Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50.403
Filter
1.
Cell Death Dis ; 15(6): 387, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824145

ABSTRACT

Obesity exacerbates tissue degeneration and compromises the integrity and reparative potential of mesenchymal stem/stromal cells (MSCs), but the underlying mechanisms have not been sufficiently elucidated. Mitochondria modulate the viability, plasticity, proliferative capacity, and differentiation potential of MSCs. We hypothesized that alterations in the 5-hydroxymethylcytosine (5hmC) profile of mitochondria-related genes may mediate obesity-driven dysfunction of human adipose-derived MSCs. MSCs were harvested from abdominal subcutaneous fat of obese and age/sex-matched non-obese subjects (n = 5 each). The 5hmC profile and expression of nuclear-encoded mitochondrial genes were examined by hydroxymethylated DNA immunoprecipitation sequencing (h MeDIP-seq) and mRNA-seq, respectively. MSC mitochondrial structure (electron microscopy) and function, metabolomics, proliferation, and neurogenic differentiation were evaluated in vitro, before and after epigenetic modulation. hMeDIP-seq identified 99 peaks of hyper-hydroxymethylation and 150 peaks of hypo-hydroxymethylation in nuclear-encoded mitochondrial genes from Obese- versus Non-obese-MSCs. Integrated hMeDIP-seq/mRNA-seq analysis identified a select group of overlapping (altered levels of both 5hmC and mRNA) nuclear-encoded mitochondrial genes involved in ATP production, redox activity, cell proliferation, migration, fatty acid metabolism, and neuronal development. Furthermore, Obese-MSCs exhibited decreased mitochondrial matrix density, membrane potential, and levels of fatty acid metabolites, increased superoxide production, and impaired neuronal differentiation, which improved with epigenetic modulation. Obesity elicits epigenetic changes in mitochondria-related genes in human adipose-derived MSCs, accompanied by structural and functional changes in their mitochondria and impaired fatty acid metabolism and neurogenic differentiation capacity. These observations may assist in developing novel therapies to preserve the potential of MSCs for tissue repair and regeneration in obese individuals.


Subject(s)
Adipose Tissue , Cell Differentiation , Epigenesis, Genetic , Mesenchymal Stem Cells , Mitochondria , Obesity , Humans , Mesenchymal Stem Cells/metabolism , Obesity/metabolism , Obesity/genetics , Obesity/pathology , Mitochondria/metabolism , Adipose Tissue/metabolism , Cell Differentiation/genetics , Female , Male , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adult , Middle Aged , Cell Proliferation
3.
Arch Dermatol Res ; 316(6): 326, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822910

ABSTRACT

Skin aging is one of the visible characteristics of the aging process in humans. In recent years, different biological clocks have been generated based on protein or epigenetic markers, but few have focused on biological age in the skin. Arrest the aging process or even being able to restore an organism from an older to a younger stage is one of the main challenges in the last 20 years in biomedical research. We have implemented several machine learning models, including regression and classification algorithms, in order to create an epigenetic molecular clock based on miRNA expression profiles of healthy subjects to predict biological age-related to skin. Our best models are capable of classifying skin samples according to age groups (18-28; 29-39; 40-50; 51-60 or 61-83 years old) with an accuracy of 80% or predict age with a mean absolute error of 10.89 years using the expression levels of 1856 unique miRNAs. Our results suggest that this kind of epigenetic clocks arises as a promising tool with several applications in the pharmaco-cosmetic industry.


Subject(s)
Epigenesis, Genetic , Machine Learning , MicroRNAs , Skin Aging , Skin , Humans , MicroRNAs/genetics , Middle Aged , Aged , Adult , Skin Aging/genetics , Aged, 80 and over , Skin/metabolism , Skin/pathology , Female , Young Adult , Male , Adolescent , Gene Expression Profiling , Biological Clocks/genetics
4.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38802246

ABSTRACT

A continuous supply of energy is an essential prerequisite for survival and represents the highest priority for the cell. We hypothesize that cell differentiation is a process of optimization of energy flow in a changing environment through phenotypic adaptation. The mechanistic basis of this hypothesis is provided by the established link between core energy metabolism and epigenetic covalent modifications of chromatin. This theory predicts that early metabolic perturbations impact subsequent differentiation. To test this, we induced transient metabolic perturbations in undifferentiated human hematopoietic cells using pharmacological inhibitors targeting key metabolic reactions. We recorded changes in chromatin structure and gene expression, as well as phenotypic alterations by single-cell ATAC and RNA sequencing, time-lapse microscopy, and flow cytometry. Our observations suggest that these metabolic perturbations are shortly followed by alterations in chromatin structure, leading to changes in gene expression. We also show that these transient fluctuations alter the differentiation potential of the cells.


