Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.176
Filter
1.
Ann Clin Microbiol Antimicrob ; 23(1): 41, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704577

ABSTRACT

BACKGROUND: Infections caused by linezolid-resistant enterococci (LRE) are clinically difficult to treat and threaten patient health. However, there is a lack of studies on long time-span LRE strains in China. For this reason, our study comprehensively revealed the resistance mechanisms of LRE strains collected in a Chinese tertiary care hospital from 2011 to 2022. METHODS: Enterococcal strains were screened and verified after retrospective analysis of microbial data. Subsequently, 65 LRE strains (61 Enterococcus faecalis and 4 Enterococcus faecium, MIC ≥ 8 µg/ml), 1 linezolid-intermediate Enterococcus faecium (MIC = 4 µg/ml) and 1 linezolid-susceptible Enterococcus faecium (MIC = 1.5 µg/ml) were submitted for whole-genome sequencing (WGS) analysis and bioinformatics analysis. RESULTS: The optrA gene was found to be the most common linezolid resistance mechanism in our study. We identified the wild-type OptrA and various OptrA variants in 98.5% of LRE strains (61 Enterococcus faecalis and 3 Enterococcus faecium). We also found one linezolid-resistant Enterococcus faecium strain carried both optrA and cfr(D) gene, while one linezolid-resistant Enterococcus faecium only harbored the poxtA gene. Most optrA genes (55/64) were located on plasmids, with impB-fexA-optrA, impB-fexA-optrA-erm(A), fexA-optrA-erm(A), and fexA-optrA segments. A minority of optrA genes (9/64) were found on chromosomes with the Tn6674-like platform. Besides, other possible linezolid resistance-associated mechanisms (mutations in the rplC and rplD genes) were also found in 26 enterococcal strains. CONCLUSIONS: Our study suggested that multiple mechanisms of linezolid resistance exist among clinical LRE strains in China.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Whole Genome Sequencing , Linezolid/pharmacology , China/epidemiology , Humans , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Anti-Bacterial Agents/pharmacology , Retrospective Studies , Enterococcus/drug effects , Enterococcus/genetics , Bacterial Proteins/genetics , Genome, Bacterial , Molecular Epidemiology , Tertiary Care Centers , Genomics
2.
J Pak Med Assoc ; 74(4): 661-665, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751258

ABSTRACT

Objectives: To identify various species of non-lactose fermenting gram-negative bacilli involved in urinary tract infections, and to determine their antimicrobial resistance pattern. METHODS: The retrospective, descriptive, cross-sectional study was conducted from January 1 to April 1, 2022, at the Dow University of Health Sciences, Karachi, and comprised data from the institutional diagnostic laboratory that was related to urine samples regardless of age and gender from January 1, 2020, to December 31, 2021. Data was analysed using SPSS version 25. RESULTS: Of the 103,887 urine samples, 41,280(39.7%) were positive, 51,146(49.2%) showed no bacterial growth, 11,000(10.6%) had non-significant bacterial growth and 461(0.4%) had mixed bacterial growth. Of the positive samples, 18359(44.5%) were positive in 2020, and 22,921(55.5%) in 2021. Gram-negative lactose fermenting bacteria included escherichia coli 23,123(22.3%) and klebsiella pneumoniae 2,993(2.9%), gram-negative non-lactose fermenting bacteria included pseudomonas aeruginosa 1,110(1.07%), and gram-positive bacteria included enterococcus 8,008(7.7%). Pseudomonas aeruginosa was most resistant against tobramycin 880(79.3%) and least resistant against piperacillin-tazobactam 146(13%). CONCLUSIONS: Piperacillin-tazobactam was highly sensitive drug against non-lactose fermenting uro-pathogens.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Urinary Tract Infections , Humans , Gram-Negative Bacteria/drug effects , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Cross-Sectional Studies , Retrospective Studies , Male , Female , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Pseudomonas aeruginosa/drug effects , Microbial Sensitivity Tests , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/drug therapy , Adult , Pakistan , Enterococcus/drug effects , Middle Aged
3.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38740525

ABSTRACT

Enterococcus raffinosus, named by Collins et al. in 1989, is a cocci-shaped bacterium that typically appears in pairs or short chains. As a Gram-positive and non-motile bacterium, it grows at 10°C-45°C, exhibiting negative peroxidase activity [1]. It is a normal flora in the oropharynx and gastrointestinal tract of domestic cats [2] and can also be isolated from human rectal swabs [3], it belongs to the same genus Enterococcus as Enterococcus faecalis and Enterococcus faecium. Enterococcus faecalis and Enterococcus faecium constitute 90% of clinically isolated strains. However, the incidence of other enterococci, excluding E. faecalis and E. faecium, is on the rise [4]. In this case report, a patient with pediatric urinary tract infections caused by E. raffinosus was presented, and a summary of relevant literature was provided.


