Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mycologia ; 109(1): 153-161, 2017.
Article in English | MEDLINE | ID: mdl-28402784

ABSTRACT

Asexual cool-season grass endophytes of the genus Epichloë (Ascomycota: Clavicipitaceae) are strictly vertically disseminated. The hosts of these mutualistic fungi express no symptoms during the fungal lifecycle that takes place entirely within the plant, while their hosts receive beneficial outcomes. These fungi are distributed in two major locations within the mature seeds of their hosts; namely, within the embryo (including the scutellum, coleoptile, plumule, radicle, and coleorhiza tissues) and between the aleurone and pericarp layers, with the latter hyphae playing no role in transmission of the fungus to the next plant generation. Conflicting evidence remains in the literature on the timing of embryo colonization. In a detailed investigation, utilizing confocal microscopy to observe the distribution of Epichloë coenophiala strain AR601 in tall fescue (Lolium arundinaceum), we tracked endophyte hyphal colonization in the ovary (pre-fertilization) through to the fully mature seed stage. Confocal microscopy images revealed that at the early and mature developmental stages of the embryo sac, before host grass fertilization, there were large quantities of endophyte mycelium present, especially around the antipodal cells, indicating that this endophyte enters the embryo sac before the fertilization stage. After host fertilization, fungal hyphae could be seen in the true embryo and early nonstarchy endosperm. Understanding the mechanisms of transmission to the seed is important for commercial seed producers and end users.


Subject(s)
Endophytes/growth & development , Epichloe/growth & development , Festuca/microbiology , Symbiosis , Endophytes/cytology , Epichloe/cytology , Microscopy, Confocal , Mycelium/cytology , Mycelium/growth & development , Seeds/microbiology
2.
Mycologia ; 109(5): 691-700, 2017.
Article in English | MEDLINE | ID: mdl-29293414

ABSTRACT

Many symbiotic Epichloë species are seed-transmitted in their grass hosts. For a detailed investigation of Epichloë festucae colonization throughout the life cycle of its host, the authors transformed strain Fl1 with a fungal-active gene for enhanced cyan-fluorescent protein (eCFP), introduced it into perennial ryegrass (Lolium perenne), and used confocal microscopy to track its growth in the shoot apex, floral primordium, floral organs, seeds, and seedlings. Hyphae intercellularly colonized leaf sheaths, blades, true stems, and leaf primordia, and among floral primordia the endophyte exhibited different levels of colonization. In preanthesis florets, E. festucae colonized the pistil and stamen, but not pollen grains, and ramified throughout the ovule nucellus, but not the integument or embryo sac. Generally, only a single hypha was observed extended from the ovary placenta into the ovule. Within 4 d after anthesis, fungal hyphae had ramified throughout the developing seed and embryo. As the embryo matured, fungal hyphae became abundant between the testa and aleurone layer, and around the shoot apex and radical of the embryonic axis. During germination, hyphae accumulated in the mesocotyl and invaded the newly formed shoot apex near the meristem. In this host-fungus symbiosis, transmission to seedlings averaged 41% in 2010 and 76% in 2011. Each year, the frequency of ovary infection was similar to the frequency of infecting embryos and seedlings, indicating that colonization of the ovary and embryo was required for seed transmission.


Subject(s)
Endophytes/growth & development , Epichloe/growth & development , Lolium/microbiology , Endophytes/cytology , Epichloe/cytology , Flowers/microbiology , Microscopy , Seedlings/microbiology , Seeds/microbiology
3.
Mol Plant Pathol ; 17(9): 1480-1492, 2016 12.
Article in English | MEDLINE | ID: mdl-27277141

ABSTRACT

In both Sordaria macrospora and Neurospora crassa, components of the conserved STRIPAK (striatin-interacting phosphatase and kinase) complex regulate cell-cell fusion, hyphal network development and fruiting body formation. Interestingly, a number of Epichloë festucae genes that are required for hyphal cell-cell fusion, such as noxA, noxR, proA, mpkA and mkkA, are also required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. To determine whether MobC, a homologue of the STRIPAK complex component MOB3 in S. macrospora and N. crassa, is required for E. festucae hyphal fusion and symbiosis, a mobC deletion strain was generated. The ΔmobC mutant showed reduced rates of hyphal cell-cell fusion, formed intrahyphal hyphae and exhibited enhanced conidiation. Plants infected with ΔmobC were severely stunted. Hyphae of ΔmobC showed a proliferative pattern of growth within the leaves of Lolium perenne with increased colonization of the intercellular spaces and vascular bundles. Although hyphae were still able to form expressoria, structures allowing the colonization of the leaf surface, the frequency of formation was significantly reduced. Collectively, these results show that the STRIPAK component MobC is required for the establishment of a mutualistic symbiotic association between E. festucae and L. perenne, and plays an accessory role in the regulation of hyphal cell-cell fusion and expressorium development in E. festucae.


Subject(s)
Epichloe/metabolism , Fungal Proteins/metabolism , Lolium/microbiology , Multiprotein Complexes/metabolism , Sequence Homology, Amino Acid , Symbiosis/physiology , Cell Fusion , Epichloe/cytology , Host-Pathogen Interactions , Hyphae/cytology , Lolium/ultrastructure , Mutation/genetics , Phenotype , Plant Stems/ultrastructure
4.
Fungal Genet Biol ; 85: 25-37, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26529380

ABSTRACT

In order to survive and adapt to the environment, it is imperative for fungi to be able to sense and respond to changes in extracellular pH conditions. In ascomycetes, sensing of extracellular pH is mediated by the Pal pathway resulting in activation of the PacC transcription factor at alkaline pH. The role of PacC in regulating fungal virulence and pathogenicity has been described in several pathogenic fungi but to date not in a symbiotic fungus. Epichloë festucae is a biotrophic fungal endophyte that forms a stable mutualistic interaction with Lolium perenne. In this study, pacC deletion (ΔpacC) and dominant active (pacC(C)) mutants were generated in order to study the cellular roles of PacC in E. festucae. Deletion of pacC resulted in increased sensitivity of the mutant to salt-stress but surprisingly did not affect the ability of the mutant to grow under alkaline pH conditions. Alkaline pH was observed to induce conidiation in wild-type E. festucae but not in the ΔpacC mutant. On the other hand the pacC(C) mutant had increased conidiation at neutral pH alone. Null pacC mutants had no effect on the symbiotic interaction with ryegrass plants whereas the pacC(C) mutant increased the tiller number. Examination of the growth of the pacC(C) mutant in the plant revealed the formation of aberrant convoluted hyphal structures and an increase in hyphal breakage, which are possible reasons for the altered host interaction phenotype.


Subject(s)
Epichloe/genetics , Gene Expression Regulation, Fungal , Lolium/microbiology , Transcription Factors/genetics , Epichloe/cytology , Epichloe/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Hyphae , Phenotype , Stress, Physiological , Symbiosis , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...