Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.743
Filter
1.
World J Microbiol Biotechnol ; 40(7): 231, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833075

ABSTRACT

To investigate the mechanism of Triton X-100 (TX-100) reducing the Ag+-resistance of Enterococcus faecalis (E. faecalis), and evaluate the antibacterial effect of TX-100 + Ag+ against the induced Ag+-resistant E. faecalis (AREf). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of AgNO3 against E. faecalis with/without TX-100 were determined to verify the enhanced antibacterial activity. Transmission electron microscopy (TEM) was used to observe the morphological changes of E. faecalis after treatment. The intra- and extracellular concentration of Ag+ in treated E. faecalis was evaluated using inductively coupled plasma mass spectrometer (ICP-MS). The changes in cell membrane potential and integrity of treated E. faecalis were also observed using the flow cytometer. Moreover, AREf was induced through continuous exposure to sub-MIC of Ag+ and the antibacterial effect of TX-100 + Ag+ on AREf was further evaluated. The addition of 0.04% TX-100 showed maximal enhanced antibacterial effect of Ag+ against E. faecalis. The TEM and ICP-MS results demonstrated that TX-100 could facilitate Ag+ to enter E. faecalis through changing the membrane structure and integrity. Flow cytometry further showed the effect of TX-100 on membrane potential and permeability of E. faecalis. In addition, the enhanced antibacterial effect of TX-100 + Ag+ was also confirmed on induced AREf. TX-100 can facilitate Ag+ to enter E. faecalis through disrupting the membrane structure and changing the membrane potential and permeability, thus reducing the Ag+-resistance of E. faecalis and enhancing the antibacterial effect against either normal E. faecalis or induced AREf.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecalis , Microbial Sensitivity Tests , Octoxynol , Silver , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Octoxynol/pharmacology , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Cell Membrane/drug effects , Membrane Potentials/drug effects , Microscopy, Electron, Transmission , Silver Nitrate/pharmacology
2.
Ann Clin Microbiol Antimicrob ; 23(1): 41, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704577

ABSTRACT

BACKGROUND: Infections caused by linezolid-resistant enterococci (LRE) are clinically difficult to treat and threaten patient health. However, there is a lack of studies on long time-span LRE strains in China. For this reason, our study comprehensively revealed the resistance mechanisms of LRE strains collected in a Chinese tertiary care hospital from 2011 to 2022. METHODS: Enterococcal strains were screened and verified after retrospective analysis of microbial data. Subsequently, 65 LRE strains (61 Enterococcus faecalis and 4 Enterococcus faecium, MIC ≥ 8 µg/ml), 1 linezolid-intermediate Enterococcus faecium (MIC = 4 µg/ml) and 1 linezolid-susceptible Enterococcus faecium (MIC = 1.5 µg/ml) were submitted for whole-genome sequencing (WGS) analysis and bioinformatics analysis. RESULTS: The optrA gene was found to be the most common linezolid resistance mechanism in our study. We identified the wild-type OptrA and various OptrA variants in 98.5% of LRE strains (61 Enterococcus faecalis and 3 Enterococcus faecium). We also found one linezolid-resistant Enterococcus faecium strain carried both optrA and cfr(D) gene, while one linezolid-resistant Enterococcus faecium only harbored the poxtA gene. Most optrA genes (55/64) were located on plasmids, with impB-fexA-optrA, impB-fexA-optrA-erm(A), fexA-optrA-erm(A), and fexA-optrA segments. A minority of optrA genes (9/64) were found on chromosomes with the Tn6674-like platform. Besides, other possible linezolid resistance-associated mechanisms (mutations in the rplC and rplD genes) were also found in 26 enterococcal strains. CONCLUSIONS: Our study suggested that multiple mechanisms of linezolid resistance exist among clinical LRE strains in China.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Whole Genome Sequencing , Linezolid/pharmacology , China/epidemiology , Humans , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Anti-Bacterial Agents/pharmacology , Retrospective Studies , Enterococcus/drug effects , Enterococcus/genetics , Bacterial Proteins/genetics , Genome, Bacterial , Molecular Epidemiology , Tertiary Care Centers , Genomics
3.
BMC Oral Health ; 24(1): 584, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773504