Subject(s)
Cell Differentiation , Chromatin , Energy Metabolism , Hematopoietic Stem Cells , Humans , Cell Differentiation/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Chromatin/metabolism , Chromatin/genetics , Epigenesis, Genetic , Adaptation, Physiological , Single-Cell Analysis/methods
5.
Sci Rep ; 14(1): 12091, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802425

ABSTRACT

Estrogen receptor-negative [ER(-)] mammary cancer is the most aggressive type of breast cancer (BC) with higher rate of metastasis and recurrence. In recent years, dietary prevention of BC with epigenetically active phytochemicals has received increased attention due to its feasibility, effectiveness, and ease of implementation. In this regard, combinatorial phytochemical intervention enables more efficacious BC inhibition by simultaneously targeting multiple tumorigenic pathways. We, therefore, focused on investigation of the effect of sulforaphane (SFN)-rich broccoli sprouts (BSp) and withaferin A (WA)-rich Ashwagandha (Ash) combination on BC prevention in estrogen receptor-negative [ER(-)] mammary cancer using transgenic mice. Our results indicated that combinatorial BSp + Ash treatment significantly reduced tumor incidence and tumor growth (~ 75%) as well as delayed (~ 21%) tumor latency when compared to the control treatment and combinatorial BSp + Ash treatment was statistically more effective in suppressing BC compared to single BSp or Ash intervention. At the molecular level, the BSp and Ash combination upregulated tumor suppressors (p53, p57) along with apoptosis associated proteins (BAX, PUMA) and BAX:BCL-2 ratio. Furthermore, our result indicated an expressional decline of epigenetic machinery HDAC1 and DNMT3A in mammary tumor tissue because of combinatorial treatment. Interestingly, we have reported multiple synergistic interactions between BSp and Ash that have impacted both tumor phenotype and molecular expression due to combinatorial BSp and Ash treatment. Our RNA-seq analysis results also demonstrated a transcriptome-wide expressional reshuffling of genes associated with multiple cell-signaling pathways, transcription factor activity and epigenetic regulations due to combined BSp and Ash administration. In addition, we discovered an alteration of gut microbial composition change because of combinatorial treatment. Overall, combinatorial BSp and Ash supplementation can prevent ER(-) BC through enhanced tumor suppression, apoptosis induction and transcriptome-wide reshuffling of gene expression possibly influencing multiple cell signaling pathways, epigenetic regulation and reshaping gut microbiota.


Subject(s)
Breast Neoplasms , Epigenesis, Genetic , Gastrointestinal Microbiome , Isothiocyanates , Sulfoxides , Withanolides , Isothiocyanates/pharmacology , Animals , Withanolides/pharmacology , Sulfoxides/pharmacology , Female , Mice , Epigenesis, Genetic/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Gastrointestinal Microbiome/drug effects , Mice, Transgenic , Plant Extracts/pharmacology , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Humans , Brassica/chemistry , Histone Deacetylase 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Anticarcinogenic Agents/pharmacology
6.
Nat Commun ; 15(1): 4612, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816386