Subject(s)
Anti-Bacterial Agents , Enterococcus , Gram-Positive Bacterial Infections , Urinary Tract Infections , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterococcus/drug effects , Enterococcus/isolation & purification , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy , Male , Remission, Spontaneous , Child
4.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732016

ABSTRACT

Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and H2) of menthol, 1,8-cineol, linalool, methyl salicylate, γ-terpinene, p-cymene, trans-anethole, terpinen-4-ol and thymol were used in an in vitro model, analyzing its effectiveness against the strains E. cecorum, E. faecalis, E. faecium, E. hirae and E. gallinarum isolated from broiler chickens from industrial farms. To identify the isolated strains classical microbiological methods and VITEK 2 GP cards were used. Moreover for E. cecorum a PCR test was used.. Antibiotic sensitivity (MIC) tests were performed for all the strains. For the composition H1, the effective dilution for E. cecorum and E. hirae strains was 1:512, and for E. faecalis, E. faecium and E. gallinarum, 1:1024. The second mixture (H2) showed very similar results with an effectiveness at 1:512 for E. cecorum and E. hirae and 1:1024 for E. faecalis, E. faecium and E. gallinarum. The presented results suggest that the proposed composition is effective against selected strains of Enterococcus in an in vitro model, and its effect is comparable to classical antibiotics used to treat this pathogen in poultry. This may suggest that this product may also be effective in vivo and provide effective support in the management of enterococcosis in broiler chickens.


Subject(s)
Anti-Bacterial Agents , Chickens , Enterococcus , Microbial Sensitivity Tests , Animals , Chickens/microbiology , Enterococcus/drug effects , Enterococcus/genetics , Enterococcus/isolation & purification , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Probiotics/pharmacology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy
5.
Waste Manag ; 183: 1-9, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38703551

ABSTRACT

Sludge composting is a sludge resource utilization method that can reduce pollutants, such as pathogens. Enterococci are regarded as more reliable and conservative indicators of pathogen inactivation than fecal coliforms, which are typically used as indicators of fecal pollution. Non-spore pathogenic bacteria may enter a viable but non-culturable (VBNC) state during composting, leading to residual risk. The VBNC status of bacteria is related to their survival during composting. However, the survival mechanisms of enterococci during sludge composting remain unclear. Therefore, this study aimed to investigate the VBNC state of enterococci in different phases of simulated sludge composting and the fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) during the composting process. This study is expected to provide a basis for subsequent exploration of possible methods to completely inactivate enterococci and reduce ARGs during sludge composting. Culturable enterococci were reduced in the thermophilic phase of sludge composting, but the proportion of VBNC subpopulation increased. It was reported for the first time that most VBNC enterococci were killed by extending the cooling phase of sludge compost, and by prolonging the cooling phase the types of ARG were reduced. However, there was a certain quantity (approximately 104/g dry weight) of culturable and VBNC enterococci in the compost products. In addition, MGEs and ARGs exist in both bacteria and compost products, leading to the risk of spreading antibiotic-resistant bacteria and antibiotic resistance when sludge compost products are used.


Subject(s)
Composting , Enterococcus , Sewage , Composting/methods , Sewage/microbiology , Enterococcus/genetics , Enterococcus/drug effects , Drug Resistance, Microbial/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Soil Microbiology
6.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38618721

ABSTRACT

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Subject(s)
Gastrointestinal Microbiome , Insecticide Resistance , Pyrethrins , Reactive Oxygen Species , Tephritidae , Animals , Reactive Oxygen Species/metabolism , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticide Resistance/genetics , Tephritidae/microbiology , Tephritidae/genetics , Insecticides/pharmacology , Insecticides/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Lactobacillales/drug effects , Lactobacillales/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism
7.
Int J Food Microbiol ; 418: 110711, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38677237

