ABSTRACT
The indiscriminate use of antimicrobials has led to the emergence of resistant bacteria, especially pathogenic strains of Escherichia coli, which are associated with diseases in animals and humans. The aim of the present study was to characterize E. coli isolates in calves with regards to the presence of virulence genes and investigate the resistance of the isolates to different antimicrobials. Between 2021 and 2023, 456 fecal samples were collected from calves in the Pantanal and Cerrado biomes of the state of Mato Grosso do Sul, Brazil. All samples were subjected to microbiological analysis and disc diffusion antibiogram testing. The polymerase chain reaction method was used to detect virulence genes. Bacterial growth was found in 451 of the 456 samples and biochemically identified as Escherichia coli. All 451 isolates (100 %) exhibited some phenotypic resistance to antimicrobials and 67.62 % exhibited multidrug resistance. The frequency of multidrug-resistant isolates in the Cerrado biome was significantly higher than that in the Pantanal biome (p = 0.0001). In the Cerrado, the most common pathotype was Shiga toxin-producing Escherichia coli (STEC) (28 %), followed by toxigenic Escherichia coli (ETEC) (11 %), enterohemorrhagic Escherichia coli (EHEC) (8 %) and enteropathogenic Escherichia coli (EPEC) (2 %). In most cases, the concomitant occurrence of pathotypes was more common, the most frequent of which were ETEC + STEC (33 %), ETEC + EHEC (15 %) and ETEC + EPEC (3 %). The STEC pathotype (30 %) was also found more frequently in the Pantanal, followed by EHEC (12 %), ETEC (9 %) and EPEC (6 %). The STEC pathotype had a significantly higher frequency of multidrug resistance (p = 0.0486) compared to the other pathotypes identified. The frequency of resistance was lower in strains from the Pantanal biome compared to those from the Cerrado biome. Although some factors are discussed in this paper, it is necessary to clarify the reasons for this difference and the possible impacts of these findings on both animal and human health in the region.
Subject(s)
Anti-Bacterial Agents , Cattle Diseases , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Feces , Microbial Sensitivity Tests , Virulence Factors , Animals , Cattle , Brazil , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Feces/microbiology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Virulence Factors/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/drug effects , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/isolation & purification , Enterohemorrhagic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/isolation & purification , Escherichia coli Proteins/geneticsABSTRACT
The microbiome of three different sites at the Peruvian Pacific coast was analyzed, revealing a lower bacterial biodiversity at Isla Foca than at Paracas and Manglares, with 89 bacterial genera identified, as compared to 195 and 173 genera, respectively. Only 47 of the bacterial genera identified were common to all three sites. In order to obtain promising strains for the putative production of novel antimicrobials, predatory bacteria were isolated from these sampling sites, using two different bait organisms. Even though the proportion of predatory bacteria was only around 0.5% in the here investigated environmental microbiomes, by this approach in total 138 bacterial strains were isolated as axenic culture. 25% of strains showed antibacterial activity, thereby nine revealed activity against clinically relevant methicillin resistant Staphylococcus aureus (MRSA) and three against enterohemorrhagic Escherichia coli (EHEC) strains. Phylogeny and physiological characteristics of the active strains were investigated. First insights into the chemical basis of the antibacterial activity indicated the biosynthetic production of the known compounds ariakemicin, kocurin, naphthyridinomycin, pumilacidins, resistomycin, and surfactin. However, most compounds remained elusive until now. Hence, the obtained results implicate that the microbiome present at the various habitats at the Peruvian coastline is a promising source for heterotrophic bacterial strains showing high potential for the biotechnological production of antibiotics.
Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Biological Products/pharmacology , Anti-Bacterial Agents/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Biological Products/isolation & purification , Biotechnology , Enterohemorrhagic Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Microbiota , Peru , PhylogenyABSTRACT
The purpose of this study was to determine the effects of plant products on the growth, swarming motility, biofilm formation and virulence gene expression in enterohemorrhagic Escherichia coli O157:H7 and enteroaggregative E. coli strain 042 and a strain of O104:H4 serotype. Extracts of Lippia graveolens and Haematoxylon brassiletto, and carvacrol, brazilin were tested by an antimicrobial microdilution method using citral and rifaximin as controls. All products showed bactericidal activity with minimal bactericidal concentrations ranging from 0.08 to 8.1 mg/ml. Swarming motility was determined in soft LB agar. Most compounds reduced swarming motility by 7%-100%; except carvacrol which promoted motility in two strains. Biofilm formation studies were done in microtiter plates. Rifaximin inhibited growth and reduced biofilm formation, but various concentrations of other compounds actually induced biofilm formation. Real time PCR showed that most compounds decreased stx2 expression. The expression of pic and rpoS in E. coli 042 were suppressed but in E. coli O104:H4 they varied depending on compounds. In conclusion, these extracts affect E. coli growth, swarming motility and virulence gene expression. Although these compounds were bactericidal for pathogenic E. coli, sublethal concentrations had varied effects on phenotypic and genotypic traits, and some increased virulence gene expression.