ABSTRACT

In plants, small-interfering RNAs (siRNAs) mediate epigenetic silencing via the RNA-directed DNA methylation (RdDM) pathway, which is particularly prominent during reproduction and seed development. However, there is limited understanding of the origins and dynamics of reproductive siRNAs acting in different cellular and developmental contexts. Here, we used the RNaseIII-like protein RTL1 to suppress siRNA biogenesis in Arabidopsis pollen, and found distinct siRNA subsets produced during pollen development. We demonstrate that RTL1 expression in the late microspore and vegetative cell strongly impairs epigenetic silencing, and resembles RdDM mutants in their ability to bypass interploidy hybridization barriers in the seed. However, germline-specific RTL1 expression did not impact transgenerational inheritance of triploid seed lethality. These results reveal the existence of multiple siRNA subsets accumulated in mature pollen, and suggest that mobile siRNAs involved in the triploid block are produced in germline precursor cells after meiosis, or in the vegetative cell during pollen mitosis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Pollen , RNA, Small Interfering , Seeds , Pollen/genetics , Pollen/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Triploidy , DNA Methylation , Meiosis/genetics , Ribonuclease III/metabolism , Ribonuclease III/genetics , Epigenesis, Genetic
7.
Article in English | MEDLINE | ID: mdl-38821674

ABSTRACT

Environmental exposure would cause DNA damage and epigenetic modification changes, potentially resulting in physiological dysfunction, thereby triggering diseases and even cancer. DNA damage and epigenetic modifications are thus promising biomarkers for environmental exposures and disease states. Benefiting from its high sensitivity and accuracy, high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is considered the "gold standard technique" for investigating epigenetic DNA modifications. This review summarizes the recent advancements of UHPLC-MS/MS-based technologies for DNA damage and epigenetic modifications analysis, mainly focusing on the innovative methods developed for UHPLC-MS/MS-related pretreatment technologies containing efficient genomic DNA digestion and effective removal of the inorganic salt matrix, and the new strategies for improving detection sensitivity of liquid chromatography-mass spectrometry. Moreover, we also summarized the novel hyphenated techniques of the advanced UHPLC-MS/MS coupled with other separation and analysis methods for the measurement of DNA damage and epigenetic modification changes in special regions and fragments of chromosomes.


Subject(s)
DNA Damage , Epigenesis, Genetic , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Humans , DNA Methylation , DNA , Environmental Exposure/analysis , Animals
8.
Article in English | MEDLINE | ID: mdl-38821671

ABSTRACT

Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, may be a natural physiological condition or pathophysiological such as in cancer cells or stress induced tetraploidisation. Its contribution to cancer development is well known. However, among the many models proposed to explain the causes, mechanisms and steps of malignant cell transformation, only few integrate tetraploidization into a systemic multistep approach of carcinogenesis. Therefore, we will i) describe the molecular and cellular characteristics of tetraploidy; ii) assess the contribution of stress-induced tetraploidy in cancer development; iii) situate tetraploidy as a metastable state leading to cancer development in a systemic cell-centered approach; iiii) consider knowledge gaps and future perspectives. The available data shows that stress-induced tetraploidisation/polyploidisation leads to p53 stabilisation, cell cycle arrest, followed by cellular senescence or apoptosis, suppressing the proliferation of tetraploid cells. However, if tetraploid cells escape the G1-tetraploidy checkpoint, it may lead to uncontrolled proliferation of tetraploid cells, micronuclei induction, aneuploidy and deploidisation. In addition, tetraploidization favors 3D-chromatin changes and epigenetic effects. The combined effects of genetic and epigenetic changes allow the expression of oncogenic gene expression and cancer progression. Moreover, since micronuclei are inducing inflammation, which in turn may induce additional tetraploidization, tetraploidy-derived genetic instability leads to a carcinogenic vicious cycle. The concept that polyploid cells are metastable intermediates between diploidy and aneuploidy is not new. Metastability denotes an intermediate energetic state within a dynamic system other than the system's state at least energy. Considering in parallel the genetic/epigenetic changes and the probable entropy levels induced by stress-induced tetraploidisation provides a new systemic approach to describe cancer development.


Subject(s)
Cell Transformation, Neoplastic , Neoplasms , Tetraploidy , Humans , Cell Transformation, Neoplastic/genetics , Neoplasms/genetics , Neoplasms/pathology , Animals , Epigenesis, Genetic , Aneuploidy , Cellular Senescence/genetics
9.
FASEB J ; 38(9): e23642, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690719

ABSTRACT

Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.


