Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.267
Filter
1.
Epigenomics ; 16(19-20): 1273-1286, 2024.
Article in English | MEDLINE | ID: mdl-39382450

ABSTRACT

Aim: Childhood maltreatment (CM) may affect not only directly exposed individuals but also their offspring. However, the underlying biological mechanisms remain unclear. microRNAs (miRNAs) may play a regulatory role in this process. This study investigates the relationship between maternal exposure to CM and miRNA expression in maternal and perinatal tissues.Methods: We enrolled 43 pregnant women and assessed their CM exposure. We collected maternal blood, cord blood and placental tissue samples during childbirth and performed miRNA profiling using next generation sequencing.Results: Maternal CM was inversely associated with hsa-miR-582-3p levels in cord blood. Pathway analysis revealed that this miRNA regulates genes involved in intrauterine development.Conclusion: Our findings highlight the potential impact of maternal CM exposure on offspring epigenetic mechanisms.


Child maltreatment (CM) includes physical, sexual and emotional abuse, as well as physical and emotional neglect. CM not only harms those directly exposed but can also negatively impact their offspring. However, the biological reasons behind this are not well understood. To explore this further, our study investigates how CM affects the biology of pregnant women and their newborns through changes in small regulatory molecules called microRNAs (miRNAs). We recruited 43 pregnant women and assessed their exposure to CM. During childbirth, we collected blood samples from the mothers, blood from the umbilical cord and placental samples. We then analyzed the levels of miRNAs in these samples using advanced sequencing technology. We observed that more severe maternal exposure to CM was associated with lower levels of a miRNA named hsa-miR-582-3p in umbilical cord blood. This miRNA regulates genes involved in fetal development in utero and has been linked to spontaneous preterm birth. It may also influence immunologic and stress-related processes. Thus, newborns of mothers who had been exposed to CM may be more vulnerable to adverse effects on their brain development and overall health. Despite our small sample size, our study highlights the importance of addressing CM as an intergenerational concern and provides new insights into the biological mechanisms through which maternal CM can affect offspring.


Subject(s)
Fetal Blood , Maternal Exposure , MicroRNAs , Humans , Female , Fetal Blood/metabolism , MicroRNAs/genetics , MicroRNAs/blood , Pregnancy , Adult , Maternal Exposure/adverse effects , Child Abuse , Placenta/metabolism , Epigenesis, Genetic , Child
2.
Elife ; 122024 Oct 16.
Article in English | MEDLINE | ID: mdl-39412522

ABSTRACT

Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.


Subject(s)
Epigenesis, Genetic , Heterochromatin , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Humans , Gene Expression Regulation , Malaria, Falciparum/parasitology
3.
Epigenomics ; 16(18): 1253-1264, 2024.
Article in English | MEDLINE | ID: mdl-39297700

ABSTRACT

Aim: Promoter methylation of LINE-1 may be affected by prematurity, but there is little evidence in the literature.Materials & methods: Blood from premature and full-term neonates on days 0, 5, 30 and 90 was analyzed for DNA methylation percentage in a promoter region of the LINE-1, after bisulfite conversion and pyrosequencing.Results: Premature infants, as a whole, showed significantly lower methylation percentage at birth, but this difference diminished over time. However, the subgroup of extremely premature (<28 weeks gestational age) had higher methylation percentages, similar to full-term newborns.Conclusion: This research underscores the critical role of prematurity on the methylation pattern of LINE-1. These findings underline the complexity of epigenetic regulation in prematurity and emphasize the need for further studies.


Premature birth can have significant effects on a baby's development and long-term health. This study investigates how being born prematurely affects a process called DNA methylation, which can influence how genes are turned on or off. Specifically, we examined the LINE-1 promoter, a frequently occurring region of DNA known for its role in regulating gene activity.We collected blood samples from both premature and full-term newborns at birth and at several points in the early months of life. Our findings showed that premature babies have lower levels of LINE-1 promoter methylation at birth compared with full-term babies. These differences in methylation could possibly affect the babies' development and health as they grow.Our research highlights the need for continued study in this area to explore how these epigenetic changes impact long-term health and to develop strategies to mitigate these effects.


