Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 9812, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25913126

ABSTRACT

Brazil never had segregation laws defining membership of an ethnoracial group. Thus, the composition of the Brazilian population is mixed, and its ethnoracial classification is complex. Previous studies showed conflicting results on the correlation between genome ancestry and ethnoracial classification in Brazilians. We used 370,539 Single Nucleotide Polymorphisms to quantify this correlation in 5,851 community-dwelling individuals in the South (Pelotas), Southeast (Bambui) and Northeast (Salvador) Brazil. European ancestry was predominant in Pelotas and Bambui (median = 85.3% and 83.8%, respectively). African ancestry was highest in Salvador (median = 50.5%). The strength of the association between the phenotype and median proportion of African ancestry varied largely across populations, with pseudo R(2) values of 0.50 in Pelotas, 0.22 in Bambui and 0.13 in Salvador. The continuous proportion of African genomic ancestry showed a significant S-shape positive association with self-reported Blacks in the three sites, and the reverse trend was found for self reported Whites, with most consistent classifications in the extremes of the high and low proportion of African ancestry. In self-classified Mixed individuals, the predicted probability of having African ancestry was bell-shaped. Our results support the view that ethnoracial self-classification is affected by both genome ancestry and non-biological factors.


Subject(s)
Epigen/genetics , Ethnicity/genetics , Adult , Black People/genetics , Brazil , Child , Child, Preschool , Cohort Studies , Genetics, Population/methods , Genomics/methods , Humans , Longitudinal Studies , Middle Aged , Phenotype , Polymorphism, Single Nucleotide/genetics , White People/genetics , Young Adult
2.
EMBO Mol Med ; 6(4): 442-57, 2014 04.
Article in English | MEDLINE | ID: mdl-24503019

ABSTRACT

The transcription factor Nrf2 is a key regulator of the cellular stress response, and pharmacological Nrf2 activation is a promising strategy for skin protection and cancer prevention. We show here that prolonged Nrf2 activation in keratinocytes causes sebaceous gland enlargement and seborrhea in mice due to upregulation of the growth factor epigen, which we identified as a novel Nrf2 target. This was accompanied by thickening and hyperkeratosis of hair follicle infundibula. These abnormalities caused dilatation of infundibula, hair loss, and cyst development upon aging. Upregulation of epigen, secretory leukocyte peptidase inhibitor (Slpi), and small proline-rich protein 2d (Sprr2d) in hair follicles was identified as the likely cause of infundibular acanthosis, hyperkeratosis, and cyst formation. These alterations were highly reminiscent to the phenotype of chloracne/"metabolizing acquired dioxin-induced skin hamartomas" (MADISH) patients. Indeed, SLPI, SPRR2, and epigen were strongly expressed in cysts of MADISH patients and upregulated by dioxin in human keratinocytes in an NRF2-dependent manner. These results identify novel Nrf2 activities in the pilosebaceous unit and point to a role of NRF2 in MADISH pathogenesis.


Subject(s)
Chloracne/metabolism , Keratinocytes/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Cells, Cultured , Chloracne/genetics , Disease Models, Animal , Epigen/genetics , Epigen/metabolism , Hair Follicle/metabolism , Humans , Mice , Mice, Transgenic , NF-E2-Related Factor 2/genetics , Secretory Leukocyte Peptidase Inhibitor/genetics , Secretory Leukocyte Peptidase Inhibitor/metabolism
3.
Semin Cell Dev Biol ; 28: 57-61, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24374012

ABSTRACT

Epigen is the latest addition to the mammalian family of EGFR ligands. Epigen was initially identified as a novel expressed sequence tag with homology to the EGF family by high throughput sequencing of a mouse keratinocyte complementary DNA library, and received its name for its ability to act as an epithelial mitogen. In vitro studies attributed to epigen several unique features, such as persistent and potent biological actions involving low affinity receptor binding, as well as sub-maximal receptor activation and inactivation. Similarly to the other EGFR ligands, the expression of epigen is up-regulated by hormones and in certain cancer types. While the biological functions of epigen remain to be uncovered, it appears to play a role in epidermal structures, such as the mammary gland and the sebaceous gland. The latter organ, in particular, was greatly enlarged in transgenic mice overexpressing epigen. Interestingly, mice lacking epigen develop and grow normally, probably due to functional compensation by other EGFR ligands. Future studies are likely to reveal the biological roles of the unique receptor binding properties of epigen, as well as its potential harnessing during disease.


Subject(s)
Epidermal Growth Factor/metabolism , Epigen/metabolism , ErbB Receptors/metabolism , Neoplasms/metabolism , Signal Transduction/physiology , Animals , Epigen/genetics , Gene Knockout Techniques , Humans , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...