Subject(s)
Aging , Bone and Bones , Epigenesis, Genetic , Homeostasis , Humans , Aging/genetics , Aging/physiology , Animals , Bone and Bones/metabolism , DNA Methylation , Osteoporosis/genetics , Osteoporosis/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Osteogenesis/physiology , Histones/metabolism
11.
Epigenetics ; 19(1): 2360160, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38820227

ABSTRACT

Breast cancer is the most common cancer diagnosed in women and is often treated with chemotherapy. Although previous studies have demonstrated increasing biological age in patients who receive chemotherapy, evaluation of this association with DNA methylation-based markers of biological ageing may provide novel insight into the role of chemotherapy on the ageing process. We therefore sought to investigate the association between chemotherapy and markers of biological ageing as estimated from DNA methylation in women with breast cancer. DNA methylation profiling was performed on peripheral blood collected from 18 patients before and after the first cycle of chemotherapy using the Infinium HumanMethylation450 BeadChip. Six markers of biological age acceleration were estimated from DNA methylation levels. Multiple linear regression analyses were performed to evaluate the association between each metric of biological age acceleration and chemotherapy. After adjusting for chronological age and race, intrinsic epigenetic age acceleration (p = 0.041), extrinsic epigenetic age acceleration (p = 0.050), PhenoAge acceleration (p = 0.001), GrimAge acceleration (p < 0.001), and DunedinPACE (p = 0.006) were significantly higher and telomere length (p = 0.027) was significantly lower following the first cycle of chemotherapy compared to before treatment initiation. These results demonstrate greater biological ageing as estimated from DNA methylation following chemotherapy in women with breast cancer. Our findings illustrate that cytotoxic therapies may modulate the ageing process among breast cancer patients and may also have implications for age-related health conditions in cancer survivors.


Subject(s)
Aging , Breast Neoplasms , DNA Methylation , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Middle Aged , Aging/genetics , Adult , Epigenesis, Genetic , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects
12.
JCO Precis Oncol ; 8: e2300325, 2024 May.
Article in English | MEDLINE | ID: mdl-38820476

ABSTRACT

PURPOSE: Sarcomas are a complex group of highly aggressive and metastatic tumors with over 100 distinct subtypes. Because of their diversity and rarity, it is challenging to generate multisarcoma signatures that are predictive of patient outcomes. MATERIALS AND METHODS: Here, we identify a DNA methylation signature for progression and metastasis of numerous sarcoma subtypes using multiple epigenetic and genomic patient data sets. Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are highly metastatic sarcomas with frequent loss of the histone methyltransferase, PRC2. Loss of PRC2 is associated with MPNST metastasis and plays a critical noncanonical role in DNA methylation. RESULTS: We found that over 900 5'-C-phosphate-G-3' (CpGs) were hypermethylated in MPNSTs with PRC2 loss. Furthermore, we identified eight differentially methylated CpGs in the IL17D/RD family that correlate with the progression and metastasis of MPNSTs in two independent patient data sets. Similar trends were identified in other sarcoma subtypes, including osteosarcoma, rhabdomyosarcoma, and synovial sarcoma. Analysis of scRNAseq data sets determined that IL17D/RD expression occurs in both the tumor cells and the surrounding stromal populations. CONCLUSION: These results might have broad implications for the clinical management and surveillance of sarcoma.


Subject(s)
DNA Methylation , Disease Progression , Interleukin-17 , Humans , Interleukin-17/genetics , Neoplasm Metastasis/genetics , Gene Expression Profiling , Epigenesis, Genetic , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/pathology , Transcriptome , Neurofibrosarcoma/genetics , Neurofibrosarcoma/pathology
13.
Front Immunol ; 15: 1393392, 2024.
Article in English | MEDLINE | ID: mdl-38774880

ABSTRACT

This review provides a comprehensive analysis of the critical role played by macrophages and their underlying mechanisms in the progression of diabetic cardiomyopathy (DCM). It begins by discussing the origins and diverse subtypes of macrophages, elucidating their spatial distribution and modes of intercellular communication, thereby emphasizing their significance in the pathogenesis of DCM. The review then delves into the intricate relationship between macrophages and the onset of DCM, particularly focusing on the epigenetic regulatory mechanisms employed by macrophages in the context of DCM condition. Additionally, the review discusses various therapeutic strategies aimed at targeting macrophages to manage DCM. It specifically highlights the potential of natural food components in alleviating diabetic microvascular complications and examines the modulatory effects of existing hypoglycemic drugs on macrophage activity. These findings, summarized in this review, not only provide fresh insights into the role of macrophages in diabetic microvascular complications but also offer valuable guidance for future therapeutic research and interventions in this field.


