQR), d'évaluer la prévalence des gènes PMQR chez les Enterobacterales et de déterminer d'éventuelles lacunes de connaissances en Afrique subsaharienne. MÉTHODOLOGIE: La norme Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) a été suivie lors de la réalisation de cette revue systématique. Les principales bases de données Internet examinées pour des publications pertinentes étaient PubMed, Google Scholar et Ajol. Un ensemble de critères d'admissibilité a été utilisé pour évaluer les articles qualifiés. En utilisant les critères d'éligibilité, 56 articles en texte intégral ont été choisis pour le dépistage. RÉSULTAT: Trente-deux (32) articles, dont la majorité provient d'Afrique de l'Ouest et du Nord, et un seul article rapportant une étude menée en Afrique centrale, ont été sélectionnés pour cette revue. Escherichia coli et la ciprofloxacine étaient les Enterobacterales et les quinolones les plus signalées respectivement. Les gènes PMQR comprennent les gènes qnr (qnrA, qnrB, qnrC, qnrD et qnrS), aac (6 ') Ib, aac (6 ') Ib-cr, oqxAB et qepA. Le gène PMQR le plus prévalent est le gène aac (6 ') Ib-cr (32 %), suivi de qnrS (26 %). CONCLUSION: Cette étude a souligné la nécessité d'un système efficace de surveillance de la résistance aux antimicrobiens sur le continen`t et a révélé une incidence significative des gènes PMQR. MOTS-CLÉS: Enterobacterales, Escherichia coli, Quinolone, Ciprofloxacine, PMQR, "aac(6')-Ib", "aac(6')-Ib-cr", "qnr", "qepA", "oqxAB", "résistance aux antibiotiques".


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Fluoroquinolones , Plasmids , Humans , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Africa/epidemiology
6.
Diagn Microbiol Infect Dis ; 109(3): 116335, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703531

ABSTRACT

OBJECTIVES: The objective of this study was to provide the clinic with rapid and accurate results of antimicrobial susceptibility testing for the treatment of patients with bloodstream infections. To achieve this, we applied the Clinical and Laboratory Standards Institute (CLSI) blood culture direct rapid antimicrobial susceptibility test (rAST) to assess the susceptibility of the most common Enterobacterales found in blood cultures. METHODS: In this study, we utilized the CLSI blood culture direct rapid antimicrobial susceptibility test to assess the susceptibility (rAST) of the most common Enterobacterales present in blood cultures. We chose this method for its simplicity in analysis, and our aim was to predict minimum inhibitory concentrations (MICs) using the rAST. As a benchmark, we assumed that Broth Macrodilution method (BMD) results were 100% accurate. For data evaluation, we employed the terms categorical agreement (CA), very major errors (VME), and major errors (ME). RESULTS: Our findings demonstrate that the CLSI rAST method is reliable for rapidly determining the in vitro susceptibility of Enterobacterales to common antimicrobial drugs in bloodstream infections. We achieved a concordance rate of 90% in classification within a 10-hour timeframe. We identified a total of 112 carbapenem-resistant Enterobacterales (CRE) strains, and there was no significant difference in the detection rate of CRE at 6, 10, and 16 hours. This suggests that CRE can be identified as early as 6 hours. CONCLUSION: The CLSI rAST is a valuable tool that can be utilized in clinical practice to quickly determine the susceptibility of Enterobacterales to antimicrobial drugs within 10 hours. This capability can greatly assist in the clinical management of patients with bloodstream infections.


Subject(s)
Anti-Bacterial Agents , Blood Culture , Enterobacteriaceae Infections , Enterobacteriaceae , Microbial Sensitivity Tests , Humans , Microbial Sensitivity Tests/standards , Microbial Sensitivity Tests/methods , Blood Culture/methods , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Bacteremia/microbiology , Bacteremia/drug therapy
7.
Ann Intern Med ; 177(5): JC52, 2024 May.
Article in English | MEDLINE | ID: mdl-38710092