ABSTRACT

BACKGROUND: Apical surgery with standard retrograde maneuvers may be challenging in certain cases. Simplifying apical surgery to reduce operating time and streamline retrograde manipulation is an emerging need in clinical endodontics. AIM OF THE STUDY: The aim of the study was to compare the bacterial sealing ability of a calcium silicate-based sealer with the single cone technique combined with root end resection only, and calcium silicate-based sealer as a retrograde filling versus MTA retrofilling, and to analyze bacterial viability using confocal laser scanning microscope (CLSM). MATERIALS AND METHODS: In this in vitro experimental study, 50 extracted human maxillary incisor teeth were instrumented and randomly divided into five groups: three experimental groups, a positive control group, and a negative control group (n = 10/group). In the experimental groups, the roots were obturated using the single cone technique (SCT) and a calcium silicate-based sealer. In group 1, the roots were resected 3 mm from the apex with no further retrograde preparation or filling. In groups 2 and 3, the roots were resected, retroprepared, and retrofilled with either a calcium silicate-based sealer or MTA, respectively. Group 4 (positive control) was filled with a single gutta-percha cone without any sealer. In group 5 (negative control), the canals were left empty, and the roots were sealed with wax and nail varnish. A bacterial leakage model using Enterococcus faecalis was employed to assess the sealing ability over a 30-day period, checking for turbidity and analyzing colony forming units (CFUs) per milliliter. Five specimens from each group were examined using CLSM for bacterial viability. Data for the bacterial sealing ability were statistically analyzed using chi-squared and Kruskal-Wallis tests. RESULTS: The three experimental groups did not show significant differences in terms of bacterial leakage, or bacterial counts (CFUs) (P > 0.05). However, significant differences were observed when comparing the experimental groups to the positive control group. Notably, the calcium silicate-based sealer, when used as a retrofilling, yielded the best sealing ability. CLSM imaging revealed viable bacterial penetration in all the positive control group specimens while for the experimental groups, dead bacteria was the prominent feature seen. CONCLUSION: Within the limitations of this study, it could be concluded that the bacterial sealing ability of calcium silicate-based sealer with the single cone technique combined with root end resection only and calcium silicate-based sealer as a retrograde filling were comparable with MTA retrofilling during endodontic surgical procedures.


Subject(s)
Calcium Compounds , Root Canal Filling Materials , Silicates , Silicates/therapeutic use , Calcium Compounds/therapeutic use , Humans , Root Canal Filling Materials/pharmacology , Root Canal Filling Materials/therapeutic use , Oxides/pharmacology , Oxides/therapeutic use , Drug Combinations , Aluminum Compounds/therapeutic use , In Vitro Techniques , Microscopy, Confocal , Dental Leakage/microbiology , Retrograde Obturation/methods , Enterococcus faecalis/drug effects , Microbial Viability , Incisor , Apicoectomy/methods
4.
Lasers Med Sci ; 39(1): 144, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809462

ABSTRACT

Enterococcus faecalis is among the most resistant bacteria found in infected root canals. The demand for cutting-edge disinfection methods has rekindled research on photoinactivation with visible light. This study investigated the bactericidal activity of femtosecond laser irradiation against vancomycin-resistant Enterococcus faecalis V583 (VRE). The effect of parameters such as wavelength and energy density on the viability and growth kinetics of VRE was studied to design an optimized laser-based antimicrobial photoinactivation approach without any prior addition of exogenous photosensitizers. The most effective wavelengths were 430 nm and 435 nm at a fluence of 1000 J/cm2, causing a nearly 2-log reduction (98.6% and 98.3% inhibition, respectively) in viable bacterial counts. The colony-forming units and growth rate of the laser-treated cultures were progressively decreased as energy density or light dose increased at 445 nm but reached a limit at 1250 J/cm2. At a higher fluence of 2000 J/cm2, the efficacy was reduced due to a photobleaching phenomenon. Our results highlight the importance of optimizing laser exposure parameters, such as wavelength and fluence, in bacterial photoinactivation experiments. To our knowledge, this is the first study to report an optimized wavelength for the inactivation of VRE using visible femtosecond laser light.


Subject(s)
Enterococcus faecalis , Enterococcus faecalis/radiation effects , Enterococcus faecalis/growth & development , Enterococcus faecalis/drug effects , Humans , Vancomycin-Resistant Enterococci/radiation effects , Vancomycin-Resistant Enterococci/growth & development , Vancomycin-Resistant Enterococci/drug effects , Microbial Viability/radiation effects , Lasers , Kinetics , Vancomycin Resistance
5.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791132

ABSTRACT

Inflammatory bowel disease (IBD) is a multifactorial disease involving the interaction of the gut microbiota, genes, host immunity, and environmental factors. Dysbiosis in IBD is associated with pathobiont proliferation, so targeted antibiotic therapy is a rational strategy. When restoring the microbiota with probiotics, it is necessary to take into account the mutual influence of co-cultivated microorganisms, as the microbiota is a dynamic community of species that mediates homeostasis and physiological processes in the intestine. The aim of our study was to investigate the recovery efficacy of two potential probiotic bacteria, L. johnsonii and E. faecalis, in Muc2-/- mice with impaired mucosal layer. Two approaches were used to determine the efficacy of probiotic supplementation in mice with dysbiosis caused by mucin-2 deficiency: bacterial seeding on selective media and real-time PCR analysis. The recovery time and the type of probiotic bacteria relocated affected only the number of E. faecalis. A significant positive correlation was found between colony-forming unit (CFU) and the amount of E. faecalis DNA in the group that was replanted with probiotic E. faecalis. As for L. johnsonii, it could be restored to its original level even without any additional bacteria supplementation after two weeks. Interestingly, the treatment of mice with L. johnsonii caused a decrease in the amount of E. faecalis. Furthermore, either L. johnsonii or E. faecalis treatment eliminated protozoan overgrowth caused by antibiotic administration.