ABSTRACT

Enterococci are emerging nosocomial pathogens. Their widespread distribution causes them to be food contaminants. Furthermore, Enterococci can colonize various ecological niches and diffuse into the food chain via contaminated animals and foods because of their remarkable tolerance to unfavorable environmental circumstances. Due to their potential dissemination to humans, antimicrobial-resistant Enterococci in fish are a worldwide health issue. This study characterized AMR, ARGs, VAGs, gelatinase activity, and biofilm formation in Enterococcus spp. recovered from fish and seafood and evaluated potential correlations. 54 Enterococcus spp. strains(32.73 %)were isolated from 165 samples (75 Oreochromis niloticus, 30 Argyrosomus regius, and 60 Shrimp), comprising 30 Enterococcus faecalis (55.6 %) and 24 Enterococcus faecium (44.4 %) with total 32.73 % (54/165), The maximum prevalence rate of Enterococcus spp. was observed in Nile tilapia (34/54; 63 %), followed by shrimp (14/54; 25.9 %) and Argyrosomus regius (6/54; 11.1 %). The maximum prevalence rate of E. faecalis was observed in Nile tilapia (22/30; 73.3 %), followed by shrimp (8/30; 26.7 %) with significant differences. The prevalence rate of E. faecium was observed in Nile tilapia (12/24; 50 %), followed by shrimp (6/24,25 %). E. faecium is only isolated from Argyrosomus regius (6/24,25 %). Isolates exhibited high resistance against both tetracycline (90.7 %) and erythromycin(88.9 %), followed by gentamycin (77.8 %), ciprofloxacin (74.1 %), levofloxacin (72.2 %), penicillin (44.4 %), vancomycin (37 %), and linezolid (20.4 %). 50 strains (92.6 %) exhibited resistance to more than two antibiotics, 5 strains (10 %) were XDR, and the remaining 45 strains (90 %) were classified as MDR. 92.6 % of the isolates had MARindices >0.2, indicating they originated in settings with a high risk of contamination. Additionally, ten ARGs were identified, with tet(M) 92.6 %, followed by erm(B) (88.9 %), aac(6')-Ie-aph(2″)-Ia(77.8 %), tet(K) (75.9 %), gyrA (74.1 %), blaZ (48.1 %), vanA (37 %), vanB (31.5 %), optrA (20.4 %), and catA(3.7 %). Biofilm formation and gelatinase activity were observed in 85.2 %, and 61.1 % of the isolates, respectively. A total of 11 VAGs were detected, with gelE as the most prevalent (83.3 %) followed by agg(79.6 %), pil (74.1 %), both sprE and asa1 (72.2 %), hyl (70.4 %), eps(68.5 %), EF3314 (57.4 %), ace (50 %), and cylA (35.2 %) with no detection of cylB. In conclusion, the emergence of linezolid-resistant -vancomycin-resistant enterococci recovered from Egyptian fish and shrimp, suggests that fish and seafood might participate a fundamental part in the emergence of antimicrobial resistance among humans.


Subject(s)
Anti-Bacterial Agents , Linezolid , Animals , Anti-Bacterial Agents/pharmacology , Linezolid/pharmacology , Virulence , Fishes/microbiology , Microbial Sensitivity Tests , Enterococcus/drug effects , Enterococcus/isolation & purification , Drug Resistance, Bacterial , Crustacea/microbiology , Seafood/microbiology , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification , Biofilms/drug effects , Biofilms/growth & development
8.
Angew Chem Int Ed Engl ; 63(19): e202319765, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38502093

ABSTRACT

The natural product chlorotonil displays high potency against multidrug-resistant Gram-positive bacteria and Plasmodium falciparum. Yet, its scaffold is characterized by low solubility and oral bioavailability, but progress was recently made to enhance these properties. Applying late-stage functionalization, we aimed to further optimize the molecule. Previously unknown reactions including a sulfur-mediated dehalogenation were revealed. Dehalogenil, the product of this reaction, was identified as the most promising compound so far, as this new derivative displayed improved solubility and in vivo efficacy while retaining excellent antimicrobial activity. We confirmed superb activity against multidrug-resistant clinical isolates of Staphylococcus aureus and Enterococcus spp. and mature transmission stages of Plasmodium falciparum. We also demonstrated favorable in vivo toxicity, pharmacokinetics and efficacy in infection models with S. aureus. Taken together, these results identify dehalogenil as an advanced lead molecule.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Plasmodium falciparum/drug effects , Microbial Sensitivity Tests , Animals , Enterococcus/drug effects , Molecular Structure , Humans , Mice
9.
J Antimicrob Chemother ; 79(5): 997-1005, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38501366

