Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.108
Filter
1.
Chem Res Toxicol ; 37(5): 671-674, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38626399

ABSTRACT

Autoinduction of cytochrome P450 (P450) 3A4-mediated metabolism of thalidomide was investigated in humanized-liver mice and human hepatocyte-derived HepaSH cells. The mean plasma ratios of 5-hydroxythalidomide and glutathione adducts to thalidomide were significantly induced (3.5- and 6.0-fold, respectively) by thalidomide treatment daily at 1000 mg/kg for 3 days and measured at 2 h after the fourth administration (on day 4). 5-Hydroxythalidomide was metabolically activated by P450 3A4 in HepaSH cells pretreated with 300 and 1000 µM thalidomide, and 5,6-dihydroxythalidomide was detected. Significant induction of P450 3A4 mRNA expression (4.1-fold) in the livers of thalidomide-treated mice occurred. Thalidomide exerts a variety of actions through multiple mechanisms following bioactivation by induced human P450 3A enzymes.


Subject(s)
Cytochrome P-450 CYP3A , Hepatocytes , Thalidomide , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Humans , Animals , Thalidomide/pharmacology , Thalidomide/analogs & derivatives , Mice , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Cell Line , RNA, Messenger/metabolism , Enzyme Induction/drug effects , Male , Cytochrome P-450 CYP3A Inducers/pharmacology
2.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269594

ABSTRACT

The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glutathione/analogs & derivatives , Hesperidin/therapeutic use , Lactoylglutathione Lyase/metabolism , Neoplasms, Experimental/drug therapy , Resveratrol/therapeutic use , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Drug Therapy, Combination , Enzyme Induction/drug effects , Glutathione/chemistry , Glutathione/therapeutic use , Glycosylation/drug effects , Hesperidin/chemistry , Humans , Insulin Resistance/physiology , Lactoylglutathione Lyase/antagonists & inhibitors , Mice , Molecular Structure , Neoplasms, Experimental/metabolism , Obesity/drug therapy , Obesity/metabolism , Obesity/physiopathology , Pyruvaldehyde/chemistry , Pyruvaldehyde/metabolism , Resveratrol/chemistry
3.
Comput Math Methods Med ; 2022: 8920861, 2022.
Article in English | MEDLINE | ID: mdl-35047060

ABSTRACT

BACKGROUND: Hepatic stellate cells (HSCs) are reported to play significant roles in the development of liver fibrosis. Heme oxygenase-1 (HO-1) is a key rate-limiting enzyme, which could decrease collagen synthesis and liver damage. Nevertheless, it was yet elusive towards the function and mechanism of HO-1. METHODS: An HO-1 inducer Hemin or an HO-1 inhibitor ZnPP-IX was used to treat the activated HSC-T6, respectively. MTT assay was adopted to detect cell proliferation. Immunocytochemical staining was employed to test the levels of alpha-smooth muscle actin (α-SMA), peroxisome proliferator-activated receptor-γ (PPARγ), and nuclear factor-kappa B (NF-kappa B) levels in HSC-T6. HO-1, PPARγ, and NF-κB expression levels were measured by qRT-PCR and Western blotting. ELISA was then used to detect the levels of transforming growth factor- (TGF-) beta 1 (TGF-ß1), interleukin-6 (IL-6), serum hyaluronic acid (HA), and serum type III procollagen aminopeptide (PIIIP). RESULTS: HSC-T6 proliferation was inhibited in Hemin-treated HSCs. The levels of α-SMA, HA, and PIIIP and the production of ECM were lower in Hemin-treated HSCs, whereas those could be rescued by ZnPP-IX. NF-κB activation was decreased, but PPARγ expression was increased after HO-1 upregulation. Furthermore, the levels of TGF-ß1 and IL-6, which were downstream of activated NF-κB in HSC-T6, were reduced. The PPAR-specific inhibitor GW9662 could block those mentioned effects. CONCLUSIONS: Our data demonstrated that HO-1 induction could inhibit HSC proliferation and activation by regulating PPARγ expression and NF-κB activation directly or indirectly, which makes it a promising therapeutic target for liver fibrosis.


Subject(s)
Heme Oxygenase (Decyclizing)/metabolism , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , NF-kappa B/metabolism , PPAR gamma/metabolism , Actins/genetics , Actins/metabolism , Animals , Biomarkers/metabolism , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/physiology , Computational Biology , Enzyme Induction/drug effects , Enzyme Inhibitors/pharmacology , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Heme Oxygenase (Decyclizing)/biosynthesis , Hemin/pharmacology , Hepatic Stellate Cells/drug effects , Humans , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Models, Biological , NF-kappa B/antagonists & inhibitors , PPAR gamma/agonists , PPAR gamma/genetics , Protoporphyrins/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
4.
Bioengineered ; 13(1): 645-654, 2022 01.
Article in English | MEDLINE | ID: mdl-34967278