Subject(s)
Anti-Bacterial Agents , Dysbiosis , Enterococcus faecalis , Lactobacillus johnsonii , Probiotics , Animals , Enterococcus faecalis/drug effects , Mice , Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Disease Models, Animal , Mucin-2/metabolism , Mucin-2/genetics , Inflammatory Bowel Diseases/microbiology , Mice, Knockout
6.
Int J Pharm ; 658: 124214, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38723732

ABSTRACT

The crucial demand to overcome the issue of multidrug resistance is required to refine the performance of antibiotics. Such a process can be achieved by fastening them to compatible nanoparticles to obtain effective pharmaceuticals at a low concentration. Thus, selenium nanoparticles (Se NPs) are considered biocompatible agents that are applied to prevent infections resulting from bacterial resistance to multi-antibiotics. The current evaluated the effectiveness of Se NPs and their conjugates with antibiotics such as amikacin (AK), levofloxacin (LEV), and piperacillin (PIP) against Pseudomonas aeruginosa (P. aeruginosa). In addition, the study determined the antibacterial and antibiofilm properties of Se NPs and their conjugates with LEV against urinary tract pathogens such as Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis), P. aeruginosa, and Escherichia coli (E. coli). The result of minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for eight isolates of P. aeruginosa revealed that the conjugation of Se NPs with AK, LEV, and PIP resulted in a reduction in the concentration of antibiotic-conjugated Se NPs. The concentration was found to be about 10-20 times lower than that of bare antibiotics. The MIC of the Se NPs with LEV (i.e., Se NPs:LEV) for S. aureus, E. faecalis, P. aeruginosa, and E. coli was found to be 1.4:0.5, 0.7:0.25, 22:8, and 11:4 µg/mL, respectively. The results of the half-maximal inhibitory concentration (IC50) demonstrated that Se NPs:LEV conjugate have inhibited 50 % of the mature biofilms of S. aureus, E. faecalis, P. aeruginosa, and E. coli at a concentration of 27.5 ± 10.5, 18.8 ± 3.1, 40.6 ± 10.7, and 21.6 ± 3.3 µg/mL, respectively compared to the control. It has been suggested that the antibiotic-conjugated Se NPs have great potential for biomedical applications. The conjugation of Se NPs with AK, LEV, and PIP increases the antibacterial potency against resistant pathogens at a low concentration.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Resistance, Multiple, Bacterial , Escherichia coli , Microbial Sensitivity Tests , Nanoparticles , Pseudomonas aeruginosa , Selenium , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Selenium/chemistry , Selenium/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Nanoparticles/chemistry , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Enterococcus faecalis/drug effects
7.
Commun Biol ; 7(1): 668, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816577

ABSTRACT

Parkinson's disease is managed using levodopa; however, as Parkinson's disease progresses, patients require increased doses of levodopa, which can cause undesirable side effects. Additionally, the oral bioavailability of levodopa decreases in Parkinson's disease patients due to the increased metabolism of levodopa to dopamine by gut bacteria, Enterococcus faecalis, resulting in decreased neuronal uptake and dopamine formation. Parkinson's disease patients have varying levels of these bacteria. Thus, decreasing bacterial metabolism is a promising therapeutic approach to enhance the bioavailability of levodopa in the brain. In this work, we show that Mito-ortho-HNK, formed by modification of a naturally occurring molecule, honokiol, conjugated to a triphenylphosphonium moiety, mitigates the metabolism of levodopa-alone or combined with carbidopa-to dopamine. Mito-ortho-HNK suppresses the growth of E. faecalis, decreases dopamine levels in the gut, and increases dopamine levels in the brain. Mitigating the gut bacterial metabolism of levodopa as shown here could enhance its efficacy.


Subject(s)
Brain , Dopamine , Enterococcus faecalis , Gastrointestinal Microbiome , Levodopa , Parkinson Disease , Levodopa/metabolism , Levodopa/administration & dosage , Gastrointestinal Microbiome/drug effects , Dopamine/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/microbiology , Brain/metabolism , Brain/drug effects , Animals , Enterococcus faecalis/metabolism , Enterococcus faecalis/drug effects , Male , Antiparkinson Agents/metabolism , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/pharmacology , Carbidopa , Humans , Biphenyl Compounds/metabolism , Mice , Organophosphorus Compounds/metabolism , Mice, Inbred C57BL
8.
Bioorg Chem ; 148: 107451, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759357

ABSTRACT

Aminothiazolyl coumarins as potentially new antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. Biological activity assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens. Especially, aminothiazolyl 7-propyl coumarin 8b and 4-dichlorobenzyl derivative 11b exhibited bactericidal potential (MBC/MIC = 2) toward clinically drug-resistant Enterococcus faecalis with low cytotoxicity to human lung adenocarcinoma A549 cells, rapidly bactericidal effects and no obvious bacterial resistance development against E. faecalis. The preliminary antibacterial action mechanism studies suggested that compound 11b was able to disturb E. faecalis membrane effectively, and interact with bacterial DNA isolated from resistant E. faecalis through noncovalent bonds to cleave DNA, thus inhibiting the growth of E. faecalis strain. Further molecular modeling indicated that compounds 8b and 11b could bind with SER-1084 and ASP-1083 residues of gyrase-DNA complex through hydrogen bonds and hydrophobic interactions. Moreover, compound 11b showed low hemolysis and in vivo toxicity. These findings of aminothiazolyl coumarins as unique structural scaffolds might hold a large promise for the treatments of drug-resistant bacterial infection.


