Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.159
Filter
1.
J Nanobiotechnology ; 22(1): 312, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840221

ABSTRACT

Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cadherins , Endocytosis , Epidermis , Mechanistic Target of Rapamycin Complex 1 , Zinc Oxide , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Endocytosis/drug effects , Mice , Cadherins/metabolism , Epidermis/metabolism , Epidermis/drug effects , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Desmosomes/metabolism , Nanoparticles/chemistry , Stress, Mechanical
2.
J Drugs Dermatol ; 23(6): 466-471, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38834224

ABSTRACT

Xerosis is experienced by almost everyone at some time in their lives and the foundation of management of dry skin (both consumer- and healthcare professional--directed) rests on the use of moisturizers. Given the wide range of available moisturizers, counseling patients about selecting the optimum moisturizer for their individual situation relies on knowledge of ingredients and formulations. Traditionally, the main focus for many moisturizers centered on the core functional and structural role of ceramides within the epidermal barrier.  However, while a key aspect of transepidermal water loss and other skin barrier functions, components other than ceramides are equally essential in increasing moisturization. The skin's natural moisturizing factors (NMFs) are a complex mixture of water-attracting compounds such as amino acids, urea, lactate, pyrrolidone carboxylic acid (PCA), and electrolytes which play a fundamental role in preserving physiologic function by regulating the water content of the stratum corneum. By facilitating water retention, NMFs contribute significantly to the suppleness, elasticity, normal desquamation, and overall integrity of the skin barrier. Incorporation of NMFs into moisturizers addresses critical deficiencies in the skin's moisture balance that exist in xerotic and atopic skin, and in many skin disorders, mitigating signs and symptoms associated with xerosis and promoting optimal skin health. The biochemical composition of NMFs and the intricate interplay with epidermal homeostasis translate to a central role in moisturizers used for prophylactic and therapeutic management of various dry skin conditions, beyond ceramides alone. J Drugs Dermatol. 2024;23(6):466-471.     doi:10.36849/JDD.8358.


Subject(s)
Ceramides , Emollients , Water Loss, Insensible , Humans , Ceramides/administration & dosage , Water Loss, Insensible/drug effects , Emollients/administration & dosage , Skin Cream/administration & dosage , Administration, Cutaneous , Epidermis/drug effects , Epidermis/metabolism , Epidermis/physiology , Urea/administration & dosage
3.
Cells ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38727296

ABSTRACT

Derangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.


Subject(s)
Cytokines , Janus Kinases , Lipid Metabolism , STAT Transcription Factors , Th2 Cells , Humans , Th2 Cells/metabolism , Th2 Cells/drug effects , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Cytokines/metabolism , Lipid Metabolism/drug effects , Epidermis/metabolism , Epidermis/drug effects , Signal Transduction/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , Janus Kinase Inhibitors/pharmacology , Interleukin-4/metabolism , Fatty Acids/metabolism
4.
Lipids Health Dis ; 23(1): 138, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734619

ABSTRACT

BACKGROUND: Skin barrier alterations play a crucial function in melasma development. Past researches have demonstrated variations in lipid content between the epidermis of melasma lesions and normal tissues, along with the varied expression of lipid-related genes in melasma. This study aimed to analyze the lipidome profiles of skin surface lipids (SSL) in patients with melasma before and after treatment to understand associated abnormalities. METHODS: Melasma was treated with tranexamic acid orally and hydroquinone cream topically. Disease was assessed using the Melasma Area and Severity Index (MASI), and the impact to life was evaluated with Melasma Quality of Life (MELASQoL) score. Epidermal melanin particles were observed using reflection confocal microscopy (RCM), whereas epidermal pigment and blood vessel morphology were observed using dermoscopy, and SSL samples were collected. Specific information regarding alterations in lipid composition was obtained through multivariate analysis of the liquid chromatography-mass spectrometry data. RESULTS: After treatment, patients with melasma exhibited decreased MASI and MELASQoL scores (P < 0.001); RCM revealed reduced melanin content in the lesions, and dermoscopy revealed fewer blood vessels. Fifteen lipid subclasses and 382 lipid molecules were identified using lipidomic assays. The expression levels of total lipids, phosphatidylcholine, and phosphatidylethanolamine in the melasma lesions decreased after treatment (P < 0.05). CONCLUSION: This study revealed alterations in the SSL composition after effective melasma treatment, suggesting a compensatory role for lipids in melasma barrier function. The mechanism involving SSL and the lipid barrier, which influences melasma's occurrence, needs further elucidation.


