Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(49): 31157-31165, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229577

ABSTRACT

We combine proximity labeling and single molecule binding assays to discover transmembrane protein interactions in cells. We first screen for candidate binding partners by tagging the extracellular and cytoplasmic regions of a "bait" protein with BioID biotin ligase and identify proximal proteins that are biotin tagged on both their extracellular and intracellular regions. We then test direct binding interactions between proximal proteins and the bait, using single molecule atomic force microscope binding assays. Using this approach, we identify binding partners for the extracellular region of E-cadherin, an essential cell-cell adhesion protein. We show that the desmosomal proteins desmoglein-2 and desmocollin-3, the focal adhesion protein integrin-α2ß1, the receptor tyrosine kinase ligand ephrin-B1, and the classical cadherin P-cadherin, all directly interact with E-cadherin ectodomains. Our data shows that combining extracellular and cytoplasmic proximal tagging with a biophysical binding assay increases the precision with which transmembrane ectodomain interactors can be identified.


Subject(s)
Cadherins/genetics , Ephrin-B1/genetics , Protein Binding/genetics , Protein Interaction Maps/genetics , Cadherins/ultrastructure , Cell Adhesion/genetics , Cytoplasm/genetics , Cytoplasm/ultrastructure , Desmocollins , Desmoglein 2/genetics , Desmoglein 2/ultrastructure , Desmoplakins/genetics , Desmoplakins/ultrastructure , Desmosomes/genetics , Desmosomes/ultrastructure , Ephrin-B1/ultrastructure , Humans , Integrins/genetics , Integrins/ultrastructure , Microscopy, Atomic Force , Protein Domains/genetics , Single Molecule Imaging
2.
Nat Protoc ; 14(2): 616-638, 2019 02.
Article in English | MEDLINE | ID: mdl-30675035

ABSTRACT

Protein dimerization and oligomerization are essential to most cellular functions, yet measurement of the size of these oligomers in live cells, especially when their size changes over time and space, remains a challenge. A commonly used approach for studying protein aggregates in cells is number and brightness (N&B), a fluorescence microscopy method that is capable of measuring the apparent average number of molecules and their oligomerization (brightness) in each pixel from a series of fluorescence microscopy images. We have recently expanded this approach in order to allow resampling of the raw data to resolve the statistical weighting of coexisting species within each pixel. This feature makes enhanced N&B (eN&B) optimal for capturing the temporal aspects of protein oligomerization when a distribution of oligomers shifts toward a larger central size over time. In this protocol, we demonstrate the application of eN&B by quantifying receptor clustering dynamics using electron-multiplying charge-coupled device (EMCCD)-based total internal reflection microscopy (TIRF) imaging. TIRF provides a superior signal-to-noise ratio, but we also provide guidelines for implementing eN&B in confocal microscopes. For each time point, eN&B requires the acquisition of 200 frames, and it takes a few seconds up to 2 min to complete a single time point. We provide an eN&B (and standard N&B) MATLAB software package amenable to any standard confocal or TIRF microscope. The software requires a high-RAM computer (64 Gb) to run and includes a photobleaching detrending algorithm, which allows extension of the live imaging for more than an hour.


Subject(s)
Ephrin-B1/ultrastructure , Image Processing, Computer-Assisted/statistics & numerical data , Microscopy, Fluorescence/methods , Recombinant Fusion Proteins/ultrastructure , Software , Ephrin-B1/genetics , Ephrin-B1/metabolism , Fluorescence Recovery After Photobleaching , Fluorescence Resonance Energy Transfer , Gene Expression , HEK293 Cells , Humans , Microscopy, Confocal/methods , Protein Aggregates , Protein Multimerization , Receptor, EphB2/genetics , Receptor, EphB2/metabolism , Receptor, EphB2/ultrastructure , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...