Subject(s)
DNA Methylation , Infant, Premature , Long Interspersed Nucleotide Elements , Promoter Regions, Genetic , Humans , Infant, Newborn , Female , Male , Epigenesis, Genetic , Gestational Age
4.
Sci Rep ; 14(1): 20416, 2024 09 02.
Article in English | MEDLINE | ID: mdl-39223259

ABSTRACT

Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by impairments in social communication, repetitive behaviors, and restricted interests. Epigenetic modifications serve as critical regulators of gene expression playing a crucial role in controlling brain function and behavior. Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, has emerged as one of the highest ASD risk genes, but the precise effects of KDM6B mutations on neuronal activity and behavioral function remain elusive. Here we show the impact of KDM6B mosaic brain knockout on the manifestation of different autistic-like phenotypes including repetitive behaviors, social interaction, and significant cognitive deficits. Moreover, KDM6B mosaic knockout display abnormalities in hippocampal excitatory synaptic transmission decreasing NMDA receptor mediated synaptic transmission and plasticity. Understanding the intricate interplay between epigenetic modifications and neuronal function may provide novel insights into the pathophysiology of ASD and potentially inform the development of targeted therapeutic interventions.


Subject(s)
Autism Spectrum Disorder , Jumonji Domain-Containing Histone Demethylases , Mice, Knockout , Synaptic Transmission , Animals , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Synaptic Transmission/genetics , Autism Spectrum Disorder/genetics , Mice , Brain/metabolism , Neuronal Plasticity/genetics , Behavior, Animal , Hippocampus/metabolism , Epigenesis, Genetic , Male , Synapses/metabolism
5.
Front Cell Infect Microbiol ; 14: 1369226, 2024.
Article in English | MEDLINE | ID: mdl-39086605

ABSTRACT

Objective: The study delved into the epigenetic factors associated with periodontal disease in two lineages of mice, namely C57bl/6 and Balb/c. Its primary objective was to elucidate alterations in the methylome of mice with distinct genetic backgrounds following systemic microbial challenge, employing high-throughput DNA methylation analysis as the investigative tool. Methods: Porphyromonas gingivalis (Pg)was orally administered to induce periodontitis in both Balb/c and C57bl/6 lineage. After euthanasia, genomic DNA from both maxilla and blood were subjected to bisulfite conversion, PCR amplification and genome-wide DNA methylation analysis using the Ovation RRBS Methyl-Seq System coupled with the Illumina Infinium Mouse Methylation BeadChip. Results: Of particular significance was the distinct methylation profile observed within the Pg-induced group of the Balb/c lineage, contrasting with both the control and Pg-induced groups of the C57bl/6 lineage. Utilizing rigorous filtering criteria, we successfully identified a substantial number of differentially methylated regions (DMRs) across various tissues and comparison groups, shedding light on the prevailing hypermethylation in non-induced cohorts and hypomethylation in induced groups. The comparison between blood and maxilla samples underscored the unique methylation patterns specific to the jaw tissue. Our comprehensive methylome analysis further unveiled statistically significant disparities, particularly within promoter regions, in several comparison groups. Conclusion: The differential DNA methylation patterns observed between C57bl/6 and Balb/c mouse lines suggest that epigenetic factors contribute to the variations in disease susceptibility. The identified differentially methylated regions associated with immune regulation and inflammatory response provide potential targets for further investigation. These findings emphasize the importance of considering epigenetic mechanisms in the development and progression of periodontitis.


Subject(s)
DNA Methylation , Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Porphyromonas gingivalis , Animals , Porphyromonas gingivalis/genetics , Mice , Periodontitis/microbiology , Epigenesis, Genetic , Periodontal Diseases/microbiology , Disease Susceptibility , Bacteroidaceae Infections/microbiology , Epigenome
6.
Nutrients ; 16(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39203714

ABSTRACT

Scientific evidence shows that dietary patterns are a key environmental determinant of mental health. Dietary constituents can modify epigenetic patterns and thus the gene expression of relevant genetic variants in various mental health conditions. In the present work, we describe some nutrigenomic effects of dietary fiber, phenolic compounds (plant secondary metabolites), and fatty acids on mental health outcomes, with emphasis on their possible interactions with genetic and epigenetic aspects. Prebiotics, through their effects on the gut microbiota, have been associated with modulation in the neuroendocrine response to stress and the facilitation of the processing of positive emotions. Some of the genetic and epigenetic mechanisms include the serotonin neurotransmitter system (TPH1 gene) and the brain-derived neurotrophic factor (inhibition of histone deacetylases). The consumption of phenolic compounds exerts a positive role in neurocognitive domains. The evidence showing the involvement of genetic and epigenetic factors comes mainly from animal models, highlighting the role of epigenetic mechanisms through miRNAs and methyltransferases as well as the effect on the expression of apoptotic-related genes. Long-chain n-3 fatty acids (EPA and DHA) have been mainly related to psychotic and mood disorders, but the genetic and epigenetic evidence is scarce. Studies on the genetic and epigenetic basis of these interactions need to be promoted to move towards a precision and personalized approach to medicine.