ABSTRACT

Paired related homeobox 1 (PRRX1) is a newly identified transcription factor that regulates the expression of various genes. We aimed to investigate the roles of PRRX1 and Matrix metalloproteinases (MMP)13 in dextran sulfate sodium (DSS)-induced inflammation and barrier dysfunction of NCM460 cells. PRRX1 expression in the mucosal tissues of patients with ulcerative colitis was analyzed using the GSE87466 microarray. PRRX1 and MMP13 expression was examined using Western blotting and RT-qPCR following the exposure of the NCM460 cells to DSS. The JASPAR database was used to predict the binding sites of PRRX1 to the MMP13 promoter, which was verified by luciferase reporter and chromatin immunoprecipitation assays. MMP13 expression was then detected following PRRX1 silencing or overexpression. The levels of inflammatory factors were determined using ELISA. Finally, the expression of intestinal barrier function-related proteins was evaluated using Western blotting and cellular permeability was detected by Transepithelial electrical resistance. PRRX1 was upregulated in the mucosal tissue samples of patients with UC. DSS induction upregulated PRRX1 and MMP13 expression. PRRX1 bound to the promoter of MMP13, which was further supported by the decreased expression of MMP13 observed following PRRX1 knockdown and its increased expression following PRRX1 overexpression. Furthermore, PRRX1 deletion decreased TNF-α, IL-1ß and IL-6 levels in the DSS-challenged NCM460 cells, which were subjected to MMP13 overexpression. Moreover, PRRX1 silencing upregulated ZO-1, occludin and claudin-1 expression and elevated the TEER value, whereas MMP13 overexpression attenuated these effects. Collectively, PRRX1 activates MMP13, which in turn promotes the DSS-induced inflammation and barrier dysfunction of NCM460 cells.


Subject(s)
Dextran Sulfate/toxicity , Homeodomain Proteins/metabolism , Intestinal Mucosa/metabolism , Matrix Metalloproteinase 13/biosynthesis , Cell Line , Enzyme Induction/drug effects , Homeodomain Proteins/genetics , Humans , Inflammation/chemically induced , Inflammation/metabolism , Matrix Metalloproteinase 13/genetics
5.
J Neuroimmunol ; 361: 577724, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34610503

ABSTRACT

Prostaglandin E2 (PGE2) plays pivotal roles in controlling microglial activation with the EP2 receptor, a PGE2 receptor subtype. Activated microglia are often reported to increase cyclooxygenase (COX)-2 expression, followed by PGE2 production, but it is unclear whether extracellular PGE2 is involved in microglial PGE2 synthesis. In the present study, we report that PGE2 increases COX-2 protein in microglia. In a culture system, PGE2 at 10-6 M for 3 h increased COX-2 and microsomal PGE synthase (mPGES)-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cytosolic PGE synthase (cPGES) in microglia. PGE2 at 10-6 M for 3 h also increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. An EP2 agonist, ONO-AE1-259-01, also increased COX-2 and mPGES-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cPGES, whereas an EP1 agonist, ONO-DI-004, an EP3 agonist, ONO-AE-248, and an EP4 agonist, ONO-AE1-329, had no effect. Similar to PGE2, ONO-AE1-259-01 increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. In addition, the effects of PGE2 were inhibited by an EP2 antagonist, PF-04418948, but not by an EP1 antagonist, ONO-8713, an EP3 antagonist, ONO-AE3-240, or an EP4 antagonist, ONO-AE3-208, at 10-6 M. On the other hand, lipopolysaccharide (LPS) increased PGE2 production, but the LPS-induced PGE2 production was not affected by ONO-8713, PF-04418948, ONO-AE3-240, or ONO-AE3-208. These results indicate that PGE2 increases COX-2 protein in microglia through the EP2 receptor supporting the idea that extracellular PGE2 has a triggering aspect for microglial activation.


Subject(s)
Cyclooxygenase 2/biosynthesis , Dinoprostone/pharmacology , Microglia/drug effects , Animals , Azetidines/pharmacology , Cells, Cultured , Cerebral Cortex/cytology , Cyclooxygenase 1/biosynthesis , Cyclooxygenase 1/genetics , Cyclooxygenase 2/genetics , Dinoprostone/analogs & derivatives , Dinoprostone/biosynthesis , Enzyme Induction/drug effects , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Methyl Ethers/pharmacology , Microglia/enzymology , Microsomes/drug effects , Microsomes/enzymology , Prostaglandin-E Synthases/biosynthesis , Prostaglandin-E Synthases/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Wistar , Receptors, Prostaglandin E, EP2 Subtype/agonists , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
6.
Cell Death Dis ; 12(11): 971, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671026

ABSTRACT

While their function, as immune checkpoint molecules, is well known, B7-family proteins also function as regulatory molecules in bone remodeling. B7-H3 is a receptor ligand of the B7 family that functions primarily as a negative immune checkpoint. While the regulatory function of B7-H3 in osteoblast differentiation has been established, its role in osteoclast differentiation remains unclear. Here we show that B7-H3 is highly expressed in mature osteoclasts and that B7-H3 deficiency leads to the inhibition of osteoclastogenesis in human osteoclast precursors (OCPs). High-throughput transcriptomic analyses reveal that B7-H3 inhibition upregulates IFN signaling as well as IFN-inducible genes, including IDO. Pharmacological inhibition of type-I IFN and IDO knockdown leads to reversal of B7-H3-deficiency-mediated osteoclastogenesis suppression. Although synovial-fluid macrophages from rheumatoid-arthritis patients express B7-H3, inhibition of B7-H3 does not affect their osteoclastogenesis. Thus, our findings highlight B7-H3 as a physiologic positive regulator of osteoclast differentiation and implicate type-I IFN-IDO signaling as its downstream mechanism.