ABSTRACT

BACKGROUND: VRE are increasingly described worldwide. Screening of hospitalized patients at risk for VRE carriage is mandatory to control their dissemination. Here, we have developed the Bfast [VRE Panel] PCR kit, a rapid and reliable quantitative PCR assay for detection of vanA, vanB, vanD and vanM genes, from solid and liquid cultures adaptable to classical and ultrafast real-time PCR platforms. METHODS: Validation was carried out on 133 well characterized bacterial strains, including 108 enterococci of which 64 were VRE. Analytical performances were determined on the CFX96 Touch (Bio-Rad) and Chronos Dx (BforCure), an ultrafast qPCR machine. Widely used culture plates and broths for enterococci selection/growth were tested. RESULTS: All targeted van alleles (A, B, D and M) were correctly detected without cross-reactivity with other van genes (C, E, G, L and N) and no interference with the different routinely used culture media. A specificity and sensitivity of 100% and 99.7%, respectively, were determined, with limits of detection ranging from 21 to 238 cfu/reaction depending on the targets. The Bfast [VRE Panel] PCR kit worked equally well on the CFX and Chronos Dx platforms, with differences in multiplexing capacities (five and four optical channels, respectively) and in turnaround time (45 and 16 minutes, respectively). CONCLUSIONS: The Bfast [VRE Panel] PCR kit is robust, easy to use, rapid and easily implementable in clinical microbiology laboratories for ultra-rapid confirmation of the four main acquired van genes. Its features, especially on Chronos Dx, seem to be unmatched compared to other tools for screening of VRE.


Subject(s)
Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Vancomycin Resistance , Vancomycin-Resistant Enterococci , Humans , Real-Time Polymerase Chain Reaction/methods , Vancomycin Resistance/genetics , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , Enterococcus/genetics , Enterococcus/drug effects , Enterococcus/isolation & purification , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/diagnosis , Bacterial Proteins/genetics , Time Factors , Genes, Bacterial/genetics
10.
BMC Infect Dis ; 23(1): 514, 2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37544982

ABSTRACT

BACKGROUND: Enterococcal bacteremia has become prevalent in the recent decade, especially in hospitalized patients. Moreover, the rise in resistance patterns against antibiotic drugs regarding enterococci infection, such as cephalosporins, ampicillin and vancomycin, is prevailing. The major driving force behind this is the incongruous use of antibiotics with a minor contribution from environmental stressors which calls for vigilant and prudent administration of evidence-based antibiotics. METHODS: A retrospective study was conducted from January 1 2017 until December 31 2021, at the tertiary care center, Dr Ziauddin Hospital in Karachi, Pakistan. RESULTS: Our research revealed ampicillin resistance in 87 (63.5%), with an estimated 25 (18.8%) mortality. Male gender 19 (76%) and vancomycin resistance 13 (52%) were associated with increased mortality. Furthermore, appropriate antibiotic therapy reduced the risk of death compared with inappropriate and excessive use of antibiotics 10 (40%) vs. 15 (60%) vs. 20 (80%) respectively. Targeted therapy with amoxicillin/clavulanic acid was associated with lower mortality 1 (4%) and higher discharge rates 34 (32.1%). On Kaplan-Meier survival, targeted therapy with amoxicillin/clavulanic acid was associated with shorter hospital stays and prolonged survival. UTI was found as the most common source of enterococcal bacteremia 57 (41.6%), followed by respiratory 21 (15.3%) and intra-abdominal 13 (9.5%). In 26 (19%) patients, no identifiable source of infection was found. CONCLUSION: Vancomycin resistance and male gender were found independent risk factors for mortality. The use of inappropriate antibiotics significantly increases mortality in these patients. The appropriate antibiotic therapy reduces the risk of death. Furthermore, overuse of antibiotics didn't reduce mortality; instead increased the financial burden and chances of developing multi-drug resistant strains of other organisms by increasing hospital stays of patients.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Health Personnel , Antimicrobial Stewardship , Humans , Bacteremia/drug therapy , Bacteremia/mortality , Anti-Bacterial Agents/therapeutic use , Vancomycin-Resistant Enterococci , Retrospective Studies , Enterococcus/drug effects , Pakistan/epidemiology , Practice Patterns, Physicians'
11.
Nature ; 611(7937): 780-786, 2022 11.
Article in English | MEDLINE | ID: mdl-36385534

ABSTRACT

Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.