Subject(s)
Hydroquinones , Lipidomics , Melanosis , Quality of Life , Humans , Melanosis/drug therapy , Female , Adult , Hydroquinones/therapeutic use , Hydroquinones/administration & dosage , Tranexamic Acid/therapeutic use , Middle Aged , Melanins/metabolism , Male , Lipids/blood , Lipids/analysis , Epidermis/metabolism , Epidermis/drug effects , Epidermis/pathology , Phosphatidylethanolamines/metabolism , Phosphatidylcholines/metabolism , Skin/pathology , Skin/drug effects , Skin/metabolism , Lipid Metabolism/drug effects
5.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791225

ABSTRACT

Epidermal melanin synthesis determines an individual's skin color. In humans, melanin is formed by melanocytes within the epidermis. The process of melanin synthesis strongly depends on a range of cellular factors, including the fine-tuned interplay with reactive oxygen species (ROS). In this context, a role of cold atmospheric plasma (CAP) on melanin synthesis was proposed due to its tunable ROS generation. Herein, the argon-driven plasma jet kINPen® MED was employed, and its impact on melanin synthesis was evaluated by comparison with known stimulants such as the phosphodiesterase inhibitor IBMX and UV radiation. Different available model systems were employed, and the melanin content of both cultured human melanocytes (in vitro) and full-thickness human skin biopsies (in situ) were analyzed. A histochemical method detected melanin in skin tissue. Cellular melanin was measured by NIR autofluorescence using flow cytometry, and a highly sensitive HPLC-MS method was applied, which enabled the differentiation of eu- and pheomelanin by their degradation products. The melanin content in full-thickness human skin biopsies increased after repeated CAP exposure, while there were only minor effects in cultured melanocytes compared to UV radiation and IBMX treatment. Based on these findings, CAP does not appear to be a useful option for treating skin pigmentation disorders. On the other hand, the risk of hyperpigmentation as an adverse effect of CAP application for wound healing or other dermatological diseases seems to be neglectable.


Subject(s)
Epidermis , Melanins , Melanocytes , Plasma Gases , Humans , Melanins/metabolism , Melanins/biosynthesis , Melanocytes/metabolism , Melanocytes/drug effects , Plasma Gases/pharmacology , Epidermis/metabolism , Epidermis/drug effects , Epidermis/radiation effects , Ultraviolet Rays , Skin Pigmentation/drug effects , Skin Pigmentation/radiation effects , Cells, Cultured , Reactive Oxygen Species/metabolism , Biopsy , Melanogenesis
6.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732212

ABSTRACT

The skin wound healing process consists of hemostatic, inflammatory, proliferative, and maturation phases, with a complex cellular response by multiple cell types in the epidermis, dermis, and immune system. Magnesium is a mineral essential for life, and although magnesium treatment promotes cutaneous wound healing, the molecular mechanism and timing of action of the healing process are unknown. This study, using human epidermal-derived HaCaT cells and human normal epidermal keratinocyte cells, was performed to investigate the mechanism involved in the effect of magnesium on wound healing. The expression levels of epidermal differentiation-promoting factors were reduced by MgCl2, suggesting an inhibitory effect on epidermal differentiation in the remodeling stage of the late wound healing process. On the other hand, MgCl2 treatment increased the expression of matrix metalloproteinase-7 (MMP7), a cell migration-promoting factor, and enhanced cell migration via the MEK/ERK pathway activation. The enhancement of cell migration by MgCl2 was inhibited by MMP7 knockdown, suggesting that MgCl2 enhances cell migration which is mediated by increased MMP7 expression. Our results revealed that MgCl2 inhibits epidermal differentiation but promotes cell migration, suggesting that applying magnesium to the early wound healing process could be beneficial.


Subject(s)
Cell Differentiation , Cell Movement , Keratinocytes , Magnesium , Matrix Metalloproteinase 7 , Wound Healing , Wound Healing/drug effects , Humans , Cell Movement/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Differentiation/drug effects , Magnesium/pharmacology , Magnesium/metabolism , Matrix Metalloproteinase 7/metabolism , Matrix Metalloproteinase 7/genetics , Skin/metabolism , Skin/drug effects , Skin/injuries , MAP Kinase Signaling System/drug effects , Cell Line , Epidermis/drug effects , Epidermis/metabolism , Magnesium Chloride/pharmacology
7.
Arch Dermatol Res ; 316(6): 233, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795205