Subject(s)
B7 Antigens/metabolism , Cell Differentiation , Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis , Interferon Type I/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology , Animals , Antibodies, Neutralizing/pharmacology , Arthritis, Rheumatoid/pathology , B7 Antigens/deficiency , B7 Antigens/genetics , Enzyme Induction/drug effects , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-beta/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Monocytes/drug effects , Monocytes/metabolism , Nitric Oxide Synthase Type II/metabolism , Osteogenesis/drug effects , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Stem Cells/drug effects , Stem Cells/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism , Synovial Fluid/metabolism , Tryptophan/metabolism
7.
J Am Soc Nephrol ; 32(11): 2834-2850, 2021 11.
Article in English | MEDLINE | ID: mdl-34716244

ABSTRACT

BACKGROUND: CKD, characterized by retained uremic solutes, is a strong and independent risk factor for thrombosis after vascular procedures . Urem ic solutes such as indoxyl sulfate (IS) and kynurenine (Kyn) mediate prothrombotic effect through tissue factor (TF). IS and Kyn biogenesis depends on multiple enzymes, with therapeutic implications unexplored. We examined the role of indoleamine 2,3-dioxygenase-1 (IDO-1), a rate-limiting enzyme of kynurenine biogenesis, in CKD-associated thrombosis after vascular injury. METHODS: IDO-1 expression in mice and human vessels was examined. IDO-1-/- mice, IDO-1 inhibitors, an adenine-induced CKD, and carotid artery injury models were used. RESULTS: Both global IDO-1-/- CKD mice and IDO-1 inhibitor in wild-type CKD mice showed reduced blood Kyn levels, TF expression in their arteries, and thrombogenicity compared with respective controls. Several advanced IDO-1 inhibitors downregulated TF expression in primary human aortic vascular smooth muscle cells specifically in response to uremic serum. Further mechanistic probing of arteries from an IS-specific mouse model, and CKD mice, showed upregulation of IDO-1 protein, which was due to inhibition of its polyubiquitination and degradation by IS in vascular smooth muscle cells. In two cohorts of patients with advanced CKD, blood IDO-1 activity was significantly higher in sera of study participants who subsequently developed thrombosis after endovascular interventions or vascular surgery. CONCLUSION: Leveraging genetic and pharmacologic manipulation in experimental models and data from human studies implicate IS as an inducer of IDO-1 and a perpetuator of the thrombotic milieu and supports IDO-1 as an antithrombotic target in CKD.


Subject(s)
Indican/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/blood , Kynurenine/physiology , Molecular Targeted Therapy , Postoperative Complications/enzymology , Renal Insufficiency, Chronic/enzymology , Thrombosis/enzymology , Vascular Surgical Procedures/adverse effects , Animals , Aorta , Carotid Artery Injuries/complications , Carotid Artery Thrombosis/etiology , Carotid Artery Thrombosis/prevention & control , Culture Media/pharmacology , Enzyme Induction/drug effects , Feedback, Physiological , Female , HEK293 Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/blood , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/drug effects , Postoperative Complications/blood , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Renal Insufficiency, Chronic/drug therapy , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/etiology , Thrombosis/prevention & control , Tryptophan/metabolism , Uremia/blood
8.
Placenta ; 115: 129-138, 2021 11.
Article in English | MEDLINE | ID: mdl-34619429

ABSTRACT

INTRODUCTION: The human placenta performs multiple functions necessary for successful pregnancy, but the metabolic pathways and molecular mechanisms responsible for regulating placental development and functions remain incompletely understood. Catabolism of the essential amino acid tryptophan has numerous critical roles in normal physiology, including inflammation. The kynurenine pathway, which accounts for ∼90% of tryptophan breakdown, is mediated by indoleamine 2,3 dioxygenase 1 (IDO1) in the placenta. In pregnant mice, alterations of IDO1 activity or expression result in fetal resorption and a preeclampsia-like phenotype. Decreased IDO1 expression at the maternal-fetal interface has also been linked to preeclampsia, in utero growth restriction and recurrent miscarriage in humans. These collective observations suggest essential role(s) for IDO1 in maintaining healthy pregnancy. Despite these important roles, the precise temporal, cell-specific and inflammatory cytokine-mediated patterns of IDO1 expression in the human placenta have not been thoroughly characterized across gestation. METHODS: Western blot and whole mount immunofluorescence (WMIF) were utilized to characterize and quantify basal and interferon (IFN)-inducible IDO1 expression in 1st trimester (7-13 weeks), 2nd trimester (14-22 weeks) and term (39-41 weeks) placental villi. RESULTS: IDO1 expression is activated in the human placenta between the 13th and 14th weeks of pregnancy, increases through the 2nd trimester and remains elevated at term. Constitutive IDO1 expression is restricted to placental endothelial cells. Interestingly, different types of IFNs have distinct effects on IDO1 expression in the human placenta. DISCUSSION: Our collective results are consistent with potential role(s) for IDO1 in the regulation of vascular functions in placental villi.