ABSTRACT

SOURCE CITATION: López-Cortés LE, Delgado-Valverde M, Moreno-Mellado E, et al; SIMPLIFY study group. Efficacy and safety of a structured de-escalation from antipseudomonal ß-lactams in bloodstream infections due to Enterobacterales (SIMPLIFY): an open-label, multicentre, randomised trial. Lancet Infect Dis. 2024;24:375-385. 38215770.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Enterobacteriaceae Infections , beta-Lactams , Humans , Bacteremia/drug therapy , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/drug therapy , beta-Lactams/therapeutic use , Enterobacteriaceae/drug effects , Male , Female , Middle Aged , Aged , Drug Administration Schedule
9.
PLoS One ; 19(5): e0303872, 2024.
Article in English | MEDLINE | ID: mdl-38771780

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is among the top public health concerns in the globe. Estimating the prevalence of multidrug resistance (MDR), MDR index (MDR-I) and extended-spectrum beta-lactamase (ESBL)-producing lactose fermenting Enterobacteriaceae (LFE) is important in designing strategies to combat AMR. Thus, this study was designed to determine the status of MDR, MDR-I and ESBL-producing LFE isolated from the human-dairy interface in the northwestern part of Ethiopia, where such information is lacking. METHODOLOGY: A cross-sectional study was conducted from June 2022 to August 2023 by analyzing 362 samples consisting of raw pooled milk (58), milk container swabs (58), milker's hand swabs (58), farm sewage (57), milker's stool (47), and cow's feces (84). The samples were analyzed using standard bacteriological methods. The antimicrobial susceptibility patterns and ESBL production ability of the LFE isolates were screened using the Kirby-Bauer disk diffusion method, and candidate isolates passing the screening criteria were phenotypically confirmed by using cefotaxime (30 µg) and cefotaxime /clavulanic acid (30 µg/10 µg) combined-disk diffusion test. The isolates were further characterized genotypically using multiplex polymerase chain reaction targeting the three ESBL-encoding- genes namely blaTEM, blaSHV, and blaCTX-M. RESULTS: A total of 375 bacterial isolates were identified and the proportion of MDR and ESBL-producing bacterial isolates were 70.7 and 21.3%, respectively. The MDR-I varied from 0.0 to 0.81 with an average of 0.30. The ESBL production was detected in all sample types. Genotypically, the majority of the isolates (97.5%), which were positive on the phenotypic test, were carrying one or more of the three genes. CONCLUSION: A high proportion of the bacterial isolates were MDR; had high MDR-I and were positive for ESBL production. The findings provide evidence that the human-dairy interface is one of the important reservoirs of AMR traits. Therefore, the implementation of AMR mitigation strategies is highly needed in the area.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae , Lactose , beta-Lactamases , Humans , Ethiopia , beta-Lactamases/genetics , beta-Lactamases/metabolism , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/enzymology , Lactose/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Animals , Microbial Sensitivity Tests , Cattle , Enterobacteriaceae Infections/microbiology , Cefotaxime/pharmacology , Milk/microbiology , Fermentation , Feces/microbiology
10.
Ann Clin Microbiol Antimicrob ; 23(1): 47, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796461

ABSTRACT

BACKGROUND: Aztreonam-avibactam (ATM-AVI) combination shows promising effectiveness on most carbapenemase-producing Gram-negatives, yet standardized antibiotic susceptibility testing (AST) methods for evaluating the combination in clinical laboratories is lacking. We aimed to evaluate different ATM-AVI AST approaches. METHODS: 96 characterized carbapenem-resistant clinical isolates belonging to 9 Enterobacterales (EB; n = 80) and P. aeruginosa (PA; n = 16) species, including 90 carbapenemase producers and 72 strains resistant to both CAZ-AVI and ATM, were tested. Paper disk elution (DE; Bio-Rad) and E-test gradient strips stacking (SS; bioMérieux) were performed for the ATM + CAZ-AVI combination. MIC Test Strip (MTS; Liofilchem) was evaluated for ATM-AVI MIC determination. Results were interpreted applying ATM clinical breakpoints of the EUCAST guidelines and compared to the broth microdilution method (Sensititre, Thermofisher). RESULTS: According to broth microdilution method, 93% of EB and 69% of PA were tested susceptible to ATM-AVI. The synergistic effect of ATM-AVI was of 95% for EB, but of only 17% for PA. The MTS method yielded higher categorical and essential agreement (CA/EA) rates for both EB (89%/91%) and PA (94%/94%) compared to SS, where the rates were 87%/83% for EB and 81%/81% for PA. MTS and SS yielded 2 and 3 major discrepancies, respectively, while 3 very major discrepancies each were observed for both methods. Concerning the DE method, CA reached 91% for EB and 81% for PA, but high number of very major discrepancies were observed for EB (n = 6; 8%) and for PA (n = 3; 19%). CONCLUSIONS: The ATM-AVI association displayed excellent in vitro activity against highly resistant clinical Enterobacterales strains. MTS method offers accurate ATM-AVI AST results, while the SS method might serve as better alternative then DE method in assessing the efficacy of ATM + CAZ-AVI combination. However, further investigation is needed to confirm the methods' ability to detect ATM-AVI resistance.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Microbial Sensitivity Tests , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Humans , Gram-Negative Bacteria/drug effects , Drug Combinations , Pseudomonas aeruginosa/drug effects , beta-Lactamases/metabolism , Enterobacteriaceae/drug effects , Bacterial Proteins , Gram-Negative Bacterial Infections/microbiology
11.
Sci Rep ; 14(1): 9802, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684834