ABSTRACT

Immune checkpoint inhibitor (ICI) therapies carry the risk of major immune-related adverse events (irAEs). Among the most severe irAEs is epidermal necrosis that may clinically mimic Stevens-Johnson syndrome (SJS) and toxic epidermal necrosis (TEN). The aim of this study was to provide a summary of the clinical and histological features of ICI-associated epidermal necrosis, with a special focus on factors associated with fatal outcomes in cases of extensive disease. A total of 98 cases, 2 new cases and 96 reported on PubMed and in the literature, of ICI-associated epidermal necrosis were assessed. Development of epidermal necrosis occurred between 1 day and 3 years after starting ICI therapy, with an average onset of 13.8 weeks for patients with limited (< 30% BSA) and 11.3 weeks for those with extensive (≥ 30% BSA) involvement, and a median onset of 5.8 weeks and 4 weeks respectively. A preceding rash was seen in 52 cases and was more common in extensive cases. Mucosal involvement was only reported in 65% of extensive cases but was significantly associated with fatal reactions. Co-administration of cytotoxic chemotherapy was associated with more extensive disease. Recovery was observed in 96% and 65% of those with limited and extensive involvement respectively and no specific therapy was associated with improved survival. Young age was significantly associated with poor outcomes in extensive disease, the average age of surviving patients was 64.5 years old versus 55.1 years old for deceased patients, p < 0.01. Both superficial perivascular and interface/lichenoid inflammatory infiltrates were commonly seen. These findings suggest that ICI-associated epidermal necrosis should be considered a distinct clinical entity from drug-induced SJS/TEN.


Subject(s)
Immune Checkpoint Inhibitors , Necrosis , Stevens-Johnson Syndrome , Humans , Immune Checkpoint Inhibitors/adverse effects , Stevens-Johnson Syndrome/pathology , Stevens-Johnson Syndrome/etiology , Stevens-Johnson Syndrome/immunology , Stevens-Johnson Syndrome/diagnosis , Necrosis/chemically induced , Epidermis/pathology , Epidermis/drug effects , Epidermis/immunology , Middle Aged , Female , Male , Aged , Adult
8.
PLoS One ; 19(5): e0302781, 2024.
Article in English | MEDLINE | ID: mdl-38713650

ABSTRACT

Atopic dermatitis is a multi-pathogenic disease characterized by chronic skin inflammation and barrier dysfunction. Therefore, improving the skin's ability to form an epidermal barrier and suppressing the production of cytokines that induce type 2 inflammatory responses are important for controlling atopic dermatitis symptoms. (-)-Blebbistatin, a non-muscle myosin II inhibitor, has been suggested to improve pulmonary endothelial barrier function and control inflammation by suppressing immune cell migration; however, its efficacy in atopic dermatitis is unknown. In this study, we investigated whether (S)-(-)-blebbistatin O-benzoate, a derivative of (-)-blebbistatin, improves dermatitis symptoms in a mite antigen-induced atopic dermatitis model using NC/Nga mice. The efficacy of the compound was confirmed using dermatitis scores, ear thickness measurements, serum IgE levels, histological analysis of lesions, and filaggrin expression analysis, which is important for barrier function. (S)-(-)-Blebbistatin O-benzoate treatment significantly reduced the dermatitis score and serum IgE levels compared to those in the vehicle group (p < 0.05). Furthermore, the histological analysis revealed enhanced filaggrin production and a decreased number of mast cells (p < 0.05), indicating that (S)-(-)-blebbistatin O-benzoate improved atopic dermatitis symptoms in a pathological model. In vitro analysis using cultured keratinocytes revealed increased expression of filaggrin, loricrin, involucrin, and ceramide production pathway-related genes, suggesting that (S)-(-)-blebbistatin O-benzoate promotes epidermal barrier formation. Furthermore, the effect of (S)-(-)-blebbistatin O-benzoate on type 2 alarmin cytokines, which are secreted from epidermal cells upon scratching or allergen stimulation and are involved in the pathogenesis of atopic dermatitis, was evaluated using antigens derived from mite feces. The results showed that (S)-(-)-blebbistatin O-benzoate inhibited the upregulation of these cytokines. Based on the above, (S)-(-)-blebbistatin O-benzoate has the potential to be developed as an atopic dermatitis treatment option that controls dermatitis symptoms by suppressing inflammation and improving barrier function by acting on multiple aspects of the pathogenesis of atopic dermatitis.