Subject(s)
Enzyme Induction/drug effects , Gestational Age , Indoleamine-Pyrrole 2,3,-Dioxygenase/analysis , Interferons/pharmacology , Placenta/enzymology , Chorionic Villi/enzymology , Endothelial Cells/enzymology , Female , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Pregnancy
9.
J Neurochem ; 159(3): 590-602, 2021 11.
Article in English | MEDLINE | ID: mdl-34499746

ABSTRACT

Morphine is a potent opioid analgesic with high propensity for the development of antinociceptive tolerance. Morphine antinociception and tolerance are partially regulated by the midbrain ventrolateral periaqueductal gray (vlPAG). However, the majority of research evaluating mu-opioid receptor signaling has focused on males. Here, we investigate kinase activation and localization patterns in the vlPAG following acute and chronic morphine treatment in both sexes. Male and female mice developed rapid antinociceptive tolerance to morphine (10 mg/kg i.p.) on the hot plate assay, but tolerance did not develop in males on the tail flick assay. Quantitative fluorescence immunohistochemistry was used to map and evaluate the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2), protein kinase-C (PKC), and protein kinase-A (PKA). We observed significantly greater phosphorylated ERK 1/2 in the vlPAG of chronic morphine-treated animals which co-localized with the endosomal marker, Eea1. We note that pPKC is significantly elevated in the vlPAG of both sexes following chronic morphine treatment. We also observed that although PKA activity is elevated following chronic morphine treatment in both sexes, there is a significant reduction in the nuclear translocation of its phosphorylated substrate. Taken together, this study demonstrates increased activation of ERK 1/2, PKC, and PKA in response to repeated morphine treatment. The study opens avenues to explore the impact of chronic morphine treatment on G-protein signaling and kinase nuclear transport.


Subject(s)
Enzyme Induction/drug effects , Morphine/pharmacology , Periaqueductal Gray/drug effects , Periaqueductal Gray/enzymology , Protein Kinases/biosynthesis , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Drug Tolerance , Female , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Pain Measurement/drug effects , Protein Kinase C/metabolism , Protein Transport , Sex Characteristics , Vesicular Transport Proteins/biosynthesis , Vesicular Transport Proteins/genetics
10.
Am J Pathol ; 191(12): 2072-2079, 2021 12.
Article in English | MEDLINE | ID: mdl-34560064

ABSTRACT

Bone homeostasis depends on the balance between bone resorption by osteoclasts (OCs) and bone formation by osteoblasts. Bone resorption can become excessive under various pathologic conditions, including rheumatoid arthritis. Previous studies have shown that OC formation is promoted under hypoxia. However, the precise mechanisms behind OC formation under hypoxia have not been elucidated. The present study investigated the role of inducible nitric oxide synthase (iNOS) in OC differentiation under hypoxia. Primary bone marrow cells obtained from mice were stimulated with receptor activator of NF-κB ligand and macrophage colony-stimulating factor to induce OC differentiation. The number of OCs increased in culture under hypoxia (oxygen concentration, 5%) compared with that under normoxia (oxygen concentration, 20%). iNOS gene and protein expression increased in culture under hypoxia. Addition of an iNOS inhibitor under hypoxic conditions suppressed osteoclastogenesis. Addition of a nitric oxide donor to the normoxic culture promoted osteoclastogenesis. Furthermore, insulin-like growth factor 2 expression was significantly altered in both iNOS inhibition experiments and nitric oxide donor experiments. These data might provide clues to therapies for excessive osteoclastogenesis under several hypoxic pathologic conditions, including rheumatoid arthritis.


Subject(s)
Cell Hypoxia/physiology , Nitric Oxide Synthase Type II/physiology , Osteoclasts/physiology , Animals , Bone Resorption/genetics , Bone Resorption/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Hypoxia/drug effects , Cells, Cultured , Enzyme Induction/drug effects , Enzyme Induction/genetics , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia/pathology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteogenesis/genetics , Oxygen/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , omega-N-Methylarginine/pharmacology
11.
J Neurosci ; 41(35): 7340-7349, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34290083

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease marked by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles. Aß oligomers cause synaptic dysfunction early in AD by enhancing long-term depression (LTD; a paradigm for forgetfulness) via metabotropic glutamate receptor (mGluR)-dependent regulation of striatal-enriched tyrosine phosphatase (STEP61). Reelin is a neuromodulator that signals through ApoE (apolipoprotein E) receptors to protect the synapse against Aß toxicity (Durakoglugil et al., 2009) Reelin signaling is impaired by ApoE4, the most important genetic risk factor for AD, and Aß-oligomers activate metabotropic glutamate receptors (Renner et al., 2010). We therefore asked whether Reelin might also affect mGluR-LTD. To this end, we induced chemical mGluR-LTD using DHPG (Dihydroxyphenylglycine), a selective mGluR5 agonist. We found that exogenous Reelin reduces the DHPG-induced increase in STEP61, prevents the dephosphorylation of GluA2, and concomitantly blocks mGluR-mediated LTD. By contrast, Reelin deficiency increased expression of Ca2+-permeable GluA2-lacking AMPA receptors along with higher STEP61 levels, resulting in occlusion of DHPG-induced LTD in hippocampal CA1 neurons. We propose a model in which Reelin modulates local protein synthesis as well as AMPA receptor subunit composition through modulation of mGluR-mediated signaling with implications for memory consolidation or neurodegeneration.SIGNIFICANCE STATEMENT Reelin is an important neuromodulator, which in the adult brain controls synaptic plasticity and protects against neurodegeneration. Amyloid-ß has been shown to use mGluRs to induce synaptic depression through endocytosis of NMDA and AMPA receptors, a mechanism referred to as LTD, a paradigm of forgetfulness. Our results show that Reelin regulates the phosphatase STEP, which plays an important role in neurodegeneration, as well as the expression of calcium-permeable AMPA receptors, which play a role in memory formation. These data suggest that Reelin uses mGluR LTD pathways to regulate memory formation as well as neurodegeneration.