Subject(s)
Anti-Bacterial Agents , Coumarins , Enterococcus faecalis , Microbial Sensitivity Tests , Enterococcus faecalis/drug effects , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , DNA, Bacterial/metabolism , A549 Cells , Hemolysis/drug effects
9.
Microbiol Spectr ; 12(6): e0354623, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38695664

ABSTRACT

Antimicrobial resistance poses a significant global threat, reaching dangerously high levels as reported by the World Health Organization. The emergence and rapid spread of new resistance mechanisms, coupled with the absence of effective treatments in recent decades, have led to thousands of deaths annually from infections caused by drug-resistant microorganisms. Consequently, there is an urgent need for the development of new compounds capable of combating antibiotic-resistant bacteria. A promising class of molecules exhibiting potent bactericidal effects is peptidoglycan hydrolases. Previously, we cloned and characterized the biochemical properties of the M23 catalytic domain of the EnpA (EnpACD) protein from Enterococcus faecalis. Unlike other enzymes within the M23 family, EnpACD demonstrates broad specificity. However, its activity is constrained under low ionic strength conditions. In this study, we present the engineering of three chimeric enzymes comprising EnpACD fused with three distinct SH3b cell wall-binding domains. These chimeras exhibit enhanced tolerance to environmental conditions and sustained activity in bovine and human serum. Furthermore, our findings demonstrate that the addition of SH3b domains influences the activity of the chimeric enzymes, thereby expanding their potential applications in combating antimicrobial resistance.IMPORTANCEThese studies demonstrate that the addition of the SH3b-binding domain to the EnpACD results in generation of chimeras with a broader tolerance to ionic strength and pH values, enabling them to remain active over a wider range of conditions. Such approach offers a relatively straightforward method for obtaining antibacterial enzymes with tailored properties and emphasizes the potential for proteins' engineering with enhanced functionality, contributing to the ongoing efforts to address antimicrobial resistance effectively.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterococcus faecalis , Protein Engineering , Osmolar Concentration , Enterococcus faecalis/genetics , Enterococcus faecalis/enzymology , Enterococcus faecalis/drug effects , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Animals , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/chemistry , Cattle , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Cell Wall/metabolism , Cell Wall/genetics , Catalytic Domain/genetics , Drug Resistance, Bacterial/genetics
10.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38760884

ABSTRACT

AIMS: Enterococcus faecalis (E. faecalis) is a leading cause of nosocomial infection and presents a wide spectrum of antibiotic resistance, being vancomycin-resistant Enterococcus (VRE) one of the most relevant. Synthetic antimicrobial peptides (SAMPs) are currently a promising option to overcome antimicrobial resistance. Thus, the purpose of this study was to assess the effect of eight SAMPs against vancomycin-resistant E. faecalis, as well as to investigate their mechanism of action and synergy with conventional antibiotics. METHODS AND RESULTS: Here, eight SAMPs, Mo-CBP3-PepI, Mo-CBP3-PepII, Mo-CBP3-PepIII, RcAlb-PepI, RcAlb-PepII, RcAlb-PepIII, PepGAT, and PepKAA, were tested for antibacterial activity in vitro against E. faecalis (ATCC® 51299) through broth microdilution. A maximum of 48% of E. faecalis growth inhibition was achieved by treatment with SAMPs alone. However, when these peptides were combined with the antibiotic chloramphenicol, assessed by checkerboard method, the inhibition increased to 55%-76% of inhibition, two to three-folds of increase if compared to the effects of the compounds alone. Microscopic analysis showed that E. faecalis cells treated with a combination of SAMPs and chloramphenicol resulted in bacterial membrane damage. The biofilm inhibition maximum was 22% for SAMPs alone, when combined with chloramphenicol, the maximum increased to 33%. CONCLUSIONS: SAMPs and their combination with chloramphenicol demonstrate antibacterial activity against E. faecalis, possibly by inducing bacterial membrane damage.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Chloramphenicol , Drug Synergism , Enterococcus faecalis , Microbial Sensitivity Tests , Vancomycin-Resistant Enterococci , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Anti-Bacterial Agents/pharmacology , Chloramphenicol/pharmacology , Antimicrobial Peptides/pharmacology , Vancomycin-Resistant Enterococci/drug effects , Vancomycin/pharmacology
11.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731399

ABSTRACT

The antibacterial effects of a selection of volatile fatty acids (acetic, propionic, butyric, valeric, and caproic acids) relevant to anaerobic digestion were investigated at 1, 2 and 4 g/L. The antibacterial effects were characterised by the dynamics of Enterococcus faecalis NCTC 00775, Escherichia coli JCM 1649 and Klebsiella pneumoniae A17. Mesophilic anaerobic incubation to determine the minimum bactericidal concentration (MBC) and median lethal concentration of the VFAs was carried out in Luria Bertani broth at 37 °C for 48 h. Samples collected at times 0, 3, 6, 24 and 48 h were used to monitor bacterial kinetics and pH. VFAs at 4 g/L demonstrated the highest bactericidal effect (p < 0.05), while 1 g/L supported bacterial growth. The VFA cocktail was the most effective, while propionic acid was the least effective. Enterococcus faecalis NCTC 00775 was the most resistant strain with the VFAs MBC of 4 g/L, while Klebsiella pneumoniae A17 was the least resistant with the VFAs MBC of 2 g/L. Allowing a 48 h incubation period led to more log decline in the bacterial numbers compared to earlier times. The VFA cocktail, valeric, and caproic acids at 4 g/L achieved elimination of the three bacteria strains, with over 7 log10 decrease within 48 h.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecalis , Fatty Acids, Volatile , Klebsiella pneumoniae , Microbial Sensitivity Tests , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Anaerobiosis , Escherichia coli/drug effects , Escherichia coli/growth & development , Propionates/pharmacology , Hydrogen-Ion Concentration , Pentanoic Acids/pharmacology
12.
Biomed Pharmacother ; 174: 116581, 2024 May.
Article in English | MEDLINE | ID: mdl-38636394