ABSTRACT

Incompatibility (Inc) HI2 plasmids are large (typically > 200 kb), transmissible plasmids that encode antimicrobial resistance (AMR), heavy metal resistance (HMR) and disinfectants/biocide resistance (DBR). To better understand the distribution and diversity of resistance-encoding genes among IncHI2 plasmids, computational approaches were used to evaluate resistance and transfer-associated genes among the plasmids. Complete IncHI2 plasmid (N = 667) sequences were extracted from GenBank and analyzed using AMRFinderPlus, IntegronFinder and Plasmid Transfer Factor database. The most common IncHI2-carrying genera included Enterobacter (N = 209), Escherichia (N = 208), and Salmonella (N = 204). Resistance genes distribution was diverse, with plasmids from Escherichia and Salmonella showing general similarity in comparison to Enterobacter and other taxa, which grouped together. Plasmids from Enterobacter and other taxa had a higher prevalence of multiple mercury resistance genes and arsenic resistance gene, arsC, compared to Escherichia and Salmonella. For sulfonamide resistance, sul1 was more common among Enterobacter and other taxa, compared to sul2 and sul3 for Escherichia and Salmonella. Similar gene diversity trends were also observed for tetracyclines, quinolones, ß-lactams, and colistin. Over 99% of plasmids carried at least 25 IncHI2-associated conjugal transfer genes. These findings highlight the diversity and dissemination potential for resistance across different enteric bacteria and value of computational-based approaches for the resistance-gene assessment.


Subject(s)
Plasmids , Plasmids/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Genotype , Enterobacter/genetics , Salmonella/genetics , Salmonella/drug effects , Drug Resistance, Multiple, Bacterial/genetics
12.
ACS Infect Dis ; 10(5): 1624-1643, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38652574

ABSTRACT

The discovery of safe and efficient inhibitors against efflux pumps as well as metallo-ß-lactamases (MBL) is one of the main challenges in the development of multidrug-resistant (MDR) reversal agents which can be utilized in the treatment of carbapenem-resistant Gram-negative bacteria. In this study, we have identified that introduction of an ethylene-linked sterically demanding group at the 3-OH position of the previously reported MDR reversal agent di-F-Q endows the resulting compounds with hereto unknown multitarget inhibitory activity against both efflux pumps and broad-spectrum ß-lactamases including difficult-to-inhibit MBLs. A molecular docking study of the multitarget inhibitors against efflux pump, as well as various classes of ß-lactamases, revealed that the 3-O-alkyl substituents occupy the novel binding sites in efflux pumps as well as carbapenemases. Not surprisingly, the multitarget inhibitors rescued the antibiotic activity of a carbapenem antibiotic, meropenem (MEM), in NDM-1 (New Delhi Metallo-ß-lactamase-1)-producing carbapenem-resistant Enterobacteriaceae (CRE), and they reduced MICs of MEM more than four-fold (synergistic effect) in 8-9 out of 14 clinical strains. The antibiotic-potentiating activity of the multitarget inhibitors was also demonstrated in CRE-infected mouse model. Taken together, these results suggest that combining inhibitory activity against two critical targets in MDR Gram-negative bacteria, efflux pumps, and ß-lactamases, in one molecule is possible, and the multitarget inhibitors may provide new avenues for the discovery of safe and efficient MDR reversal agents.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Molecular Docking Simulation , Quercetin , beta-Lactamases , beta-Lactamases/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Mice , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Quercetin/pharmacology , Quercetin/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Synergism , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Female
13.
Prev Vet Med ; 227: 106205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678816