Subject(s)
Long-Term Synaptic Depression/physiology , Neurons/physiology , Protein Tyrosine Phosphatases, Non-Receptor/physiology , Receptors, Metabotropic Glutamate/physiology , Reelin Protein/physiology , 2-Amino-5-phosphonovalerate/pharmacology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , Calcium/physiology , Cells, Cultured , Cerebral Cortex/cytology , Enzyme Induction/drug effects , Long-Term Synaptic Depression/drug effects , Memory/physiology , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Mice , Nerve Degeneration/physiopathology , Neurons/drug effects , Patch-Clamp Techniques , Phosphorylation/drug effects , Picrotoxin/pharmacology , Protein Processing, Post-Translational/drug effects , Rats , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Receptors, Metabotropic Glutamate/agonists , Recombinant Proteins/metabolism , Reelin Protein/deficiency , Reelin Protein/genetics
12.
Oxid Med Cell Longev ; 2021: 5521196, 2021.
Article in English | MEDLINE | ID: mdl-34194603

ABSTRACT

Carbon monoxide releasing molecule-3 (CORM-3) has been shown to protect inflammatory diseases via the upregulation of heme oxygenases-1 (HO-1). However, in rat brain astrocytes (RBA-1), the mechanisms underlying CORM-3-induced HO-1 remain poorly defined. This study used western blot, real-time PCR, and promoter activity assays to determine the levels of HO-1 expression and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and dihydroethidium (DHE) to measure reactive oxygen species (ROS). We found that CORM-3-induced HO-1 expression was mediated through ROS generation by Nox or mitochondria. The signaling components were differentiated by pharmacological inhibitors and small interfering RNA (siRNA). Subcellular fractions, immunofluorescent staining, and chromatin immunoprecipitation assay were used to evaluate the nuclear translocation and promoter binding activity of Nrf2 induced by CORM-3. The roles of mTOR and FoxO1 in CORM-3-stimulated responses are still unknown in RBA-1 cells. Our results demonstrated that transfection with siRNAs or pretreatment with pharmacological inhibitors attenuated the levels of HO-1 and phosphorylation of signaling components including Akt, mTOR, FoxO1, and Nrf2 stimulated by CORM-3. Moreover, pretreatment with N-acetyl-L-cysteine, diphenyleneiodonium chloride, apocynin, or rotenone blocked nuclear translocation and promoter binding activity of Nrf2 induced by CORM-3. The present study concluded that in RBA-1 cells, CORM-3-induced HO-1 expression is, at least partially, mediated through Nox and mitochondria/ROS-dependent PI3K/Akt/mTOR cascade to activate FoxO1 or ROS leading to activation of Nrf2 activity.


Subject(s)
Astrocytes/drug effects , Astrocytes/metabolism , Heme Oxygenase (Decyclizing)/metabolism , NF-E2-Related Factor 2/metabolism , Nerve Tissue Proteins/metabolism , Organometallic Compounds/pharmacology , Reactive Oxygen Species/metabolism , Animals , Brain/cytology , Brain/drug effects , Brain/metabolism , Cell Line , Disease Models, Animal , Enzyme Induction/drug effects , Heme Oxygenase (Decyclizing)/biosynthesis , Humans , Rats , Transfection
13.
Cells ; 10(7)2021 06 22.
Article in English | MEDLINE | ID: mdl-34206530

ABSTRACT

Vitamins K exert a range of activities that extend far beyond coagulation and include anti-inflammatory effects, but the mechanisms involved in anti-inflammatory action remain unclear. In the present study, we showed that various forms of exogenous vitamins-K1, K3, K2 (MK-4, MK-5, MK-6 and MK-7)-regulated a wide scope of inflammatory pathways in murine macrophages in vitro, including NOS-2, COX-2, cytokines and MMPs. Moreover, we demonstrated for the first time that macrophages are able to synthesise endogenous MK-4 on their own. Vitamins with shorter isoprenoid chains-K1, K3 and MK-5-exhibited stronger anti-inflammatory potential than vitamins with longer isoprenoid chains (MK-6 and MK-7) and simultaneously were preferably used as a substrate for MK-4 endogenous production. Most interesting, atorvastatin pretreatment inhibited endogenous MK-4 production but had no impact on the anti-inflammatory activity of vitamins K. In summary, our results demonstrate that macrophages are able to synthesise endogenous MK-4 using exogenous vitamins K, and statin inhibits this process. However, the anti-inflammatory effect of exogenous vitamins K was independent of endogenous MK-4 synthesis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Macrophages/metabolism , Vitamin K/pharmacology , Animals , Atorvastatin/pharmacology , Cell Respiration/drug effects , Cyclooxygenase 2/biosynthesis , Cytokines/biosynthesis , Eicosanoids/biosynthesis , Enzyme Induction/drug effects , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Substrate Specificity/drug effects
14.
J Pharmacol Exp Ther ; 379(1): 53-63, 2021 10.
Article in English | MEDLINE | ID: mdl-34312179