ABSTRACT

Naringenin is a flavonoid found in many fruits and herbs, most notably in grapefruits. In recent years, this compound and its derivatives have been of great interest due to their high biological activity, including fungicidal and bactericidal effects, also in relation to multidrug-resistant bacteria. Membrane interactions of naringenin oxime (NO) and its 7-O-alkyl (7-alkoxy) derivatives, such as methyl (7MENO), ethyl (7ETNO), isopropyl (7IPNO), n-butyl (7BUNO) and n-pentyl (7PENO) were studied. Thermotropic properties of model membranes were investigated via differential scanning calorimetry (DSC), the influence on lipid raft mimicking giant unilamellar vesicles (GUVs) via fluorescence microscopy, and membrane permeability via measuring calcein leakage from liposomes. Molecular calculations supplemented the study. The influence of naringenin oximes on two strains of multidrug resistant bacteria: Staphylococcus aureus KJ and Enterococcus faecalis 37VRE was also investigated. In DSC studies all compounds reduced the temperature and enthalpy of main phase transition and caused disappearing of the pretransition. NO was the least active. The reduction in the area of surface domains in GUVs was observed for NO. Compounds NO and 7BUNO resulted in very low secretion of calcein from liposomes (permeability < 3 %). The highest results were observed for 7MENO (88.4 %) and 7IPNO (78.5 %). When bacterial membrane permeability was investigated all compounds caused significant release of propidium iodide from S. aureus (31.6-87.0 % for concentration 128 µg/mL). In the case of E. faecalis, 7ETNO (75.7 %) and NO (28.8 %) were the most active. The rest of the tested compounds showed less activity (permeability < 13.9 %). The strong evidence was observed that antibacterial activity of the tested compounds may be associated with their interaction with bacterial membrane.


Subject(s)
Cell Membrane , Flavanones , Oximes , Staphylococcus aureus , Flavanones/pharmacology , Flavanones/chemistry , Oximes/pharmacology , Oximes/chemistry , Staphylococcus aureus/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Enterococcus faecalis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Unilamellar Liposomes/metabolism , Unilamellar Liposomes/chemistry , Calorimetry, Differential Scanning , Cell Membrane Permeability/drug effects , Microbial Sensitivity Tests
13.
Arch Oral Biol ; 163: 105966, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657440

ABSTRACT

OBJECTIVE: This study evaluated the antimicrobial effect and cytotoxicity of hypochlorous acid(HClO) obtained from an innovative electrolytic device. DESIGN: The root canals of fifty extracted human teeth were inoculated with Enterococcus faecalis and divided into 5 groups (n = 10): DW (control); 2% chlorhexidine gel(CHX); 2.5% sodium hypochlorite(NaOCl); 250 ppm HClO and 500 ppm HClO. The counting of colony forming units evaluated the decontamination potential of each group. Cytotoxicity was evaluated after inoculation of tested protocols in fibroblastic cells for 3 min, calculating the cell viability. Specific statistical analysis was performed (α = 5%). RESULTS: The highest bacterial reduction was observed in experimental groups, with no statistical differences from each other (p > 0.05). The highest number of viable cells was observed in control group, followed by 250 ppm HClO and 500 ppm HClO groups, with statistical differences from each other (p < 0.05). CONCLUSIONS: It could be concluded that HClO presented high antimicrobial activity and low cytotoxicity at both tested concentrations.


Subject(s)
Cell Survival , Enterococcus faecalis , Hypochlorous Acid , Root Canal Irrigants , Sodium Hypochlorite , Hypochlorous Acid/pharmacology , Enterococcus faecalis/drug effects , Humans , Sodium Hypochlorite/pharmacology , Cell Survival/drug effects , Root Canal Irrigants/pharmacology , In Vitro Techniques , Chlorhexidine/pharmacology , Dental Pulp Cavity/microbiology , Dental Pulp Cavity/drug effects , Fibroblasts/drug effects , Anti-Infective Agents/pharmacology , Electrolysis
14.
mBio ; 15(5): e0057024, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587425