Subject(s)
Diabetic Cardiomyopathies , Macrophages , Diabetic Cardiomyopathies/immunology , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/pathology , Humans , Macrophages/immunology , Macrophages/metabolism , Animals , Hypoglycemic Agents/therapeutic use , Epigenesis, Genetic
14.
Mol Biol Rep ; 51(1): 638, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727891

ABSTRACT

BACKGROUND: Treatment-resistant depression (TRD) is a condition in a subset of depressed patients characterized by resistance to antidepressant medications. The global prevalence of TRD has been steadily increasing, yet significant advancements in its diagnosis and treatment remain elusive despite extensive research efforts. The precise underlying pathogenic mechanisms are still not fully understood. Epigenetic mechanisms play a vital role in a wide range of diseases. In recent years, investigators have increasingly focused on the regulatory roles of miRNAs in the onset and progression of TRD. miRNAs are a class of noncoding RNA molecules that regulate the translation and degradation of their target mRNAs via interaction, making the exploration of their functions in TRD essential for elucidating their pathogenic mechanisms. METHODS AND RESULTS: A systematic search was conducted in four databases, namely PubMed, Web of Science, Cochrane Library, and Embase, focusing on studies related to treatment-resistant depression and miRNAs. The search was performed using terms individually or in combination, such as "treatment-resistant depression," "medication-resistant depression," and "miRNAs." The selected articles were reviewed and collated, covering the time period from the inception of each database to the end of February 2024. We found that miRNAs play a crucial role in the pathophysiology of TRD through three main aspects: 1) involvement in miRNA-mediated inflammatory responses (including miR-155, miR-345-5p, miR-146a, and miR-146a-5p); 2) influence on 5-HT transport processes (including miR-674,miR-708, and miR-133a); and 3) regulation of synaptic plasticity (including has-miR-335-5p,has-miR- 1292-3p, let-7b, and let-7c). Investigating the differential expression and interactions of these miRNAs could contribute to a deeper understanding of the molecular mechanisms underlying TRD. CONCLUSIONS: miRNAs might play a pivotal role in the pathogenesis of TRD. Gaining a deeper understanding of the roles and interrelations of miRNAs in TRD will contribute to elucidating disease pathogenesis and potentially provide avenues for the development of novel diagnostic and therapeutic strategies.


Subject(s)
Depressive Disorder, Treatment-Resistant , MicroRNAs , Humans , MicroRNAs/genetics , Depressive Disorder, Treatment-Resistant/genetics , Depressive Disorder, Treatment-Resistant/therapy , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Gene Expression Regulation , Epigenesis, Genetic
15.
Cell Mol Life Sci ; 81(1): 222, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767725

ABSTRACT

BACKGROUND: Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE: Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS: Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION: Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epigenome , Genome, Plant , Solanum lycopersicum , Solanum lycopersicum/genetics , DNA Methylation/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics
16.
Arch Dermatol Res ; 316(5): 195, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775978