Subject(s)
Benzoates , Cytokines , Dermatitis, Atopic , Epidermis , Filaggrin Proteins , Heterocyclic Compounds, 4 or More Rings , Animals , Humans , Male , Mice , Antigens, Dermatophagoides/immunology , Benzoates/pharmacology , Benzoates/therapeutic use , Cytokines/metabolism , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/metabolism , Disease Models, Animal , Epidermis/drug effects , Epidermis/metabolism , Epidermis/pathology , Filaggrin Proteins/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Immunoglobulin E/blood , Intermediate Filament Proteins/metabolism , Intermediate Filament Proteins/genetics , Keratinocytes/drug effects , Keratinocytes/metabolism , Alarmins/drug effects
9.
Toxicol In Vitro ; 98: 105851, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789065

ABSTRACT

After EU ban on animal testing for cosmetics in 2013, there has been an increasing global interest in alternatives test methods. To development for alternatives test method, we need to get the toxic data about in vitro and in vivo of chemicals. However, database sometimes provide limited in vivo and in vitro data on chemicals. Further, the data generated using the OECD TG439 (in vitro skin irritation) are scattered in difference databases, and it is not easy to navigate through them. Therefore, we complied 'Reference Chemical Database System for Skin Irritation Alternative Test (RCDS-Skin Irritation)' to allow easy, one-stop access to test chemical information. We established the systematic RCDS-Skin Irritation by collecting physiochemical properties, CAS number, human data, and in vivo (OECD TG404) data from overseas chemicals database including European Chemicals Agency (ECHA) etc., and in vitro data using Reconstructed human Epidermis (RhE) (OECD TG439). As a result, we developed the RCDS-Skin Irritation that contains information on 149 chemicals including the data we generated by performing tests using EpiDerm™ SIT, SkinEthic™ RHE and KeraSkin™ SIT. Therefore, the RCDS-Skin Irritation established based on our study will provide insight for safety assessment of chemicals and for development of alternative test methods.


Subject(s)
Animal Testing Alternatives , Irritants , Skin Irritancy Tests , Humans , Irritants/toxicity , Skin Irritancy Tests/methods , Databases, Factual , Epidermis/drug effects , Databases, Chemical , Skin/drug effects
10.
Biochem Biophys Res Commun ; 720: 150077, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759303

ABSTRACT

Hericenone C is one of the most abundant secondary metabolites derived from Hericium erinaceus, under investigation for medicinal properties. Here, we report that Hericenone C inhibits the second phase of formalin-induced nociceptive behavior in mice. As the second phase is involved in inflammation, in a mechanistic analysis on cultured cells targeting NF-κB response element (NRE): luciferase (Luc)-expressing cells, lipopolysaccharide (LPS)-induced NRE::Luc luciferase activity was found to be significantly inhibited by Hericenone C. Phosphorylation of p65, which is involved in the inflammatory responses of the NF-κB signaling pathway, was also induced by LPS and significantly reduced by Hericenone C. Additionally, in mice, the number of CD11c-positive cells increased in the paw during the peak of the second phase of the formalin test, which decreased upon Hericenone C intake. Our findings confirm the possibility of Hericenone C as a novel therapeutic target for pain-associated inflammation.


Subject(s)
Epidermis , Formaldehyde , Animals , Phosphorylation/drug effects , Mice , Male , Epidermis/metabolism , Epidermis/drug effects , Transcription Factor RelA/metabolism , CD11 Antigens/metabolism , Nociception/drug effects , Humans
11.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674064

ABSTRACT

Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.


Subject(s)
Iridoid Glucosides , Melanins , Melanocytes , Olea , Phenols , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Olea/chemistry , Animals , Melanins/biosynthesis , Melanins/metabolism , Mice , Phenols/pharmacology , Iridoid Glucosides/pharmacology , Iridoids/pharmacology , Aldehydes/pharmacology , Cell Differentiation/drug effects , Cyclopentane Monoterpenes , Epidermal Cells/metabolism , Epidermal Cells/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Epidermis/metabolism , Epidermis/drug effects , Cell Line, Tumor , Plant Leaves/chemistry , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Melanogenesis
12.
J Ethnopharmacol ; 330: 118194, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641077