ABSTRACT

Mastitis is the most common disease of dairy cattle and can be manifested in clinical and subclinical forms. The overuse of antimicrobials in the treatment and prevention of mastitis favours antimicrobial resistance and milk can be a potential route of dissemination. This study aimed to evaluate the biological quality of bulk tank milk (BTM) and the microbiological quality and signs of mastitis of freshly milked raw milk. In addition, to evaluate antimicrobial resistance in Enterobacteriaceae and Staphylococcus spp. isolated from freshly milked raw milk. None of the farms were within the official Brazilian biological quality limits for BTM. Freshly milked raw milk with signs of clinical (CMM), subclinical (SCMM) and no signs (MFM) of mastitis were detected in 6.67%, 27.62% and 65.71% samples, respectively. Most samples of freshly milked raw milk showed acceptable microbiological quality, when evaluating the indicators total coliforms (78.10%), Escherichia coli (88.57%) and Staphylococcus aureus (100%). Klebsiella oxytoca and S. aureus were the most prevalent microorganisms in SCMM and MFM samples. Antimicrobial resistance and multidrug resistance (MDR) were observed in 65.12% and 13.95% of Enterobacteriaceae and 84.31% and 5.88% of Staphylococcus spp., respectively, isolated from both SCMM and MFM samples. Enterobacteriaceae resistant to third-generation cephalosporin (3GCR) (6.98%) and carbapenems (CRE) (6.98%) and methicillin-resistant S. aureus (MRSA) (4.88%) were observed. Antimicrobial-resistant bacteria can spread resistance genes to previously susceptible bacteria. This is a problem that affects animal, human and environmental health and should be evaluated within the one-health concept.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterobacteriaceae , Mastitis, Bovine , Milk , Staphylococcus , Animals , Cattle , Milk/microbiology , Mastitis, Bovine/microbiology , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Female , Staphylococcus/drug effects , Brazil , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Asymptomatic Infections , Microbial Sensitivity Tests/veterinary
14.
Microbiology (Reading) ; 170(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38661713

ABSTRACT

Introduction. Leclercia adecarboxylata is a member of Enterobacterales, often considered an opportunistic pathogen. Recent reports have highlighted L. adecarboxylata as an emerging pathogen harbouring virulence and resistance determinants.Gap statement. Little information exists on virulence and resistance determinants in L. adecarboxylata strains isolated from environmental, food, and clinical samples.Aim. To determine the presence of resistance and virulence determinants and plasmid features in L. adecarboxylata strains isolated from environmental, food, and clinical samples, as well as their phylogenetic relationship.Results. All strains tested showed resistance to ß-lactams and quinolones but were sensitive to aminoglycosides and nitrofurans. However, even though fosfomycin resistance is considered a characteristic trait of L. adecarboxylata, the resistance phenotype was only observed in 50 % of the strains; bla TEM was the most prevalent BLEE gene (70 %), while the quinolone qnrB gene was observed in 60 % of the strains. Virulence genes were differentially observed in the strains, with adhesion-related genes being the most abundant, followed by toxin genes. Finally, all strains carried one to seven plasmid bands ranging from 7 to 125 kbps and harboured several plasmid addiction systems, such as ParDE, VagCD, and CcdAB in 80 % of the strains.Conclusions. L. adecarboxylata is an important emerging pathogen that may harbour resistance and virulence genes. Additionally, it has mobilizable genetic elements that may contribute to the dissemination of genetic determinants to other bacterial genera.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Microbial Sensitivity Tests , Phylogeny , Plasmids , Virulence Factors , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Virulence/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/pathogenicity , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/classification , Virulence Factors/genetics , Humans , Enterobacteriaceae Infections/microbiology , Phenotype , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , beta-Lactams/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Food Microbiology
15.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667187