ABSTRACT

Fungal resistance to commonly used medicines is a growing public health threat, and there is a dire need to develop new classes of antifungals. We previously described a peptide produced by Enterococcus faecalis, EntV, that restricts Candida albicans to a benign form rather than having direct fungicidal activity. Moreover, we showed that one 12-amino acid (aa) alpha helix of this peptide retained full activity, with partial activity down to the 10aa alpha helix. Using these peptides as a starting point, the current investigation sought to identify the critical features necessary for antifungal activity and to screen for new variants with enhanced activity using both biofilm and C. elegans infection assays. First, the short peptides were screened for residues with critical activity by generating alanine substitutions. Based on this information, we used synthetic molecular evolution (SME) to rationally vary the specific residues of the 10aa variant in combination to generate a library that was screened to identify variants with more potent antifungal activity than the parent template. Five gain-of-function peptides were identified. Additionally, chemical modifications to the peptides to increase stability, including substitutions of D-amino acids and hydrocarbon stapling, were investigated. The most promising peptides were additionally tested in mouse models of oropharyngeal and systemic candidiasis where their efficacy in preventing infection was demonstrated. The expectation is that these discoveries will contribute to the development of new therapeutics in the fight against antimicrobial resistant fungi. IMPORTANCE: Since the early 1980s, the incidence of disseminated life-threatening fungal infections has been on the rise. Worldwide, Candida and Cryptococcus species are among the most common agents causing these infections. Simultaneously, with this rise of clinical incidence, there has also been an increased prevalence of antifungal resistance, making treatment of these infections very difficult. For example, there are now strains of Candida auris that are resistant to all three classes of currently used antifungal drugs. In this study, we report on a strategy that allows for the development of novel antifungal agents by using synthetic molecular evolution. These discoveries demonstrate that the enhancement of antifungal activity from naturally occurring peptides is possible and can result in clinically relevant agents that have efficacy in multiple in vivo models as well as the potential for broad-spectrum activity.


Subject(s)
Antifungal Agents , Biofilms , Caenorhabditis elegans , Candida albicans , Candidiasis , Enterococcus faecalis , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Animals , Mice , Candida albicans/drug effects , Candida albicans/genetics , Biofilms/drug effects , Candidiasis/drug therapy , Candidiasis/microbiology , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Caenorhabditis elegans/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Disease Models, Animal , Peptides/pharmacology , Peptides/genetics , Peptides/chemistry
15.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38678002

ABSTRACT

AIMS: This study aimed to develop an editable structural scaffold for improving drug development, including pharmacokinetics and pharmacodynamics of antibiotics by using synthetic compounds derived from a (hetero)aryl-quinoline hybrid scaffold. METHODS AND RESULTS: In this study, 18 CF3-substituted (hetero)aryl-quinoline hybrid molecules were examined for their potential antibacterial activity against Staphylococcus aureus by determining minimal inhibitory concentrations. These 18 synthetic compounds represent modifications to key regions of the quinoline N-oxide scaffold, enabling us to conduct a structure-activity relationship analysis for antibacterial potency. Among the compounds, 3 m exhibited potency against with both methicillin resistant S. aureus strains, as well as other Gram-positive bacteria, including Enterococcus faecalis and Bacillus subtilis. We demonstrated that 3 m disrupted the bacterial proton motive force (PMF) through monitoring the PMF and conducting the molecular dynamics simulations. Furthermore, we show that this mechanism of action, disrupting PMF, is challenging for S. aureus to overcome. We also validated this PMF inhibition mechanism of 3 m in an Acinetobacter baumannii strain with weaken lipopolysaccharides. Additionally, in Gram-negative bacteria, we demonstrated that 3 m exhibited a synergistic effect with colistin that disrupts the outer membrane of Gram-negative bacteria. CONCLUSIONS: Our approach to developing editable synthetic novel antibacterials underscores the utility of CF3-substituted (hetero)aryl-quinoline scaffold for designing compounds targeting the bacterial proton motive force, and for further drug development, including pharmacokinetics and pharmacodynamics.


Subject(s)
Anti-Bacterial Agents , Indoles , Microbial Sensitivity Tests , Proton-Motive Force , Quinolines , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quinolines/pharmacology , Quinolines/chemistry , Proton-Motive Force/drug effects , Indoles/pharmacology , Indoles/chemistry , Structure-Activity Relationship , Methicillin-Resistant Staphylococcus aureus/drug effects , Molecular Dynamics Simulation , Acinetobacter baumannii/drug effects , Enterococcus faecalis/drug effects , Staphylococcus aureus/drug effects , Bacillus subtilis/drug effects
16.
J Infect Chemother ; 30(7): 579-589, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38588797

ABSTRACT

INTRODUCTION: Antimicrobial susceptibility patterns of bacterial pathogens isolated from patients with complicated urinary tract infections were analyzed using the national surveillance data, comprising 793 bacterial strains from eight clinically relevant species. MATERIALS AND METHODS: Data were collected for the fourth national surveillance project from July 2020 to December 2021 by the Japanese Society of Chemotherapy, the Japanese Association for Infectious Disease, and the Japanese Society of Clinical Microbiology. Surveillance was supervised with the cooperation of 43 medical institutions throughout Japan. RESULTS: Fluoroquinolone required a minimum inhibitory concentration (MIC) of 2-64 mg/L to inhibit the 330 tested Escherichia coli strains. The proportion of levofloxacin-resistant E. coli strains increased from 28.6% in 2008 to 29.6% in 2011, 38.5% in 2015, and 44.5% in 2021. The proportion of levofloxacin-resistant strains of Pseudomonas aeruginosa also increased from previous survey results, showing a continuing downward trend. Conversely, the proportion of levofloxacin-resistant strains of Enterococcus faecalis decreased relative to previous reports. Neither multidrug-resistant P. aeruginosa nor carbapenem-resistant Enterobacteriaceae were detected. For methicillin-resistant Staphylococcus aureus (MRSA), the proportion of vancomycin-susceptible strains (MIC of 2 µg/mL) decreased from 14.7% to 7.7%. DISCUSSION: Bacterial strains that produced extended-spectrum ß-lactamase included E. coli (82/330 strains, 24.8%), Klebsiella pneumoniae (11/68 strains, 16.2%), and Proteus mirabilis (4/26 strains, 15.4%). As compared to previous surveillance reports, these strains showed an increase in proportion over the years.