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Prinsepia utilis Royle, native to the Himalayan region, has a long history of use in traditional medicine for its heat-clearing, detoxification, anti-inflammatory, and analgesic properties. Oils extracted from P. utilis seeds are also used in cooking and cosmetics. With the increasing market demand, this extraction process generates substantial industrial biowastes. Recent studies have found many health benefits with using aqueous extracts of these biowastes, which are also rich in polysaccharides. However, there is limited research related to the reparative effects of the water extracts of P. utilis oil cakes (WEPUOC) on disruptions of the skin barrier function. AIM OF THE STUDY: This study aimed to evaluate the reparative efficacy of WEPUOC in both acute and chronic epidermal permeability barrier disruptions. Furthermore, the study sought to explore the underlying mechanisms involved in repairing the epidermal permeability barrier. MATERIALS AND METHODS: Mouse models with induced epidermal disruptions, employing tape-stripping (TS) and acetone wiping (AC) methods, were used. The subsequent application of WEPUOC (100 mg/mL) was evaluated through various assessments, with a focus on the upregulation of mRNA and protein expression of Corneocyte Envelope (CE) related proteins, lipid synthase-associated proteins, and tight junction proteins. RESULTS: The polysaccharide was the major phytochemicals of WEPUOC and its content was determined as 32.2% by the anthranone-sulfuric acid colorimetric method. WEPUOC significantly reduced transepidermal water loss (TEWL) and improved the damaged epidermal barrier in the model group. Mechanistically, these effects were associated with heightened expression levels of key proteins such as FLG (filaggrin), INV (involucrin), LOR (loricrin), SPT, FASN, HMGCR, Claudins-1, Claudins-5, and ZO-1. CONCLUSIONS: WEPUOC, obtained from the oil cakes of P. utilis, is rich in polysaccharides and exhibits pronounced efficacy in repairing disrupted epidermal barriers through increased expression of critical proteins involved in barrier integrity. Our findings underscore the potential of P. utilis wastes in developing natural cosmetic prototypes for the treatment of diseases characterized by damaged skin barriers, including atopic dermatitis and psoriasis.


Subject(s)
Epidermis , Plant Extracts , Tight Junction Proteins , Up-Regulation , Animals , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tight Junction Proteins/metabolism , Epidermis/drug effects , Epidermis/metabolism , Up-Regulation/drug effects , Water/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Male , Fatty Acid Synthases/metabolism , Fatty Acid Synthases/genetics , Permeability/drug effects
13.
Food Chem Toxicol ; 188: 114698, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679282

ABSTRACT

Phototoxicity is an acute toxic reaction induced by topical skin exposure to photoreactive chemicals followed by exposure to environmental light and thus chemicals that absorb UV are recommended to be evaluated for phototoxic potential. There are currently three internationally harmonized alternative test methods for phototoxicity. One of them is the in vitro Phototoxicity: RhE Phototoxicity test method (OECD TG498). Korean center for the Validation of Alternative Methods (KoCVAM) developed an in vitro phototoxicity test method using a KeraSkin™ reconstructed human epidermis model (KeraSkin™ Phototoxicity Assay) as a 'me-too' test method of OECD TG498. For the development and optimization of KeraSkin™ Phototoxicity Assay, the following test chemicals were used: 6 proficiency chemicals in OECD TG498 (3 phototoxic and 3 non-phototoxic), 6 reference chemicals in OECD Performance Standard No. 356 (excluding the proficiency test chemicals, 3 phototoxic and 3 non-phototoxic) and 13 additional chemicals (7 phototoxic and 6 non-phototoxic). Based on the test results generated from the test chemicals above, the overall predictive capacity of KeraSkin™ Phototoxicity Assay was calculated. In particular, the assay exhibited 100 % accuracy, 100 % sensitivity, and 100 % specificity. Therefore, it fulfills the requirements to be included as a 'me-too' test method in OECD TG498.


Subject(s)
Dermatitis, Phototoxic , Epidermis , Humans , Epidermis/drug effects , Epidermis/radiation effects , Animal Testing Alternatives/methods , Ultraviolet Rays , Toxicity Tests/methods , Models, Biological
14.
Toxicol In Vitro ; 98: 105816, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604524

ABSTRACT

Skin corrosion testing is integral to evaluating the potential harm posed by chemicals, impacting regulatory decisions on safety, transportation, and labeling. Traditional animal testing methods are giving way to in vitro alternatives, such as reconstructed human epidermis (RhE) models, aligning with evolving ethical standards. This study evaluates the QileX-RhE test system's performance for chemical subcategorization within the OECD TG 431 framework. Results demonstrate its ability to differentiate subcategories, accurately predicting 83% of UN GHS Category 1A and 73% of UN GHS Category 1B/1C chemicals with 100% sensitivity in corrosive prediction. Additionally, this study provides a comprehensive assessment of the test method's performance by employing nuanced parameters such as positive predictive value (PPV), negative predictive value (NPV), post-test odds and likelihood rations, offering valuable insights into the applicability and effectiveness of the QileX-RhE test method.