ABSTRACT

In receptor-type transcription factors-mediated cytochrome P450 (P450) induction, few studies have attempted to clarify the roles of protein kinase N (PKN) in the transcriptional regulation of P450s. This study aimed to examine the involvement of PKN in the transcriptional regulation of P450s by receptor-type transcription factors, including the aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor. The mRNA and protein levels and metabolic activity of P450s in the livers of wild-type (WT) and double-mutant (D) mice harboring both PKN1 kinase-negative knock-in and PKN3 knockout mutations [PKN1 T778A/T778A; PKN3 -/-] were determined after treatment with activators for receptor-type transcription factors. mRNA and protein levels and metabolic activity of CYP2B10 were significantly higher in D mice treated with the CAR activator phenobarbital (PB) but not with 1,4-bis((3,5-dichloropyridin-2-yl)oxy)benzene compared with WT mice. We examined the CAR-dependent pathway regulated by PKN after PB treatment because the extent of CYP2B10 induction in WT and D mice was notably different in response to treatment with different CAR activators. The mRNA levels of Cyp2b10 in primary hepatocytes from WT and D mice treated with PB alone or in combination with Src kinase inhibitor 1 (SKI-1) or U0126 (a mitogen-activated protein kinase inhibitor) were evaluated. Treatment of hepatocytes from D mice with the combination of PB with U0126 but not SKI-1 significantly increased the mRNA levels of Cyp2b10 compared with those from the corresponding WT mice. These findings suggest that PKN may have inhibitory effects on the Src-receptor for activated C kinase 1 (RACK1) pathway in the CAR-mediated induction of Cyp2b10 in mice livers. SIGNIFICANCE STATEMENT: This is the first report of involvement of PKN in the transcriptional regulation of P450s. The elucidation of mechanisms responsible for induction of P450s could help optimize the pharmacotherapy and improve drug development. We examined whether the mRNA and protein levels and activities of P450s were altered in double-mutant mice harboring both PKN1 kinase-negative knock-in and PKN3 knockout mutations. PKN1/3 negatively regulates CAR-mediated induction of Cyp2b10 through phosphorylation of a signaling molecule in the Src-RACK1 pathway.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Constitutive Androstane Receptor/metabolism , Cytochrome P450 Family 2/metabolism , Liver/metabolism , Protein Kinase C/metabolism , Steroid Hydroxylases/metabolism , Transcription, Genetic/physiology , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P450 Family 2/genetics , Enzyme Induction/drug effects , Enzyme Induction/physiology , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Steroid Hydroxylases/genetics , Transcription, Genetic/drug effects
15.
Int J Mol Sci ; 22(11)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071003

ABSTRACT

Superoxide dismutase (SOD) is a major antioxidant enzyme for superoxide removal, and cytoplasmic SOD (SOD1) is expressed as a predominant isoform in all cells. We previously reported that renal SOD1 deficiency accelerates the progression of diabetic nephropathy (DN) via increasing renal oxidative stress. To evaluate whether the degree of SOD1 expression determines regeneration capacity and sarcopenic phenotypes of skeletal muscles under incipient and advanced DN conditions, we investigated the alterations of SOD1 expression, oxidative stress marker, inflammation, fibrosis, and regeneration capacity in cardiotoxin (CTX)-injured tibialis anterior (TA) muscles of two Akita diabetic mouse models with different susceptibility to DN, DN-resistant C57BL/6-Ins2Akita and DN-prone KK/Ta-Ins2Akita mice. Here, we report that KK/Ta-Ins2Akita mice, but not C57BL/6-Ins2Akita mice, exhibit delayed muscle regeneration after CTX injection, as demonstrated by the finding indicating significantly smaller average cross-sectional areas of regenerating TA muscle myofibers relative to KK/Ta-wild-type mice. Furthermore, we observed markedly reduced SOD1 expression in CTX-injected TA muscles of KK/Ta-Ins2Akita mice, but not C57BL/6-Ins2Akita mice, along with increased inflammatory cell infiltration, prominent fibrosis and superoxide overproduction. Our study provides the first evidence that SOD1 reduction and the following superoxide overproduction delay skeletal muscle regeneration through induction of overt inflammation and fibrosis in a mouse model of progressive DN.


Subject(s)
Diabetic Nephropathies/complications , Muscle, Skeletal/drug effects , Nerve Regeneration/drug effects , Sarcopenia/etiology , Superoxide Dismutase-1/drug effects , Animals , Cardiotoxins/toxicity , Collagen Type I/biosynthesis , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/enzymology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Disease Progression , Enzyme Induction/drug effects , Fibrosis , Gene Expression Regulation, Enzymologic , Genetic Predisposition to Disease , Glomerular Mesangium/pathology , Inflammation , Insulin/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiology , Oxidative Stress/drug effects , Superoxide Dismutase-1/biosynthesis , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/physiology , Superoxides/metabolism
16.
Epilepsia ; 62(7): 1604-1616, 2021 07.
Article in English | MEDLINE | ID: mdl-34046890