ABSTRACT

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Subject(s)
Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Carbapenems , Endodeoxyribonucleases , beta-Lactamases , Carbapenems/pharmacology , beta-Lactamases/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Biosensing Techniques , Drug Resistance, Bacterial/genetics
16.
Front Cell Infect Microbiol ; 14: 1289396, 2024.
Article in English | MEDLINE | ID: mdl-38655285

ABSTRACT

The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Tigecycline , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Humans , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Minocycline/analogs & derivatives , Minocycline/pharmacology , Microbial Sensitivity Tests , Plasmids/genetics , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology
17.
Int J Infect Dis ; 143: 107035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561043

ABSTRACT

OBJECTIVES: Infections are one of the most common causes of neonatal mortality, and maternal colonization has been associated with neonatal infection. In this study, we sought to quantify carriage prevalence of extended-spectrum-beta-lactamase (ESBL) -producing and carbapenem-resistant Enterobacterales (CRE) among pregnant women and their neonates and to characterize risk factors for carriage in rural Amhara, Ethiopia. METHODS: We conducted a prospective cohort study nested in the Birhan field site. We collected rectal and vaginal samples from 211 pregnant women in their third trimester and/or during labor/delivery and perirectal or stool samples from 159 of their neonates in the first week of life. RESULTS: We found that carriage of ESBL-producing organisms was fairly common (women: 22.3%, 95% CI: 16.8-28.5; neonates: 24.5%, 95% CI: 18.1-32.0), while carriage of CRE (women: 0.9%, 95% CI: 0.1-3.4; neonates: 2.5%, 95% CI: 0.7-6.3) was rare. Neonates whose mothers tested positive for ESBL-producing organisms were nearly twice as likely to also test positive for ESBL-producing organisms (38.7% vs 21.1%, P-value = 0.06). Carriage of ESBL-producing organisms was also associated with Woreda (district) of sample collection and recent antibiotic use. CONCLUSION: Understanding carriage patterns of potential pathogens and antibiotic susceptibility among pregnant women and newborns will inform local, data-driven recommendations to prevent and treat neonatal infections.


Subject(s)
Anti-Bacterial Agents , Carrier State , Enterobacteriaceae Infections , Enterobacteriaceae , Pregnancy Complications, Infectious , beta-Lactamases , Humans , Female , Pregnancy , Ethiopia/epidemiology , Infant, Newborn , Carrier State/epidemiology , Carrier State/microbiology , Adult , Prospective Studies , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Anti-Bacterial Agents/pharmacology , Young Adult , Pregnancy Complications, Infectious/microbiology , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/drug therapy , Prevalence , Risk Factors , Rectum/microbiology , Feces/microbiology , Adolescent , Microbial Sensitivity Tests , Vagina/microbiology
19.
J Antimicrob Chemother ; 79(6): 1309-1312, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38564262

ABSTRACT

OBJECTIVES: To evaluate the performance of an in-house developed disk diffusion method for aztreonam in combination with avibactam against Enterobacteriales. METHODS: The in vitro antibacterial activity of aztreonam with avibactam against 204 carbapenemase-producing Enterobacteriales was determined by a disk diffusion method, with a broth microdilution method as a reference. RESULTS: The optimal S/R breakpoints for disk diffusion tests of 30/20 and 10/4 µg disks, calculated by the dBETs software using the model-based approaches, were ≥22/≤21 and ≥12/≤11 mm, respectively. On the basis of the estimated breakpoints, the CAs for disk diffusion tests of 30/20 and 10/4 µg aztreonam/avibactam disks were both 98.0%, with 0.5% major error and 37.5% very major error. CONCLUSIONS: The home-made disk diffusion method is an economical and practical method for clinical microbiology laboratories to determine the antibacterial susceptibility of aztreonam with avibactam against Enterobacteriales.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Disk Diffusion Antimicrobial Tests , Enterobacteriaceae , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Disk Diffusion Antimicrobial Tests/methods , Disk Diffusion Antimicrobial Tests/standards , Microbial Sensitivity Tests/methods , Microbial Sensitivity Tests/standards , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...