Subject(s)
Dietary Fiber , Epigenesis, Genetic , Fatty Acids , Mental Health , Humans , Dietary Fiber/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Phenols/pharmacology , Nutrigenomics , Mental Disorders/genetics
7.
Physiol Plant ; 176(4): e14492, 2024.
Article in English | MEDLINE | ID: mdl-39166265

ABSTRACT

Genomic DNA methylation patterns play a crucial role in the developmental processes of plants and mammals. In this study, we aimed to investigate the significant effects of epigenetic mechanisms on the development of soybean seedlings and metabolic pathways. Our analyses show that 5-azaC-treatment affects radicle development from two Days After Imbibition (DAI), as well as both shoot and root development. We examined the expression levels of key genes related to DNA methylation and demethylation pathways, such as DRM2, which encodes RNA-directed DNA Methylation (RdDM) pathway, SAM synthase, responsible for methyl group donation, and ROS1, a DNA demethylase. In treated seedling roots, we observed an increase in DRM2 expression and a decrease in ROS1 expression. Additionally, 5-azaC treatment altered protein accumulation, indicating epigenetic control over stress response while inhibiting nitrogen assimilation, urea cycle, and glycolysis-related proteins. Furthermore, it influenced the levels of various phytohormones and metabolites crucial for seedling growth, such as ABA, IAA, ethylene, polyamines (PUT and Cad), and free amino acids, suggesting that epigenetic changes may shape soybean responses to pathogens, abiotic stress, and nutrient absorption. Our results assist in understanding how hypomethylation shapes soybean responses to pathogens, abiotic stress, and nutrient absorption crucial for seedling growth, suggesting that the plant's assimilation of carbon and nitrogen, along with hormone pathways, may be influenced by epigenetic changes.


Subject(s)
DNA Methylation , Glycine max , Metabolic Networks and Pathways , Plant Growth Regulators , DNA Methylation/genetics , Glycine max/genetics , Glycine max/metabolism , Glycine max/growth & development , Plant Growth Regulators/metabolism , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/drug effects , Gene Expression Regulation, Plant/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Epigenesis, Genetic , Plant Proteins/metabolism , Plant Proteins/genetics
9.
Med Sci Sports Exerc ; 56(11): 2173-2183, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38949160

ABSTRACT

INTRODUCTION: Epigenetic aging, a marker of biological aging measured by DNA methylation, may be affected by behaviors, including sleep and physical activity. However, investigations of physical activity and sleep with epigenetic aging among pediatric populations are scant and have not accounted for correlated behaviors. METHODS: The study population included 472 Mexico City adolescents (52% female). Blood collection and 7-d wrist actigraphy (Actigraph GTX-BT) occurred during a follow-up visit when participants were 14.5 (2.09) yr. Leukocyte DNA methylation was measured with the Infinium MethylationEPIC array after bisulfite conversion, and nine epigenetic clocks were calculated. Sleep versus wake time was identified through a pruned dynamic programing algorithm, and physical activity was processed with Chandler cutoffs. Kmeans clustering was used to select actigraphy-assessed physical activity and sleep behavior clusters. Linear regression analyses were used to evaluate adjusted associations between the clusters and epigenetic aging. RESULTS: There were three unique clusters: "Short sleep/high sedentary behavior," "Adequate sleep duration and late sleep timing/low moderate or vigorous physical activity (MVPA)," and "Adequate sleep duration/high MVPA." Compared with the "Adequate duration/high MVPA," adolescents with "Adequate duration and late sleep timing/low MVPA" had more accelerated aging for the GrimAge clock ( ß = 0.63; 95% confidence interval, 0.07-1.19). In pubertal-stratified analyses, more mature adolescents in the "Adequate sleep duration and late sleep timing/low MVPA group" had accelerated epigenetic aging. In contrast, females in the "Short sleep/high sedentary" group had decelerated epigenetic aging for the Wu pediatric clock. CONCLUSIONS: Associations between behavior clusters and epigenetic aging varied by pubertal status and sex. Contrary results in the Wu clock suggest the need for future research on pediatric-specific clocks.