Subject(s)
Animal Testing Alternatives , Organisation for Economic Co-Operation and Development , Humans , Skin Irritancy Tests/methods , Caustics/toxicity , Epidermis/drug effects
15.
J Cosmet Dermatol ; 23(5): 1884-1890, 2024 May.
Article in English | MEDLINE | ID: mdl-38444348

ABSTRACT

BACKGROUND: There is a growing trend of individuals wearing cosmetics while participating in physical activities. Nonetheless, there remains a need for further understanding regarding the effects of makeup on the facial epidermis during exercise, given the existing knowledge gaps. PURPOSE: This study aimed to evaluate the effects of a cosmetic foundation cream on skin conditions during physical activity. METHODS: Forty-three healthy college students, 20 males (26.3 ± 1.5 years) and 23 females (23.1 ± 1.0 years), were enrolled in this study. Foundation cream was applied to participants on half of the face in two different areas (MT: makeup T zone and MU: makeup U zone). The other half of the face served as internal control (T: non-makeup T zone and U: non-makeup U zones). Skin levels of moisture, elasticity, pore, sebum, and oil were measured using a skin analysis device (Aramhuvis, Gyeonggi, Republic of Korea) before and after a 20-min treadmill exercise. Paired t-test and independent t-test were performed for skin condition measurements at pre- and postexercise. RESULTS: The skin moisture levels in both the T and MT significantly increased after exercise (p < 0.05) (pre-T: 24.5 ± 1.3, post-T: 38.5 ± 3.5 and pre-MT: 18.7 ± 0.7, post-MT: 40.4 ± 4.8). Elasticity also significantly improved in both the T and MT (p < 0.05) (pre-T: 25.6 ± 1.3, post-T: 41.5 ± 3.5 and pre-MT: 20.0 ± 0.9, post-MT: 41.7 ± 3.7). The size of the pores in the T zone observed a significant increase after exercise (p < 0.05) (pre-T: 41.7 ± 2.1, post-T: 47.8 ± 2.4). The sebum levels in the T zone exhibited a reduction following physical activity, whereas there was a notable increase in sebum levels in the makeup zones (p < 0.05) (pre-MT: 2.4 ± 0.7, post-MT:4.2 ± 0.8 and pre MU 1.8 ± 0.34, post MU 4.9 ± 0.9). The oil level was increased in the non-makeup zones (pre-T: 6.1 ± 1.4, post-T: 11.8 ± 2.0 and pre-U: 7.3 ± 1.5, post-U: 11.9 ± 1.9; p < 0.05) and decreased in the makeup zones (pre-MT: 13.3 ± 1.9, post-MT: 7.4 ± 2.3 and pre-MU: 22.1 ± 2.4, post-MU: 3.2 ± 1.0; p < 0.05). CONCLUSIONS: The findings suggest that using foundation cream during aerobic exercise can reduce skin oil, causing dryness. Additionally, makeup can clog pores and increase sebum production. Therefore, wearing makeup may not be recommended for people with dry skin conditions based on the results of the current study. This research offers important insights to the public, encouraging them to consider the possible consequences of using makeup while exercising.


Subject(s)
Exercise , Skin Cream , Humans , Female , Male , Young Adult , Adult , Exercise/physiology , Skin Cream/administration & dosage , Skin Cream/chemistry , Sebum/metabolism , Elasticity/drug effects , Face , Cosmetics/administration & dosage , Cosmetics/chemistry , Exercise Test , Healthy Volunteers , Skin/drug effects , Skin/metabolism , Skin/chemistry , Epidermis/chemistry , Epidermis/drug effects , Epidermis/physiology , Epidermis/metabolism
16.
J Dermatol Sci ; 114(1): 13-23, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448341

ABSTRACT

BACKGROUND: The aberrant expression of tight junction (TJ) proteins play an important role in several diseases with impaired skin barriers, including atopic dermatitis, psoriasis, and chronic wounds. The evidence provided thus far suggests an important role of calcitriol in skin homeostasis. However, it is not known whether calcitriol improves the impaired skin barrier. OBJECTIVE: To investigate the effect of calcitriol on TJ barrier function in human primary keratinocytes. METHODS: Normal human primary keratinocytes were stimulated with calcitriol, and the expression of TJ-related proteins was measured by real-time PCR and Western blotting. Immunofluorescence was used to examine the intercellular distribution of TJ-related proteins. TJ barrier function was assessed by the transepithelial electrical resistance (TER) assay. RESULTS: We demonstrated that calcitriol increased the expression levels of TJ-related proteins, including claudin-4, claudin-7, occludin, and zonula occludens (ZO)- 1. Calcitriol enhanced the distribution of TJ-related proteins at cellcell borders and induced the phosphorylation of pathways involved in the regulation of TJ barrier function, such as atypical protein kinase C (aPKC), Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt), as evidenced by the effects of specific inhibitors on the above pathways. Indeed, we confirmed that calcitriol enhanced TER in keratinocyte monolayers. CONCLUSION: These findings showed that calcitriol could modify the expression of keratinocyte TJ proteins, contributing to the maintenance of homeostatic barrier function.


