Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Wilderness Environ Med ; 29(2): 248-251, 2018 06.
Article in English | MEDLINE | ID: mdl-29804622

ABSTRACT

Trauma care in cave rescue is a unique situation that requires an advanced and organized approach with medical and technical assistance because of the extreme environmental conditions and logistical factors. In caving accidents, the most common injuries involve lower limbs. We describe an advanced medical rescue performed by the Italian Corpo Nazionale del Soccorso Alpino e Speleologico, in which extended focused assessment with sonography for trauma and an ultrasound-guided adductor canal block were performed on a patient with a knee distortion directly in the cave. The rescue team inside the cave shared data on patient monitoring and the ultrasound scanning in real time with rescuers at the entrance, using a video conference powered by the new Ermes system. The use of handheld, battery-powered, low-weight, multiparametric monitors, ultrasound machines, and digital data transmission systems could ensure complete medical assistance in harsh environmental conditions such as those found in a cave.


Subject(s)
Caves , Environmental Medicine/instrumentation , Knee Injuries/therapy , Rescue Work , Wireless Technology , Humans , Male , Rescue Work/methods , Ultrasonography
2.
J Environ Monit ; 12(2): 491-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20145892

ABSTRACT

Phthalates are used as plasticizers in many industrial and consumer products. Urinary biomonitoring has shown widespread human exposure to phthalates, with workers having especially high exposures. Phthalates can be present in workplace air as either aerosols or vapors depending on source materials, vapor pressure, and processing temperatures. We sought to develop a dual-phase air sampling method for 6 phthalates, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BzBP), di(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP), adaptable to aerosol inlets with known particle collection characteristics. Collection media consisted of a quartz fiber filter and XAD-2 resin. Limit of detection (LOD) and limit of quantification (LOQ) were determined for each phthalate. Phthalate recoveries were evaluated at 3x, 10x and 30x the LOQ, and after storage at -21 degrees C and 21 degrees C. Media were Soxhlet extracted in 10% diethyl ether in hexanes along with an extraction surrogate, di-n-pentyl phthalate-d(4). Gas chromatography/mass spectrometry was performed to quantify the phthalate diesters using di(2-ethylhexyl) phthalate-d(4) as an internal standard. Estimated LODs were 1 microg per sample (BzBP, DEHP, and DnOP), 2 microg per sample (DMP and DBP), and 5 microg per sample (DEP). Mean recoveries under static conditions were 85-104% for DBP, BzBP, DEHP, and DnOP; but <70% for DMP and DEP at 3x and 10x the LOQ. After air was pulled through spiked samples, DMP and DEP recoveries improved to 74-81%. After storage for 62 days, phthalate recovery was better at -21 degrees C than at 21 degrees C. Method accuracy was best for DBP, BzBP, DEHP, and DnOP (range 11-18%), and less so for DMP (28%) and DEP (29%).


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Medicine/instrumentation , Occupational Exposure , Phthalic Acids/analysis , Gas Chromatography-Mass Spectrometry , Humans , Limit of Detection , Linear Models
SELECTION OF CITATIONS
SEARCH DETAIL
...