Subject(s)
Actigraphy , DNA Methylation , Epigenesis, Genetic , Exercise , Sleep , Humans , Female , Adolescent , Male , Sleep/physiology , Exercise/physiology , Mexico , Aging/physiology , Aging/genetics , Sedentary Behavior
10.
Front Immunol ; 15: 1379471, 2024.
Article in English | MEDLINE | ID: mdl-39055712

ABSTRACT

Since the discovery of specific immune memory in invertebrates, researchers have investigated its immune response to diverse microbial and environmental stimuli. Nevertheless, the extent of the immune system's interaction with metabolism, remains relatively enigmatic. In this mini review, we propose a comprehensive investigation into the intricate interplay between metabolism and specific immune memory. Our hypothesis is that cellular endocycles and epigenetic modifications play pivotal roles in shaping this relationship. Furthermore, we underscore the importance of the crosstalk between metabolism and specific immune memory for understanding the evolutionary costs. By evaluating these costs, we can gain deeper insights into the adaptive strategies employed by invertebrates in response to pathogenic challenges. Lastly, we outline future research directions aimed at unraveling the crosstalk between metabolism and specific immune memory. These avenues of inquiry promise to illuminate fundamental principles governing host-pathogen interactions and evolutionary trade-offs, thus advancing our understanding of invertebrate immunology.


Subject(s)
Epigenesis, Genetic , Host-Pathogen Interactions , Immunologic Memory , Invertebrates , Animals , Invertebrates/immunology , Host-Pathogen Interactions/immunology , Biological Evolution , Immunity, Innate
11.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062815

ABSTRACT

Preeclampsia (PE) is a multifactorial pregnancy disorder characterized by hypertension and proteinuria, posing significant risks to both maternal and fetal health. Despite extensive research, its complex pathophysiology remains incompletely understood. This narrative review aims to elucidate the intricate mechanisms contributing to PE, focusing on abnormal placentation, maternal systemic response, oxidative stress, inflammation, and genetic and epigenetic factors. This review synthesizes findings from recent studies, clinical trials, and meta-analyses, highlighting key molecular and cellular pathways involved in PE. The review integrates data on oxidative stress biomarkers, angiogenic factors, immune interactions, and mitochondrial dysfunction. PE is initiated by poor placentation due to inadequate trophoblast invasion and improper spiral artery remodeling, leading to placental hypoxia. This triggers the release of anti-angiogenic factors such as soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng), causing widespread endothelial dysfunction and systemic inflammation. Oxidative stress, mitochondrial abnormalities, and immune dysregulation further exacerbate the condition. Genetic and epigenetic modifications, including polymorphisms in the Fms-like tyrosine kinase 1 (FLT1) gene and altered microRNA (miRNA) expression, play critical roles. Emerging therapeutic strategies targeting oxidative stress, inflammation, angiogenesis, and specific molecular pathways like the heme oxygenase-1/carbon monoxide (HO-1/CO) and cystathionine gamma-lyase/hydrogen sulfide (CSE/H2S) pathways show promise in mitigating preeclampsia's effects. PE is a complex disorder with multifactorial origins involving abnormal placentation, endothelial dysfunction, systemic inflammation, and oxidative stress. Despite advances in understanding its pathophysiology, effective prevention and treatment strategies remain limited. Continued research is essential to develop targeted therapies that can improve outcomes for both mothers and their babies.