Subject(s)
Calcitriol , Epidermis , Keratinocytes , Tight Junctions , Humans , Calcitriol/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Tight Junctions/drug effects , Tight Junctions/metabolism , Cells, Cultured , Epidermis/drug effects , Epidermis/metabolism , Signal Transduction/drug effects , Phosphorylation/drug effects , Occludin/metabolism , Primary Cell Culture , Zonula Occludens-1 Protein/metabolism , Claudins/metabolism , Claudins/genetics , Electric Impedance
17.
Drug Dev Ind Pharm ; 50(5): 410-419, 2024 May.
Article in English | MEDLINE | ID: mdl-38497274

ABSTRACT

OBJECTIVES: To develop and evaluate a novel human stratum corneum (SC) mimetic phospholipid vesicle-based permeation assay (PVPASC) model for in vitro permeation studies. SIGNIFICANCE: Due to the increasing restrictions on the use of human and animal skins, artificial skin models have attracted substantial interest in pharmaceuticals and cosmetic industries. In this study, a modified PVPASC model containing both SC lipids and proteins was developed. METHODS: The PVPASC model was optimized by altering the lipid composition and adding keratin in the formulation of large liposomes. The barrier properties were monitored by measuring the electrical resistance (ER) and permeability of Rhodamine B (RB). The modified PVPASC model was characterized in terms of the surface topography, solvent influence and storage stability. The permeation studies of the active components in Compound Nanxing Zhitong Plaster (CNZP) were performed to examine the capability of PVPASC in the application of skin penetration. RESULTS: The ER and Papp values of RB obtained from the optimized PVPASC model indicated a similar barrier property to porcine ear skin. Scanning electron microscope analysis demonstrated a mimic 'brick-and-mortar' structure. The PVPASC model can be stored for three weeks at -20 °C, and withstand the presence of different receptor medium for 24 h. The permeation studies of the active components demonstrated a good correlation (r2 = 0.9136) of Papp values between the drugs' permeation through the PVPASC model and porcine ear skin. CONCLUSION: Keratin contained composite phospholipid vesicle-based permeation assay models have been proven to be potential skin tools in topical/transdermal permeation studies.


Subject(s)
Permeability , Phospholipids , Skin Absorption , Humans , Phospholipids/chemistry , Skin Absorption/drug effects , Skin Absorption/physiology , Swine , Permeability/drug effects , Animals , Liposomes , Administration, Cutaneous , Epidermis/metabolism , Epidermis/drug effects , Skin/metabolism , Skin/drug effects , Skin, Artificial , Rhodamines/pharmacokinetics , Rhodamines/chemistry , Rhodamines/administration & dosage
18.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38452090

ABSTRACT

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Subject(s)
Adult Stem Cells , Cell Plasticity , Epidermis , Hair Follicle , Tretinoin , Wound Healing , Animals , Mice , Adult Stem Cells/cytology , Adult Stem Cells/physiology , Cell Lineage/drug effects , Cell Lineage/physiology , Cell Plasticity/drug effects , Cell Plasticity/physiology , Epidermis/drug effects , Epidermis/physiology , Hair Follicle/cytology , Hair Follicle/drug effects , Hair Follicle/physiology , Tretinoin/metabolism , Tretinoin/pharmacology , Wound Healing/drug effects , Wound Healing/physiology , Rejuvenation/physiology , Cell Culture Techniques , Neoplasms/pathology , Mice, Inbred C57BL
19.
J Cosmet Dermatol ; 23(6): 2058-2065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38549196

ABSTRACT

BACKGROUND: The diverse causes of hyperpigmentation and complex nature of melanogenesis make it a challenge to manage. Current approaches either fail to deliver effective pigmentation control or have undesirable safety profiles that preclude their long-term use. AIMS: To evaluate the capacity of a cosmetic gel serum comprising tranexamic acid, niacinamide, 4-butylresorcinol, phytic acid, and a mixture of hydroxy acids that was designed to target the biological processes regulating skin melanogenesis to attenuate melanin production in vitro and reduce hyperpigmentation clinically. METHODS: Capacity to reduce melanin production in vitro was determined in melanocyte-containing reconstructed human epidermis (RHEm). Clinical efficacy and skin tolerability following twice daily application were assessed in 35 subjects with slight to moderate facial hyperpigmentation by instrumental (VISIA®-CR, Mexameter®) and clinical (mMASI, clinical score, IGA for hyperpigmentation) evaluation on D14, D28, D56, and D84. Maintenance of pigmentation control was followed up 1 month after cessation of treatment on D112. RESULTS: In RHEm in vitro, melanin production was reduced by 50.0% from baseline (D0) on D14 (p < 0.001) and by 67.0% on D21 (p < 0.001). Clinical reductions from baseline in brown spots count (-9.0%; p < 0.05), brown spots area (-16.7%; p < 0.001), and the melanin index (-11.4%; p < 0.001) were observed within 14 days of use. Statistically significant improvements in all clinical parameters were achieved by D28. By the end of treatment on D84, the number and surface area of brown spots were reduced by 28.4% and 40.3% compared to D0, respectively (p < 0.001, both), the melanin index was reduced by 31.1% (p < 0.001), mMASI was reduced by 63.0% (p < 0.001), and skin luminosity was increased by 79.0% (p < 0.001). IGA was reduced from 2.3 on D0 to 1.3 on D84 (p < 0.001). Improvements to all these parameters were maintained until D112, 1 month after termination of treatment. The product also demonstrated very good skin tolerability. CONCLUSION: A gel serum comprising tranexamic acid, niacinamide, 4-butylresorcinol, and hydroxy acids, designed to target the biological processes regulating skin melanogenesis, demonstrates rapid, robust, and sustained pigmentation control in this cohort.


Subject(s)
Hyperpigmentation , Melanins , Melanocytes , Niacinamide , Resorcinols , Skin Pigmentation , Tranexamic Acid , Humans , Resorcinols/administration & dosage , Resorcinols/adverse effects , Resorcinols/pharmacology , Adult , Female , Hyperpigmentation/drug therapy , Middle Aged , Tranexamic Acid/administration & dosage , Tranexamic Acid/adverse effects , Tranexamic Acid/pharmacology , Niacinamide/administration & dosage , Niacinamide/pharmacology , Niacinamide/adverse effects , Melanocytes/drug effects , Melanocytes/metabolism , Skin Pigmentation/drug effects , Male , Gels , Treatment Outcome , Skin Lightening Preparations/administration & dosage , Skin Lightening Preparations/pharmacology , Skin Lightening Preparations/adverse effects , Young Adult , Administration, Cutaneous , Drug Combinations , Epidermis/drug effects , Epidermis/metabolism , Melanogenesis
20.
J Cosmet Dermatol ; 23(6): 2240-2248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38375987

ABSTRACT

BACKGROUND: To increase skin permeability, various transdermal delivery techniques have been developed. However, due to the stratum corneum as a skin barrier, transdermal delivery remains limited. AIMS: In this study, we evaluated efficacy and safety of arc-poration as a novel technique disrupting the stratum corneum. RESULTS: Optical images and histological analysis using reconstituted human skin and porcine skin showed that the treatment of arc-poration created micropores with an average diameter of approximately 100 µm only to the depth of the stratum corneum, but not viable epidermis. In addition, the Franz diffusion cell experiment using reconstituted human skin showed a remarkable increase in permeability following pretreatment with arc-poration. Clinical results clearly demonstrated the enhancement of the skin-improving effect of cosmetics by pretreatment of arc-poration in terms of gloss, hydration, flakiness, texture, tone, tone evenness, and pigmentation of skin, without causing abnormal skin responses. The concentration of ozone and nitrogen oxides generated by arc-poration was below the permissible value for the human body. CONCLUSIONS: Arc-poration can increase skin permeability by creating stratum corneum-specific micropores, which can enhance the skin-improving effect of cosmetics without adverse responses.


Subject(s)
Administration, Cutaneous , Permeability , Skin Absorption , Humans , Swine , Skin Absorption/drug effects , Animals , Adult , Female , Skin/metabolism , Skin/drug effects , Epidermis/metabolism , Epidermis/drug effects , Cosmetics/administration & dosage , Cosmetics/pharmacokinetics , Cosmetics/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...