Subject(s)
Clostridioides difficile , Enterococcus , Microbial Interactions , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Arginine/deficiency , Arginine/metabolism , Clostridioides difficile/metabolism , Clostridioides difficile/pathogenicity , Clostridioides difficile/physiology , Disease Models, Animal , Drug Resistance, Bacterial , Enterococcus/drug effects , Enterococcus/metabolism , Enterococcus/pathogenicity , Enterococcus/physiology , Gastrointestinal Microbiome/drug effects , Intestines/drug effects , Intestines/metabolism , Intestines/microbiology , Leucine/metabolism , Ornithine/metabolism , Virulence , Disease Susceptibility
12.
Microbiol Spectr ; 10(1): e0150521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35044200

ABSTRACT

Linezolid plays a crucial role in the treatment of infections caused by multiresistant Gram-positive bacteria. The poxtA gene not only confers oxazolidinone and phenicol resistance but also decreases susceptibility to tetracycline. In this study, we investigated structural changes in mobilizable poxtA-carrying plasmids in enterococci which occurred during conjugation experiments using S1-PFGE (pulsed-field gel electrophoresis), Southern blot hybridization, and whole-genome sequencing (WGS) analysis. Two poxtA-carrying strains were identified in Enterococcus faecalis E006 and Enterococcus lactis E843, respectively. E. faecalis E006 contains the 121,520-bp conjugative plasmid pE006-121 and the 19,832-bp mobilizable poxtA-carrying plasmid pE006-19, while E. lactis E843 contains the 171,930-bp conjugative plasmid pE843-171 and the 27,847-bp mobilizable poxtA-carrying plasmid pE843-27. Moreover, both poxtA-carrying plasmids were mobilized by their respective conjugative plasmid in enterococci by plasmid fusion; one was generated by homologous recombination in E. faecalis through an identical 864-bp homologous region in the plasmids of the parental strain, while another was generated by an IS1216E-mediated plasmid integration in E. lactis, involving a replicative transposition. IMPORTANCE Until now, all the poxtA genes described in enterococci, including E. faecalis, E. faecium, and E. hirae, are plasmid-borne, suggesting that plasmids play an important role in the dissemination of the poxtA gene among enterococci. This study showed that the mobilizable poxtA-carrying plasmid could transfer with the help of conjugative plasmid in enterococci via plasmid fusion, with one generated by homologous recombination in E. faecalis, and another by replicative transposition in E. lactis. During both the fusion events, the poxtA-carrying plasmids changed from nonconjugative to conjugative, leading to the generation and enhanced dissemination of the larger phenicol-oxazolidinone-tetracycline resistance-encoding plasmids in enterococci.


Subject(s)
Bacterial Proteins/metabolism , Conjugation, Genetic , Enterococcus faecalis/genetics , Enterococcus/genetics , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Enterococcus/drug effects , Enterococcus/metabolism , Enterococcus faecalis/drug effects , Enterococcus faecalis/metabolism , Genome, Bacterial , Microbial Sensitivity Tests , Oxazolidinones/pharmacology , Plasmids/metabolism
13.
J Antibiot (Tokyo) ; 75(2): 77-85, 2022 02.
Article in English | MEDLINE | ID: mdl-34873311

ABSTRACT

New three macrocyclic diolides, named bispolides C-E (1-3), were isolated from a fermentation broth of the actinomycete strain MG372-hF19, which produces an indole glycoside and leptomycins as we reported previously. The absolute structures of compounds 1-3 were elucidated by NMR and X-ray crystallography. Compounds 1-3 diverge from the known nine bispolides in their different alkylation patterns on the 20-membered macrocyclic diolide skeleton and the side chain in their planar structures. Furthermore, compounds 1-3 exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci and cytotoxic activity against human cancer cell lines. Among them, compound 3 has the most potent biological activities against bacteria and tumor cells. Additionally, using a membrane-potential-sensitive fluorescence probe, we found that compounds 1-3 and elaiophylin have a similar effect on membrane potential in A549 human lung cancer cells.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Macrolides/isolation & purification , A549 Cells , Actinobacteria/chemistry , Alkylation , Anti-Bacterial Agents/pharmacology , Antibiotics, Antineoplastic/isolation & purification , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Enterococcus/drug effects , Humans , Macrolides/pharmacology , Magnetic Resonance Spectroscopy , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Structure , Streptomycetaceae , Vancomycin Resistance/drug effects
14.
Future Med Chem ; 14(4): 233-244, 2022 02.
Article in English | MEDLINE | ID: mdl-34877890