Subject(s)
Oxidative Stress , Pre-Eclampsia , Humans , Pre-Eclampsia/physiopathology , Pre-Eclampsia/metabolism , Pregnancy , Female , Epigenesis, Genetic , Inflammation/metabolism , Biomarkers , Placenta/metabolism , Placenta/physiopathology , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics
12.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062828

ABSTRACT

The production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout (Oncorhynchus mykiss) and other salmonid species. While several studies have explored the genomic and non-genomic impacts of cortisol on fish growth and skeletal muscle development, the long-term effects driven by epigenetic mechanisms, such as cortisol-induced DNA methylation, remain unexplored. In this study, we analyzed the transcriptome and genome-wide DNA methylation in the skeletal muscle of rainbow trout seven days after cortisol administration. We identified 550 differentially expressed genes (DEGs) by RNA-seq and 9059 differentially methylated genes (DMGs) via whole-genome bisulfite sequencing (WGBS) analysis. KEGG enrichment analysis showed that cortisol modulates the differential expression of genes associated with nucleotide metabolism, ECM-receptor interaction, and the regulation of actin cytoskeleton pathways. Similarly, cortisol induced the differential methylation of genes associated with focal adhesion, adrenergic signaling in cardiomyocytes, and Wnt signaling. Through integrative analyses, we determined that 126 genes showed a negative correlation between up-regulated expression and down-regulated methylation. KEGG enrichment analysis of these genes indicated participation in ECM-receptor interaction, regulation of actin cytoskeleton, and focal adhesion. Using RT-qPCR, we confirmed the differential expression of lamb3, itga6, limk2, itgb4, capn2, and thbs1. This study revealed for the first time the molecular responses of skeletal muscle to cortisol at the transcriptomic and whole-genome DNA methylation levels in rainbow trout.


Subject(s)
DNA Methylation , Hydrocortisone , Muscle, Skeletal , Oncorhynchus mykiss , Stress, Physiological , Transcriptome , Animals , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/metabolism , Hydrocortisone/metabolism , Hydrocortisone/pharmacology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Stress, Physiological/genetics , Epigenesis, Genetic , Epigenomics/methods , Gene Expression Profiling , Fish Proteins/genetics , Fish Proteins/metabolism
13.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063168

ABSTRACT

In light of the post-genomic era, epigenetics brings about an opportunity to better understand how the molecular machinery works and is led by a complex dynamic set of mechanisms, often intricate and complementary in many aspects. In particular, epigenetics links developmental biology and genetics, as well as many other areas of knowledge. The present work highlights substantial scopes and relevant discoveries related to the development of the term from its first notions. To our understanding, the concept of epigenetics needs to be revisited, as it is one of the most relevant and multifaceted terms in human knowledge. To redirect future novel experimental or theoretical efforts, it is crucial to compile all significant issues that could impact human and ecological benefit in the most precise and accurate manner. In this paper, the reader can find one of the widest compilations of the landmarks and epistemic considerations of the knowledge of epigenetics across the history of biology from the earliest epigenetic formulation to genetic determinism until the present. In the present work, we link the current body of knowledge and earlier pre-genomic concepts in order to propose a new definition of epigenetics that is faithful to its regulatory nature.


Subject(s)
Epigenesis, Genetic , Epigenomics , Humans , Epigenomics/methods , Animals , DNA Methylation
14.
Methods Mol Biol ; 2827: 323-350, 2024.
Article in English | MEDLINE | ID: mdl-38985280

ABSTRACT

This chapter describes a step-by-step protocol for rapid serological quantification of global DNA methylation by enzyme-linked immunosorbent assay (ELISA) in plant tissue culture specimens. As a case study model, we used the coconut palm (Cocos nucifera), from which plumules were subjected to somatic embryogenesis followed by embryogenic calli multiplication. DNA methylation is one of the most common epigenetic markers in the regulation of gene expression. DNA methylation is generally associated with non-expressed genes, that is, gene silencing under certain conditions, and the degree of DNA methylation can be used as a marker of various physiological processes, both in plants and in animal cells. Methylation consists of adding a methyl radical to carbon 5 of the DNA cytosine base. Herein, the global DNA methylation was quantified by ELISA with antibodies against methylated cytosines using a commercial kit (Zymo-Research™). The method allowed the detection of methylation in total DNA extracts from coconut palm embryogenic calli (arising from somatic embryogenesis) cultivated in liquid or solid media by using antibodies against methylated cytosines and enzymatic development with a colorimetric substrate. Control samples of commercially provided Escherichia coli bacterial DNA with previously known methylation percentages were included in the ELISA test to construct an experimental methylation standard curve. The logarithmic regression of this E. coli standard curve allowed methylation quantification in coconut palm samples. The present ELISA methodology, applied to coconut palm tissue culture specimens, is promising for use in other plant species and botanical families. This chapter is presented in a suitable format for use as a step-by-step laboratory procedure manual, with theoretical introduction information, which makes it easy to apply the protocol in samples of any biological nature to evaluate DNA global methylation associated with any physiological process.