ABSTRACT

Chronic arsenic exposure is a global health hazard significantly associated with the development of deleterious cutaneous changes and increased keratinocyte cancer risk. Although arsenic exposure is associated with broad-scale cellular and molecular changes, gaps exist in understanding how these changes impact the skin and facilitate malignant transformation. Recently developed epigenetic "clocks" can accurately predict chronological, biological and mitotic age, as well as telomere length, on the basis of tissue DNA methylation state. Deviations of predicted from expected age (epigenetic age dysregulation) have been associated with numerous complex diseases, increased all-cause mortality and higher cancer risk. We investigated the ability of these algorithms to detect molecular changes associated with chronic arsenic exposure in the context of associated skin lesions. To accomplish this, we utilized a multi-algorithmic approach incorporating seven "clocks" (Horvath, Skin&Blood, PhenoAge, PCPhenoAge, GrimAge, DNAmTL and epiTOC2) to analyze peripheral blood of pediatric and adult cohorts of arsenic-exposed (n = 84) and arsenic-naïve (n = 33) individuals, among whom n = 18 were affected by skin lesions. Arsenic-exposed adults with skin lesions exhibited accelerated epigenetic (Skin&Blood: + 7.0 years [95% CI 3.7; 10.2], q = 6.8 × 10-4), biological (PhenoAge: + 5.8 years [95% CI 0.7; 11.0], q = 7.4 × 10-2, p = 2.8 × 10-2) and mitotic age (epiTOC2: + 19.7 annual cell divisions [95% CI 1.8; 37.7], q = 7.4 × 10-2, p = 3.2 × 10-2) compared to healthy arsenic-naïve individuals; and accelerated epigenetic age (Skin&Blood: + 2.8 years [95% CI 0.2; 5.3], q = 2.4 × 10-1, p = 3.4 × 10-2) compared to lesion-free arsenic-exposed individuals. Moreover, lesion-free exposed adults exhibited accelerated Skin&Blood age (+ 4.2 [95% CI 1.3; 7.1], q = 3.8 × 10-2) compared to their arsenic-naïve counterparts. Compared to the pediatric group, arsenic-exposed adults exhibited accelerated epigenetic (+ 3.1 to 4.4 years (95% CI 1.2; 6.4], q = 2.4 × 10-4-3.1 × 10-3), biological (+ 7.4 to 7.8 years [95% CI 3.0; 12.1] q = 1.6 × 10-3-2.8 × 10-3) and mitotic age (+ 50.0 annual cell divisions [95% CI 15.6; 84.5], q = 7.8 × 10-3), as well as shortened telomere length (- 0.23 kilobases [95% CI - 0.13; - 0.33], q = 2.4 × 10-4), across all seven algorithms. We demonstrate that lifetime arsenic exposure and presence of arsenic-associated skin lesions are associated with accelerated epigenetic, biological and mitotic age, and shortened telomere length, reflecting altered immune signaling and genomic regulation. Our findings highlight the usefulness of DNA methylation-based algorithms in identifying deleterious molecular changes associated with chronic exposure to the heavy metal, serving as potential prognosticators of arsenic-induced cutaneous malignancy.


Subject(s)
Arsenic , DNA Methylation , Epigenesis, Genetic , Telomere Shortening , Humans , Adult , Arsenic/adverse effects , Arsenic/toxicity , Female , DNA Methylation/drug effects , Telomere Shortening/drug effects , Male , Child , Adolescent , Young Adult , Middle Aged , Mitosis/drug effects , Mitosis/genetics , Skin/pathology , Skin/drug effects , Skin Diseases/chemically induced , Skin Diseases/genetics , Skin Diseases/pathology , Skin Neoplasms/genetics , Skin Neoplasms/chemically induced , Skin Neoplasms/pathology
17.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732262

ABSTRACT

Vitamin B12 (cobalamin) is an essential nutrient for humans and animals. Metabolically active forms of B12-methylcobalamin and 5-deoxyadenosylcobalamin are cofactors for the enzymes methionine synthase and mitochondrial methylmalonyl-CoA mutase. Malfunction of these enzymes due to a scarcity of vitamin B12 leads to disturbance of one-carbon metabolism and impaired mitochondrial function. A significant fraction of the population (up to 20%) is deficient in vitamin B12, with a higher rate of deficiency among elderly people. B12 deficiency is associated with numerous hallmarks of aging at the cellular and organismal levels. Cellular senescence is characterized by high levels of DNA damage by metabolic abnormalities, increased mitochondrial dysfunction, and disturbance of epigenetic regulation. B12 deficiency could be responsible for or play a crucial part in these disorders. In this review, we focus on a comprehensive analysis of molecular mechanisms through which vitamin B12 influences aging. We review new data about how deficiency in vitamin B12 may accelerate cellular aging. Despite indications that vitamin B12 has an important role in health and healthy aging, knowledge of the influence of vitamin B12 on aging is still limited and requires further research.


Subject(s)
Aging , Inflammation , Vitamin B 12 Deficiency , Vitamin B 12 , Humans , Vitamin B 12/metabolism , Animals , Aging/metabolism , Vitamin B 12 Deficiency/metabolism , Inflammation/metabolism , Epigenesis, Genetic , Cellular Senescence , Mitochondria/metabolism , DNA Damage
18.
Appl Microbiol Biotechnol ; 108(1): 332, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734756

ABSTRACT

Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.


Subject(s)
Chaetomium , Histone Deacetylases , Multigene Family , Polyketides , Secondary Metabolism , Chaetomium/genetics , Chaetomium/enzymology , Chaetomium/metabolism , Secondary Metabolism/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Polyketides/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Biosynthetic Pathways/genetics , Epigenesis, Genetic
19.
Proc Natl Acad Sci U S A ; 121(22): e2320468121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768356

ABSTRACT

Spontaneous gain or loss of DNA methylation occurs in plant and animal genomes, and DNA methylation changes can lead to meiotically stable epialleles that generate heritable phenotypic diversity. However, it is unclear whether transgenerational epigenetic stability may be regulated by any cellular factors. Here, we examined spontaneously occurring variations in DNA methylation in wild-type and ros1 mutant Arabidopsis plants that were propagated for ten generations from single-seed descent. We found that the ros1 mutant, which is defective in active DNA demethylation, showed an increased transgenerational epimutation rate. The ros1 mutation led to more spontaneously gained methylation than lost methylation at individual cytosines, compared to the wild type which had similar numbers of spontaneously gained and lost methylation cytosines. Consistently, transgenerational differentially methylated regions were also biased toward hypermethylation in the ros1 mutant. Our results reveal a genetic contribution of the ROS1 DNA demethylase to transgenerational epigenetic stability and suggest that ROS1 may have an unexpected surveillance function in preventing transgenerational DNA methylation increases.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Demethylation , DNA Methylation , Epigenesis, Genetic , Mutation , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , DNA, Plant/genetics , DNA, Plant/metabolism , Nuclear Proteins
20.
ACS Nano ; 18(20): 13226-13240, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712706

ABSTRACT

Oncogene activation and epigenome dysregulation drive tumor initiation and progression, contributing to tumor immune evasion and compromising the clinical response to immunotherapy. Epigenetic immunotherapy represents a promising paradigm in conquering cancer immunosuppression, whereas few relevant drug combination and delivery strategies emerge in the clinic. This study presents a well-designed triune nanomodulator, termed ROCA, which demonstrates robust capabilities in tumor epigenetic modulation and immune microenvironment reprogramming for cancer epigenetic immunotherapy. The nanomodulator is engineered from a nanoscale framework with epigenetic modulation and cascaded catalytic activity, which self-assembles into a nanoaggregate with tumor targeting polypeptide decoration that enables loading of the immunogenic cell death (ICD)-inducing agent. The nanomodulator releases active factors specifically triggered in the tumor microenvironment, represses oncogene expression, and initiates the type 1 T helper (TH1) cell chemokine axis by reversing DNA hypermethylation. This process, together with ICD induction, fundamentally reprograms the tumor microenvironment and significantly enhances the rejuvenation of exhausted cytotoxic T lymphocytes (CTLs, CD8+ T cells), which synergizes with the anti-PD-L1 immune checkpoint blockade and results in a boosted antitumor immune response. Furthermore, this strategy establishes long-term immune memory and effectively prevents orthotopic colon cancer relapse. Therefore, the nanomodulator holds promise as a standalone epigenetic immunotherapy agent or as part of a combination therapy with immune checkpoint inhibitors in preclinical cancer models, broadening the array of combinatorial strategies in cancer immunotherapy.


Subject(s)
Epigenesis, Genetic , Immunotherapy , T-Lymphocytes, Cytotoxic , Tumor Microenvironment , Animals , Epigenesis, Genetic/drug effects , Mice , T-Lymphocytes, Cytotoxic/immunology , Humans , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Nanoparticles/chemistry , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...