ABSTRACT

Background: Methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and Acinetobacter baumannii cause serious antibiotic-resistant infections. Finding new antibiotics to treat these infections is imperative for combating this worldwide menace. Methods & Results: In this study, the authors designed and synthesized potent antimicrobial agents using 4-trifluoromethylphenyl-substituted pyrazole derivatives. In addition to their potency against planktonic bacteria, potent compounds effectively eradicated S. aureus and Enterococcus faecalis biofilms. Human cells tolerated these compounds with good selectivity factors. Furthermore, the authors provide evidence for the mode of action of compounds based on time-kill kinetics, flow cytometry analysis of propidium iodide-treated bacteria and oxygen uptake studies. Conclusion: This study demonstrated 20 novel compounds with potent antibacterial activity that are tolerated by human cell lines.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Infective Agents/pharmacology , Enterococcus/drug effects , Pyrazoles/chemistry , Staphylococcus/drug effects , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Biofilms/drug effects , Cell Survival/drug effects , Enterococcus/physiology , HEK293 Cells , Humans , Microbial Sensitivity Tests , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Structure-Activity Relationship
15.
Microbiol Spectr ; 9(3): e0087121, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34851157

ABSTRACT

The rapid spread of antibiotic resistance among Enterococcus has prompted considerable interest in determining the dosage regimen of linezolid combined with fosfomycin. A checkerboard assay was employed to evaluate whether linezolid combined with fosfomycin had a synergistic effect on Enterococcus isolates from the hospital, including three drug-resistant strains (MIC of linezolid [MICLZD], ≥8 mg/L; MIC of fosfomycin [MICFOF], ≥256 mg/L). The in vitro static time-kill assay, dynamic pharmacokinetic (PK)/pharmacodynamic (PD) model, and semimechanistic PK/PD model were used to explore and predict effective combined dosage regimens. The checkerboard assay and in vitro static time-kill assay demonstrated that linezolid combined with fosfomycin has a synergistic effect on drug-resistant and sensitive Enterococcus. In the in vitro PK/PD model, the dosage regimen of linezolid (8 mg/L or 12 mg/L, steady-state concentration) combined with fosfomycin (6 g or 8 g) via a 0.5-h infusion every 8 h effectively suppressed bacterial growth at 24 h with a 3 log10 CFU/mL decrease compared with the initial inocula against two resistant and one sensitive Enterococcus isolates. The semimechanistic PK/PD model predicted that linezolid (more than 16 mg/L) combined with fosfomycin (6 g or 10 g) via a 0.5-h infusion every 8 h was required to achieve a 4 log10 CFU/mL decrease at 24 h against Enterococcus isolates (MICLZD ≥ 8 mg/L and MICFOF ≥ 256 mg/L). According to the prediction of the semimechanical PK/PD model, the effect of the combination was driven by linezolid, with fosfomycin enhancing the effect. Our study is the first to explore the synergistic effects of these two drugs from a qualitative and quantitative perspective and provides a simulation tool for future studies. IMPORTANCE In this study, we found that linezolid combined with fosfomycin could kill Enterococcus in vitro and that the administered dose was significantly lower after the combination treatment, which could reduce adverse effects and the development of drug resistance. The potential mechanism of the two-drug combination against Enterococcus was revealed from a quantitative perspective, which is an important step toward dose optimization in simulated humans. We hope that our research will help build a better relationship between clinicians and patients as we work together to address the challenges of antibiotic resistance in the 21st century.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Enterococcus/drug effects , Fosfomycin/pharmacology , Gram-Positive Bacterial Infections/drug therapy , Linezolid/pharmacology , Cross Infection/drug therapy , Cross Infection/microbiology , Drug Resistance, Bacterial/genetics , Drug Synergism , Enterococcus/genetics , Enterococcus/growth & development , Fosfomycin/pharmacokinetics , Gram-Positive Bacterial Infections/microbiology , Humans , Linezolid/pharmacokinetics , Microbial Sensitivity Tests
16.
Molecules ; 26(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885725