Subject(s)
DNA Methylation , Enzyme-Linked Immunosorbent Assay , Epigenesis, Genetic , Enzyme-Linked Immunosorbent Assay/methods , DNA, Plant/genetics , Cocos/genetics , Tissue Culture Techniques/methods , Plant Somatic Embryogenesis Techniques/methods
15.
Epigenetics ; 19(1): 2375030, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38967279

ABSTRACT

The mechanisms by which the ageing process is associated to an unhealthy lifestyle and how they play an essential role in the aetiology of systemic arterial hypertension have not yet been completely elucidated. Our objective is to investigate the influence of NOS3 polymorphisms [-786T > C and (Glu298Asp)] on systolic blood pressure (SBP) and diastolic blood pressure (DBP) response, differentially methylated regions (DMRs), and physical fitness of adult and older women after a 14-week combined training intervention. The combined training was carried out for 14 weeks, performed 3 times a week, totalling 180 minutes weekly. The genotyping experiment used Illumina Infinium Global Screening Array version 2.0 (GSA V2.0) and Illumina's EPIC Infinium Methylation BeadChip. The participants were separated into SNP rs2070744 in TT (59.7 ± 6.2 years) and TC + CC (60.0 ± 5.2 years), and SNP rs17999 in GluGlu (58.8 ± 5.7 years) and GluAsp + AspAsp (61.6 ± 4.9 years). We observed an effect of time for variables BP, physical capacities, and cholesterol. DMRs related to SBP and DBP were identified for the rs2070744 and rs17999 groups pre- and decreased numbers of DMRs post-training. When we analysed the effect of exercise training in pre- and post-comparisons, the GluGlu SNP (rs17999) showed 10 DMRs, and after enrichment, we identified several biological biases. The combined training improved the SBP and DBP values of the participants regardless of the SNPs. In addition, exercise training affected DNA methylation differently between the groups of NOS3 polymorphisms.


Subject(s)
Blood Pressure , DNA Methylation , Exercise , Nitric Oxide Synthase Type III , Polymorphism, Single Nucleotide , Humans , Female , Middle Aged , Nitric Oxide Synthase Type III/genetics , Blood Pressure/genetics , Aged , Hypertension/genetics , Epigenesis, Genetic
16.
J Physiol ; 602(15): 3833-3852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38985827

ABSTRACT

Fetal growth restriction (FGR) is a common outcome in human suboptimal gestation and is related to prenatal origins of cardiovascular dysfunction in offspring. Despite this, therapy of human translational potential has not been identified. Using human umbilical and placental vessels and the chicken embryo model, we combined cellular, molecular, and functional studies to determine whether N-acetylcysteine (NAC) and hydrogen sulphide (H2S) protect cardiovascular function in growth-restricted unborn offspring. In human umbilical and placental arteries from control or FGR pregnancy and in vessels from near-term chicken embryos incubated under normoxic or hypoxic conditions, we determined the expression of the H2S gene CTH (i.e. cystathionine γ-lyase) (via quantitative PCR), the production of H2S (enzymatic activity), the DNA methylation profile (pyrosequencing) and vasodilator reactivity (wire myography) in the presence and absence of NAC treatment. The data show that FGR and hypoxia increased CTH expression in the embryonic/fetal vasculature in both species. NAC treatment increased aortic CTH expression and H2S production and enhanced third-order femoral artery dilator responses to the H2S donor sodium hydrosulphide in chicken embryos. NAC treatment also restored impaired endothelial relaxation in human third-to-fourth order chorionic arteries from FGR pregnancies and in third-order femoral arteries from hypoxic chicken embryos. This NAC-induced protection against endothelial dysfunction in hypoxic chicken embryos was mediated via nitric oxide independent mechanisms. Both developmental hypoxia and NAC promoted vascular changes in CTH DNA and NOS3 methylation patterns in chicken embryos. Combined, therefore, the data support that the effects of NAC and H2S offer a powerful mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy. KEY POINTS: Gestation complicated by chronic fetal hypoxia and fetal growth restriction (FGR) increases a prenatal origin of cardiovascular disease in offspring, increasing interest in antenatal therapy to prevent against a fetal origin of cardiovascular dysfunction. We investigated the effects between N-acetylcysteine (NAC) and hydrogen sulphide (H2S) in the vasculature in FGR human pregnancy and in chronically hypoxic chicken embryos. Combining cellular, molecular, epigenetic and functional studies, we show that the vascular expression and synthesis of H2S is enhanced in hypoxic and FGR unborn offspring in both species and this acts to protect their vasculature. Therefore, the NAC/H2S pathway offers a powerful therapeutic mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy.