ABSTRACT

OBJECTIVE: This study was undertaken to determine whether epilepsy and antiepileptic drugs (including enzyme-inducing and non-enzyme-inducing drugs) are associated with major cardiovascular events using population-level, routinely collected data. METHODS: Using anonymized, routinely collected, health care data in Wales, UK, we performed a retrospective matched cohort study (2003-2017) of adults with epilepsy prescribed an antiepileptic drug. Controls were matched with replacement on age, gender, deprivation quintile, and year of entry into the study. Participants were followed to the end of the study for the occurrence of a major cardiovascular event, and survival models were constructed to compare the time to a major cardiovascular event (cardiac arrest, myocardial infarction, stroke, ischemic heart disease, clinically significant arrhythmia, thromboembolism, onset of heart failure, or a cardiovascular death) for individuals in the case group versus the control group. RESULTS: There were 10 241 cases (mean age = 49.6 years, 52.2% male, mean follow-up = 6.1 years) matched to 35 145 controls. A total of 3180 (31.1%) cases received enzyme-inducing antiepileptic drugs, and 7061 (68.9%) received non-enzyme-inducing antiepileptic drugs. Cases had an increased risk of experiencing a major cardiovascular event compared to controls (adjusted hazard ratio = 1.58, 95% confidence interval [CI] = 1.51-1.63, p < .001). There was no notable difference in major cardiovascular events between those treated with enzyme-inducing antiepileptic drugs and those treated with non-enzyme-inducing antiepileptic drugs (adjusted hazard ratio = .95, 95% CI = .86-1.05, p = .300). SIGNIFICANCE: Individuals with epilepsy prescribed antiepileptic drugs are at an increased risk of major cardiovascular events compared with population controls. Being prescribed an enzyme-inducing antiepileptic drug is not associated with a greater risk of a major cardiovascular event compared to treatment with other antiepileptic drugs. Our data emphasize the importance of cardiovascular risk management in the clinical care of people with epilepsy.


Subject(s)
Anticonvulsants/adverse effects , Anticonvulsants/therapeutic use , Cardiovascular Diseases/etiology , Epilepsy/complications , Epilepsy/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Cardiovascular Diseases/epidemiology , Case-Control Studies , Cohort Studies , Enzyme Induction/drug effects , Epilepsy/epidemiology , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Assessment , Risk Factors , Survival Analysis , Treatment Outcome , United Kingdom/epidemiology , Wales , Young Adult
17.
Drug Metab Dispos ; 49(8): 668-678, 2021 08.
Article in English | MEDLINE | ID: mdl-34035124

ABSTRACT

Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and PXR/CAR knockout (KO) HepaRG cells, as well as a PXR reporter gene assay, were used to investigate the mechanism of CYP3A4 and CYP2B6 induction by prototypical substrates and a group of compounds from the Merck KGaA oncology drug discovery pipeline. The basal and inducible gene expression of CYP3A4 and CYP2B6 of nuclear hormone receptor (NHR) KO HepaRG relative to control HepaRG was characterized. The basal expression of CYP3A4 was markedly higher in the PXR (10-fold) and CAR (11-fold) KO cell lines compared with control HepaRG, whereas inducibility was substantially lower. Inversely, basal expression of CYP3A4 in PXR/CAR double KO (dKO) was low (10-fold reduction). Basal CYP2B6 expression was high in PXR KO (9-fold) cells which showed low inducibility, whereas the basal expression remained unchanged in CAR and dKO cell lines compared with control cells. Most of the test compounds induced CYP3A4 and CYP2B6 via PXR and, to a lesser extent, via CAR. Furthermore, other non-NHR-driven induction mechanisms were implicated, either alone or in addition to NHRs. Notably, 5 of the 16 compounds (31%) that were PXR inducers in HepaRG did not activate PXR in the reporter gene assay, illustrating the limitations of this system. This study indicates that HepaRG is a highly sensitive system fit for early screening of cytochrome P450 (P450) induction in drug discovery. Furthermore, it shows the applicability of HepaRG NHR KO cells as tools to deconvolute mechanisms of P450 induction using novel compounds representative for oncology drug discovery. SIGNIFICANCE STATEMENT: This work describes the identification of induction mechanisms of CYP3A4 and CYP2B6 for an assembly of oncology drug candidates using HepaRG nuclear hormone receptor knockout and displays its advantages compared to a pregnane X receptor reporter gene assay. With this study, risk assessment of drug candidates in early drug development can be improved.


Subject(s)
Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP3A/metabolism , Enzyme Induction/drug effects , Hepatobiliary Elimination , Hepatocytes , Pregnane X Receptor/metabolism , Cell Line , Constitutive Androstane Receptor/metabolism , Drug Interactions , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Gene Knockout Techniques/methods , Hepatobiliary Elimination/drug effects , Hepatobiliary Elimination/physiology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Pharmacokinetics , Risk Assessment
18.
Clin Pharmacol Ther ; 110(1): 248-258, 2021 07.
Article in English | MEDLINE | ID: mdl-33792897

ABSTRACT

Liver-derived small extracellular vesicles (sEVs), prepared from small sets of banked serum samples using a novel two-step protocol, were deployed as liquid biopsy to study the induction of cytochromes P450 (CYP3A4, CYP3A5, and CYP2D6) and organic anion transporting polypeptides (OATP1B1 and OATP1B3) during pregnancy (nonpregnant (T0), first, second, and third (T3) trimester women; N = 3 each) and after administration of rifampicin (RIF) to healthy male subjects. Proteomic analysis revealed induction (mean fold-increase, 90% confidence interval) of sEV CYP3A4 after RIF 300 mg × 7 days (3.5, 95% CI = 2.5-4.5, N = 4, P = 0.029) and 600 mg × 14 days (3.7, 95% CI = 2.1-6.0, N = 5, P = 0.018) consistent with the mean oral midazolam area under the plasma concentration time curve (AUC) ratio in the same subjects (0.28, 95% CI = 0.22-0.34, P < 0.0001; and 0.17, 95% CI = 0.13-0.22, P < 0.0001). Compared with CYP3A4, liver sEV CYP3A5 protein (subjects genotyped CYP3A5*1/*3) was weakly induced (≤ 1.5-fold). It was also possible to measure liver sEV-catalyzed dextromethorphan (DEX) O-demethylation to dextrorphan (DXO), correlated with sEV CYP2D6 expression (r = 0.917, P = 0.0001; N = 10) and 3-hour plasma DXO-to-DEX concentration ratio (r = 0.843, P = 0.002, N = 10), and show that CYP2D6 was not induced by RIF. Nonparametric analysis of liver sEV revealed significantly higher CYP3A4 (3.2-fold, P = 0.003) and CYP2D6 (3.7-fold, P = 0.03) protein expression in T3 vs. T0 women. In contrast, expression of both OATPs in liver sEV was unaltered by RIF administration and pregnancy.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Extracellular Vesicles/metabolism , Liver/metabolism , Organic Anion Transporters/metabolism , Adult , Area Under Curve , Cytochrome P-450 Enzyme System/genetics , Dextromethorphan/pharmacokinetics , Enzyme Induction/drug effects , Enzyme Induction/genetics , Female , Genotype , Humans , Liquid Biopsy , Liver/enzymology , Male , Midazolam/pharmacokinetics , Pregnancy , Proteomics , Rifampin/pharmacology , Young Adult
19.
Biochem Biophys Res Commun ; 549: 34-39, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33662666

ABSTRACT

Systemic sclerosis (SSc) is an inflammatory fibrotic disease characterized by an excessive extracellular matrix deposition in the skin and internal organs. One fibrotic key event remains the fibroblast-to-myofibroblast differentiation that is controlled by a combination of mechanical and soluble factors, such as transforming growth factor-ß1 (TGF-ß1) and interleukin-1ß (IL-1ß). One important myofibroblast biomarker is human xylosyltransferase-I (XT-I), the initial enzyme in proteoglycan biosynthesis. Increased serum XT activity was quantified in SSc, but the underlying cellular mechanisms remain elusive. This study aims to determine the cellular basis of XT-I induction in SSc by using a myofibroblast cell culture model with SSc fibroblasts (SScF) and healthy control fibroblasts. We found that SScF exhibit a higher extracellular XT-I activity compared to control fibroblasts. This increased XT-I activity in SScF was demonstrated to be mediated by an enhanced autocrine TGF-ß signaling. Upon IL-1ß treatment, SScF showed an increased mRNA expression level of XT-I and TGF-ß receptor II (TGFBR2), while healthy control fibroblasts did not, pointing towards an involvement of IL-1ß in the cytokine-mediated XT-I induction. Performing microRNA (miRNA) inhibition experiments in the presence of TGF-ß1, we showed that the pro-fibrotic effect of IL-1ß may be mediated by a miRNA-21/TGF-ß receptor II axis, enhancing the autocrine TGF-ß signaling in SScF. Taken together, this study improves the mechanistic understanding of fibrotic XT-I induction in SSc by identifying a hitherto unknown IL-1ß-mediated miRNA-21/TGFBR2 regulation contributing to the enhanced XYLT1 expression and XT-I activity in SScF.


Subject(s)
Cytokines/pharmacology , Fibroblasts/enzymology , Fibroblasts/pathology , Pentosyltransferases/biosynthesis , Scleroderma, Systemic/enzymology , Skin/pathology , Enzyme Induction/drug effects , Fibroblasts/drug effects , Humans , Interleukin-1beta/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Pentosyltransferases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Transforming Growth Factor beta1/pharmacology , UDP Xylose-Protein Xylosyltransferase
20.
Inflammation ; 44(4): 1620-1628, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33751358

ABSTRACT

The currently used anti-cytokine therapeutic antibodies cannot selectively neutralize pathogenic cytokine signalling that cause collateral damage to protective signalling cascades. The single domain chain firstly discovered in Camelidae displays fully functional ability in antigen-binding against variable targets, which has been seemed as attractive candidates for the next-generation biologic drug study. In this study, we established a simple prokaryotic expression system for a dual target-directed single domain-based fusion protein against the interleukin-6 receptor and human serum, albumin, the recombinant anti-IL-6R fusion protein (VHH-0031). VHH-0031 exhibited potent anti-inflammatory effects produced by LPS on cell RAW264.7, where the major cytokines and NO production were downregulated after 24 h incubation with VHH-0031 in a dose-dependent manner. In vivo, VHH-0031 presented significant effects on the degree reduction of joint swelling in the adjuvant-induced arthritis (AIA) rat, having a healthier appearance compared with the dexamethasone. The expression level of JNK protein in the VHH-0031 group was significantly decreased, demonstrating that VHH-0031 provides a low-cost and desirable effect in the treatment of more widely patients.


Subject(s)
Anti-Inflammatory Agents/immunology , Arthritis, Experimental/drug therapy , Interleukin-6/antagonists & inhibitors , Serum Albumin, Human/antagonists & inhibitors , Single-Domain Antibodies/immunology , Animals , Anti-Inflammatory Agents/therapeutic use , Antibody Specificity , Arthritis, Experimental/immunology , Cytokines/metabolism , DNA, Complementary/genetics , Dexamethasone/therapeutic use , Drug Evaluation, Preclinical , Enzyme Induction/drug effects , Humans , Interleukin-6/immunology , Lipopolysaccharides/toxicity , MAP Kinase Kinase 4/biosynthesis , MAP Kinase Kinase 4/genetics , Mice , Models, Molecular , Molecular Targeted Therapy , Nitric Oxide/metabolism , Protein Conformation , RAW 264.7 Cells , Random Allocation , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Serum Albumin, Human/immunology , Single-Domain Antibodies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...