ABSTRACT

The ethyl acetate extract of an ISP-2 agar cultivation of the wasp nest-associated fungus Penicillium sp. CMB-MD14 exhibited promising antibacterial activity against vancomycin-resistant enterococci (VRE), with a bioassay guided chemical investigation yielding the new meroterpene, oxandrastin A (1), the first andrastin-like metabolite with an extra oxygenation at C-2. A culture media optimisation strategy informed a scaled-up rice cultivation that yielded 1, together with three new oxandrastins B-D (2-4), two known andrastins C (5) and F (6), and a new meroterpene of the austalide family, isoaustalide F (7). Structures of 1-7 were assigned based on detailed spectroscopic analysis and chemical interconversion. A GNPS molecular networking analysis of the rice cultivation extract detected the known austalides B (8), H (9), and H acid (10), tentatively identified based on molecular formulae and co-clustering with 7. That the anti-VRE properties of the CMB-MD14 extract were exclusively attributed to 1 (IC50 6.0 µM, MIC99 13.9 µM), highlights the importance of the 2-OAc and 3-OAc moieties to the oxandrastin anti-VRE pharmacophore.


Subject(s)
Anti-Bacterial Agents/chemistry , Oryza/drug effects , Penicillium/chemistry , Terpenes/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Australia , Enterococcus/drug effects , Enterococcus/pathogenicity , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Molecular Structure , Oryza/microbiology , Penicillium/growth & development , Terpenes/pharmacology , Wasps/chemistry , Wasps/microbiology
17.
Infect Dis Clin North Am ; 35(4): 953-968, 2021 12.
Article in English | MEDLINE | ID: mdl-34752227

ABSTRACT

Vancomycin-resistant enterococcus (VRE) is a pathogen of growing concern due to increasing development of antibiotic resistance, increasing length of hospitalizations and excess mortality. The utility of some infection control practices are debatable, as newer developments in infection prevention strategies continued to be discovered. This article summarizes the significance of VRE and VRE transmission, along with highlighting key changes in infection control practices within the past 5 years.


Subject(s)
Cross Infection/prevention & control , Enterococcus/drug effects , Gram-Positive Bacterial Infections/prevention & control , Vancomycin-Resistant Enterococci , Vancomycin/pharmacology , Antimicrobial Stewardship , Child , Drug Resistance, Multiple , Humans , Infection Control/organization & administration , Pediatrics , Vancomycin/therapeutic use
18.
Isr Med Assoc J ; 23(11): 708-713, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34811986

ABSTRACT

BACKGROUND: The recent increase in enterococcal urinary tract infections (EUTI) and the potential morbidity and mortality associated with inappropriate antimicrobial treatment underscores the need for early risk assessment and institution of appropriate empirical antimicrobial therapy. OBJECTIVES: To identify high-risk features associated with hospitalized patients with EUTI. METHODS: Demographic, clinical, laboratory, and bacteriological data of 285 patients hospitalized with UTI during 2016 were retrieved from the computerized database of Shamir Medical Center. Patients were divided into two groups: EUTI and non-EUTI (NEUTI), according to the presence or absence of enterococcus in the urine culture. The features of the two groups were compared. RESULTS: We obtained 300 urine cultures from 285 patients. Of the total, 80 patients (26.6%) had EUTI and 220 patients (73.3%) had NEUTI. A higher prevalence of urinary multi-bacterial cultures was found in EUTI compared to NEUTI patients (P < 0.01). Higher prevalence of permanent indwelling urinary catheter and dementia were found in hospitalized patients with community-acquired EUTI and nosocomial EUTI respectively (P = 0.02, P = 0.016) compared to patients with NEUTI. CONCLUSIONS: Indwelling urinary catheter and dementia are risk factors for EUTI in patients with community and hospital acquired infection, respectively.