Subject(s)
Acetylcysteine , Epigenesis, Genetic , Fetal Growth Retardation , Hydrogen Sulfide , Hypoxia , Animals , Hydrogen Sulfide/metabolism , Acetylcysteine/pharmacology , Chick Embryo , Humans , Female , Pregnancy , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , DNA Methylation , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Vasodilation/drug effects , Placenta/metabolism , Placenta/blood supply , Umbilical Arteries/metabolism
17.
Transl Psychiatry ; 14(1): 294, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025836

ABSTRACT

This systematic review addresses the complex nature of Panic Disorder (PD), characterized by recurrent episodes of acute fear, with a focus on updating and consolidating knowledge regarding neurochemical, genetic, and epigenetic factors associated with PD. Utilizing the PRISMA methodology, 33 original peer-reviewed studies were identified, comprising 6 studies related to human neurochemicals, 10 related to human genetic or epigenetic alterations, and 17 animal studies. The review reveals patterns of altered expression in various biological systems, including neurotransmission, the Hypothalamic-Pituitary-Adrenal (HPA) axis, neuroplasticity, and genetic and epigenetic factors leading to neuroanatomical modifications. Noteworthy findings include lower receptor binding of GABAA and serotonin neurotransmitters in the amygdala. The involvement of orexin (ORX) neurons in the dorsomedial/perifornical region in triggering panic reactions is highlighted, with systemic ORX-1 receptor antagonists blocking panic responses. Elevated Interleukin 6 and leptin levels in PD patients suggest potential connections between stress-induced inflammatory changes and PD. Brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) signaling are implicated in panic-like responses, particularly in the dorsal periaqueductal gray (dPAG), where BDNF's panicolytic-like effects operate through GABAA-dependent mechanisms. GABAergic neurons' inhibitory influence on dorsomedial and posterior hypothalamus nuclei is identified, potentially reducing the excitability of neurons involved in panic-like responses. The dorsomedial hypothalamus (DMH) is highlighted as a specific hypothalamic nucleus relevant to the genesis and maintenance of panic disorder. Altered brain lactate and glutamate concentrations, along with identified genetic polymorphisms linked to PD, further contribute to the intricate neurochemical landscape associated with the disorder. The review underscores the potential impact of neurochemical, genetic, and epigenetic factors on the development and expression of PD. The comprehensive insights provided by this systematic review contribute to advancing our understanding of the multifaceted nature of Panic Disorder and pave the way for targeted therapeutic strategies.


Subject(s)
Hypothalamo-Hypophyseal System , Panic Disorder , Humans , Panic Disorder/genetics , Panic Disorder/metabolism , Animals , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Orexins/metabolism , Orexins/genetics , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Epigenesis, Genetic
18.
Neurosci Lett ; 837: 137898, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39013536

ABSTRACT

PURPOSE: Sex differences play a crucial role in understanding vulnerability to opioid addiction, yet there have been limited preclinical investigations of this effect during the transition from adolescence to adulthood. The present study compared the behaviors of male and female rodents in response to fentanyl treatment and targeted molecular correlates in the striatum and medial prefrontal cortex. MATERIALS AND METHODS: Thirty adolescent C57BL/6J mice underwent a 1-week fentanyl treatment with an escalating dose. In addition to evaluating locomotor activity and anxiety-related parameters, we also assessed naloxone-induced fentanyl acute withdrawal jumps. We employed real-time quantitative PCR (qPCR) to assess overall gene expression of dopaminergic receptors (Drd1, Drd2, Drd4 and Drd5) and the µ-opioid receptor Oprm1. The levels of epigenetic base modifications including 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) were assessed on CpG islands of relevant genes. RESULTS: Females had higher locomotor activity than males after chronic fentanyl treatment, and they exhibited higher fentanyl withdrawal jumping behavior induced by naloxone. Females also presented lower Drd4 gene expression and DNA methylation (5mC + 5hmC) in the striatum. We found that locomotor activity and fentanyl withdrawal jumps were negatively correlated with Drd4 methylation and gene expression in the striatum, respectively. CONCLUSIONS: The findings suggested that female mice displayed heightened sensitivity to the effects of fentanyl treatment during the transition from adolescence to adulthood. This effect may be associated with molecular alterations related to the Drd4 gene.