Subject(s)
Anti-Bacterial Agents , Levofloxacin , Microbial Sensitivity Tests , Urinary Tract Infections , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/epidemiology , Urinary Tract Infections/drug therapy , Japan/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Levofloxacin/pharmacology , Levofloxacin/therapeutic use , Drug Resistance, Bacterial , Bacteria/drug effects , Bacteria/isolation & purification , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Female , Enterococcus faecalis/drug effects , Enterococcus faecalis/isolation & purification , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Epidemiological Monitoring , East Asian People
17.
ACS Infect Dis ; 10(5): 1725-1738, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38602352

ABSTRACT

Host-acting compounds are emerging as potential alternatives to combating antibiotic resistance. Here, we show that bosutinib, an FDA-approved chemotherapeutic for treating chronic myelogenous leukemia, does not possess any antibiotic activity but enhances macrophage responses to bacterial infection. In vitro, bosutinib stimulates murine and human macrophages to kill bacteria more effectively. In a murine wound infection with vancomycin-resistant Enterococcus faecalis, a single intraperitoneal bosutinib injection or multiple topical applications on the wound reduce the bacterial load by approximately 10-fold, which is abolished by macrophage depletion. Mechanistically, bosutinib stimulates macrophage phagocytosis of bacteria by upregulating surface expression of bacterial uptake markers Dectin-1 and CD14 and promoting actin remodeling. Bosutinib also stimulates bacterial killing by elevating the intracellular levels of reactive oxygen species. Moreover, bosutinib drives NF-κB activation, which protects infected macrophages from dying. Other Src kinase inhibitors such as DMAT and tirbanibulin also upregulate expression of bacterial uptake markers in macrophages and enhance intracellular bacterial killing. Finally, cotreatment with bosutinib and mitoxantrone, another chemotherapeutic in clinical use, results in an additive effect on bacterial clearance in vitro and in vivo. These results show that bosutinib stimulates macrophage clearance of bacterial infections through multiple mechanisms and could be used to boost the host innate immunity to combat drug-resistant bacterial infections.


Subject(s)
Aniline Compounds , Macrophages , Nitriles , Phagocytosis , Quinolines , Nitriles/pharmacology , Phagocytosis/drug effects , Animals , Quinolines/pharmacology , Macrophages/drug effects , Aniline Compounds/pharmacology , Mice , Humans , Enterococcus faecalis/drug effects , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Mice, Inbred C57BL , NF-kappa B/metabolism , Cell Survival/drug effects , Gram-Positive Bacterial Infections/drug therapy
18.
Clin Oral Investig ; 28(5): 282, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683234

ABSTRACT

OBJECTIVES: This study aimed to compare the antimicrobial action, cytotoxicity, cleaning ability, and erosion of dentine of hypochlorous acid (HClO) obtained from an electrolytic device at two different concentrations (Dentaqua) and three concentrations of sodium hypochlorite (NaOCl). METHODS: Microbiological test-The root canals of sixty single-rooted extracted human teeth were inoculated with Enterococcus faecalis and divided into 6 groups (n = 10), according to decontamination protocol: DW (control); 1% NaOCl; 2.5% NaOCl; 5.25% NaOCl; 250 ppm HClO and 500 ppm HClO. The colony-forming units were counted to evaluate the decontamination potential of each group, calculating the reduction in bacterial percentage. Cytotoxicity test-Cytotoxicity was evaluated after inoculation of the same tested protocols in fibroblastic cells for 3 min, calculating the cell viability percentages. Specifical statistical analysis was performed (α = 5%). Cleaning ability and erosion-Fifty-six single-rooted bovine lower incisors were divided into seven groups of 8 roots each, being the test groups 1% NaOCl; 2.5% NaOCl; 5,25% NaOCl; 250 ppm HClO and 500 ppm HClO, and a negative and positive control. Negative control was not contaminated, and the other groups were inoculated with Enterococcus faecalis. SEM images were ranked as from the cleanest to the least clean. Erosion was also assessed, being ranked from the least to the most eroded dentine. RESULTS: The highest bacterial reduction was observed in experimental groups, with no statistical differences between them (p > 0.05). The highest number of viable cells was observed in control group, followed by 250 ppm HClO and 500 ppm HClO groups, with statistical differences between them (p < 0.05). 1% NaOCl; 2.5% NaOCl; 5.25% NaOCl and 500 ppm HClO displayed the cleanest areas. All sodium hypochlorite groups displayed erosion with higher ranks with greater concentration, while hypochlorous acid did not display any erosion regardless the concentration. CONCLUSIONS: It is possible to conclude that HClO obtained from an electrolytic device presented high antimicrobial activity and low cytotoxicity in both tested concentrations. 500 ppm HClO did not display erosion and showed great cleaning ability. CLINICAL RELEVANCE: The use of 500 ppm hypochlorous acid may reduce unfavorable behavior of sodium hypochlorite whilst maintaining its antimicrobial action.


Subject(s)
Dental Pulp Cavity , Enterococcus faecalis , Hypochlorous Acid , Root Canal Irrigants , Sodium Hypochlorite , Sodium Hypochlorite/pharmacology , Hypochlorous Acid/pharmacology , Enterococcus faecalis/drug effects , Humans , Root Canal Irrigants/pharmacology , Dental Pulp Cavity/microbiology , Animals , Cattle , In Vitro Techniques , Dentin/drug effects , Dentin/microbiology , Cell Survival/drug effects , Anti-Infective Agents/pharmacology , Electrolysis
19.
Clin Oral Investig ; 28(5): 265, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652209

ABSTRACT

OBJECTIVES: This ex vivo human study aimed to evaluate the efficacy of NaOCl and chlorhexidine gluconate (CHG) irrigations in eliminating Enterococcus faecalis from the RCS of primary molars. MATERIALS AND METHODS: Disinfected extracted primary molars were inoculated with E. faecalis for 24 h. Then, the RCS samples were then irrigated with either 2.5% NaOCl, 0.2% and 2% CHG, or sham saline. The samples were collected immediately after irrigation; and 24 h later, the bacterial viability and counts were measured using blood agar and qRT-PCR, respectively. Histological sections were used to measure E. faecalis penetration and viability in dentin tubules using fluorescence microscopy. RESULTS: The recovery of viable E. faecalis after the irrigation of the primary molars showed more significant bactericidal effects of NaOCl and 0.2% and 2% CHG than of saline. Immediately after the irrigation, the NaOCl group showed the greatest reduction in E. faecalis; and 24 h later, all the groups had lower viable E. faecalis than the saline control. The bacterial penetration was also lowest in the NaOCl group, although there was no difference in bacterial viability in the tubules between the groups. CONCLUSION: In primary teeth, NaOCl and CHG showed similar degrees of bacterial elimination efficacy in terms of E.faecalis. CLINICAL RELEVANCE: Within the limitations of this study, NaOCl and CHG have the similar ability to perform endodontic irrigation of primary ex vivo teeth regarding the elimination of E.faecalis, but NaOCl penetrates dentin tubules better.


Subject(s)
Chlorhexidine , Chlorhexidine/analogs & derivatives , Dental Pulp Cavity , Enterococcus faecalis , Molar , Root Canal Irrigants , Sodium Hypochlorite , Tooth, Deciduous , Chlorhexidine/pharmacology , Enterococcus faecalis/drug effects , Humans , Sodium Hypochlorite/pharmacology , Root Canal Irrigants/pharmacology , Molar/microbiology , Tooth, Deciduous/microbiology , Dental Pulp Cavity/microbiology , In Vitro Techniques , Microscopy, Fluorescence , Anti-Infective Agents, Local/pharmacology , Real-Time Polymerase Chain Reaction , Microbial Viability/drug effects
20.
Rev Assoc Med Bras (1992) ; 70(3): e20230683, 2024.
Article in English | MEDLINE | ID: mdl-38655992

ABSTRACT

OBJECTIVE: In this study, we aimed to determine the phenolic compounds, the antibacterial activity of extract from Laurus nobilis leaves, and its possible effect on transforming growth factor-ß1 expression level in peripheral blood mononuclear cells. METHODS: The phenolic components of Laurus nobilis were identified by the high-performance liquid chromatography method. The antibacterial activity of this extract was determined by disk diffusion and broth microdilution methods. The transforming growth factor-ß1 expression was analyzed using the RT-qPCR method. RESULTS: Epicatechin was found in the highest amount and o-coumaric acid in the lowest amount. The half-maximal inhibitory concentration (IC50) was determined to be 55.17 µg/mL. The zones of inhibition and minimum inhibitory concentration for Staphylococcus aureus, Enterococcus faecalis, and Klebsiella pneumoniae were 15, 14, and 8 mm and 125, 250, and 1000 µg/mL, respectively. The change in transforming growth factor-ß1 expression levels was found to be statistically significant compared with the control groups (p<0.0001). CONCLUSION: Laurus nobilis extract was found to be effective against bacteria and altered the expression level of transforming growth factor-ß1 in peripheral blood mononuclear cells.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecalis , Laurus , Leukocytes, Mononuclear , Microbial Sensitivity Tests , Plant Extracts , Staphylococcus aureus , Transforming Growth Factor beta1 , Humans , Anti-Bacterial Agents/pharmacology , Chromatography, High Pressure Liquid , Enterococcus faecalis/drug effects , Inhibitory Concentration 50 , Klebsiella pneumoniae/drug effects , Laurus/chemistry , Leukocytes, Mononuclear/drug effects , Phenols/pharmacology , Phenols/analysis , Plant Extracts/pharmacology , Plant Leaves/chemistry , Staphylococcus aureus/drug effects , Transforming Growth Factor beta1/drug effects , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...