Subject(s)
Anti-Infective Agents/therapeutic use , Dementia , Enterococcus , Gram-Positive Bacterial Infections , Risk Assessment/methods , Urinary Catheterization , Urinary Tract Infections , Aged , Anti-Infective Agents/classification , Catheters, Indwelling/adverse effects , Catheters, Indwelling/microbiology , Coinfection/epidemiology , Coinfection/microbiology , Dementia/diagnosis , Dementia/epidemiology , Enterococcus/drug effects , Enterococcus/isolation & purification , Female , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/etiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/urine , Hospitalization/statistics & numerical data , Humans , Israel/epidemiology , Male , Prevalence , Risk Factors , Treatment Outcome , Urinary Catheterization/adverse effects , Urinary Catheterization/methods , Urinary Catheters/adverse effects , Urinary Catheters/microbiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/etiology , Urinary Tract Infections/microbiology , Urinary Tract Infections/urine
19.
Microbiol Spectr ; 9(3): e0198021, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34787441

ABSTRACT

Antimicrobial use in food-producing animals has come under increasing scrutiny due to its potential association with antimicrobial resistance (AMR). Monitoring of AMR in indicator microorganisms such as Enterococcus spp. in meat production facilities and retail meat products can provide important information on the dynamics and prevalence of AMR in these environments. In this study, swabs or samples were obtained from various locations in a commercial beef packing operation (n = 600) and from retail ground beef (n = 60) over a 19-month period. All samples/swabs were enriched for Enterococcus spp., and suspected enterococci isolates were identified using species-specific PCR primers. Enterococcus faecalis was the most frequently isolated species, followed by Enterococcus hirae, which was found mostly on post-hide removal carcasses and in ground beef. Enterococcus faecium (n = 9) and E. faecalis (n = 120) isolates were further characterized for AMR. Twenty-one unique AMR profiles were identified, with 90% of isolates resistant to at least two antimicrobials and two that were resistant to nine antimicrobials. Tetracycline resistance was observed most often in E. faecalis (28.8%) and was likely mediated by tet(M). Genomic analysis of selected E. faecalis and E. faecium isolates revealed that many of the isolates in this study clustered with other publicly available genomes from ground beef, suggesting that these strains are well adapted to the beef processing environment. IMPORTANCE Antimicrobial resistance (AMR) is a serious challenge facing the agricultural industry. Understanding the flow of antimicrobial-resistant bacteria through the beef fabrication process and into ground beef is an important step in identifying intervention points for reducing AMR. In this study, we used enterococci as indicator bacteria for monitoring AMR in a commercial beef packaging facility and in retail ground beef over a 19-month period. Although washing of carcasses post-hide removal reduced the isolation frequency of Enterococcus spp., a number of antimicrobial-resistant Enterococcus faecalis isolates were recovered from ground beef produced in the packaging plant. Genome analysis showed that several E. faecalis isolates were genetically similar to publicly available isolates recovered from retail ground beef in the United States.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Enterococcus/drug effects , Enterococcus/isolation & purification , Meat/microbiology , Animals , Cattle , Enterococcus/classification , Enterococcus/genetics , Food Contamination/analysis , Food Contamination/economics , Food Handling , Meat/economics , Microbial Sensitivity Tests , United States
20.
PLoS One ; 16(11): e0259584, 2021.
Article in English | MEDLINE | ID: mdl-34780540

ABSTRACT

This study is designed to discuss the antimicrobial resistance, virulence determinants and biofilm formation capacity of Enterococcus spp. isolated from milk of sheep and goat with subclinical mastitis in Qena, Egypt. The obtained isolates were identified by the VITEK2 system and 16S rDNA sequencing as E. faecalis, E. faecium, E. casseliflavus and E. hirae. Overall, E. faecalis and E. faecium were the dominant species recovered from mastitic milk samples. The antimicrobial susceptibility test evidenced multidrug resistance of the isolates against the following antimicrobials: oxacillin (89.2.%), followed by vancomycin (75.7%) and linezolid (70.3%). Also, most of these isolates (73%) could form biofilms. For example, 18.9% of Enterococcus strains formed strong biofilm, whereas 32.4% of isolates formed moderate biofilm and 21.6% of isolates formed weak biofilm. The most prevalent resistance genes found in our isolates were blaZ (54%), vanA (40%), ermB (51.4%), tetM (13.5%) and optrA (10.8%). Moreover, asa1 (37.8%), cylA (42.3%), gelE (78.4%), esp (32.4%), EF3314(48.6%) and ace (75.5%) were the most common virulence genes. A significant correlation was found between biofilm formation, multidrug resistance and virulence genes of the isolates. This study highlights several aspects of virulence and harmfulness of Enterococcus strains isolated from subclinical mastitic milk, which necessitates continuous inspection and monitoring of dairy animals.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Enterococcus/drug effects , Enterococcus/genetics , Mastitis/microbiology , Animals , Drug Resistance, Bacterial , Female , Goats , Milk/microbiology , Sheep , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...