Subject(s)
Fentanyl , Mice, Inbred C57BL , Receptors, Opioid, mu , Sex Characteristics , Animals , Fentanyl/pharmacology , Male , Female , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Mice , DNA Methylation/drug effects , Analgesics, Opioid/pharmacology , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Locomotion/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Receptors, Dopamine/genetics , Receptors, Dopamine/metabolism , Naloxone/pharmacology , Behavior, Animal/drug effects , Substance Withdrawal Syndrome/genetics , Substance Withdrawal Syndrome/metabolism , Epigenesis, Genetic/drug effects
19.
Eur J Oral Sci ; 132(5): e13009, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39075736

ABSTRACT

This study aimed to investigate the relationship between epigenetic mechanisms and oral mucositis (OM) in paediatric patients with acute lymphoblastic leukaemia. Oral cells were collected from 76 participants, including 15 healthy individuals, 10 patients with acute lymphoblastic leukaemia but without a history of OM and 51 acute lymphoblastic leukaemia patients with a history of OM (35 with active OM and 16 who had recovered from OM). Global DNA methylation in the miR-9-1 and miR-9-3 genes was performed. Seven polymorphisms rs1801131, rs1801133 (MTHFR), rs2228611 (DNMT1), rs7590760, rs1550117 (DNMT3A), rs6087990, rs2424913 (DNMT3B) were genotyped and an analysis of association with global DNA methylation was performed. The global methylation levels were lower in cancer patients recovered from OM than in the other groups. A higher frequency of unmethylated profile for miR-9-1 and partially methylated profile for miR-9-3 was observed in cancer patients regardless of OM history compared to healthy patients. The GG genotype of the rs2228611 (DNMT1) polymorphism was associated with higher levels of global methylation in cancer patients irrespective of OM. It was concluded that global methylation is associated with mucosal recovery. The effect of DNMT1 genotype on the global DNA methylation profile, as well as the methylation profile of miR-9-1 and miR-9-3 in cancer patients is independent of OM.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Epigenesis, Genetic , MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Stomatitis , Humans , Child , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Stomatitis/genetics , Female , Male , MicroRNAs/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Child, Preschool , Genotype , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A/genetics , DNA Methyltransferase 3B , Polymorphism, Single Nucleotide , Adolescent , Case-Control Studies , Methylenetetrahydrofolate Reductase (NADPH2)
20.
Plant J ; 119(3): 1197-1209, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38864847

ABSTRACT

Plants continuously endure unpredictable environmental fluctuations that upset their physiology, with stressful conditions negatively impacting yield and survival. As a contemporary threat of rapid progression, global warming has become one of the most menacing ecological challenges. Thus, understanding how plants integrate and respond to elevated temperatures is crucial for ensuring future crop productivity and furthering our knowledge of historical environmental acclimation and adaptation. While the canonical heat-shock response and thermomorphogenesis have been extensively studied, evidence increasingly highlights the critical role of regulatory epigenetic mechanisms. Among these, the involvement under heat of heterochromatic suppression mediated by transcriptional gene silencing (TGS) remains the least understood. TGS refers to a multilayered metabolic machinery largely responsible for the epigenetic silencing of invasive parasitic nucleic acids and the maintenance of parental imprints. Its molecular effectors include DNA methylation, histone variants and their post-translational modifications, and chromatin packing and remodeling. This work focuses on both established and emerging insights into the contribution of TGS to the physiology of plants under stressful high temperatures. We summarized potential roles of constitutive and facultative heterochromatin as well as the most impactful regulatory genes, highlighting events where the loss of epigenetic suppression has not yet been associated with corresponding changes in epigenetic marks.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Plant , Gene Silencing , Heat-Shock Response/genetics , Hot Temperature , DNA Methylation , Plants/genetics , Plants/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL