Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 538
Filter
1.
Epileptic Disord ; 26(3): 341-349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752894

ABSTRACT

OBJECTIVE: DEPDC5 emerges to play a vital role in focal epilepsy. However, genotype-phenotype correlation in DEPDC5-related focal epilepsies is challenging and controversial. In this study, we aim to investigate the genotypic and phenotypic features in DEPDC5-affected patients. METHODS: Genetic testing combined with criteria published by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), was used to identify pathogenic/likely pathogenic variants in DEPDC5 among the cohort of 479 patients with focal epilepsy. Besides, the literature review was performed to explore the genotype-phenotype correlation and the penetrance in DEPDC5-related focal epilepsies. RESULTS: Eight unrelated probands were revealed to carry different pathogenic/likely pathogenic variants in DEPDC5 and the total prevalence of DEPDC5-related focal epilepsy was 1.67% in the cohort. Sixty-five variants from 28 studies were included in our review. Combined with the cases reported, null variants accounted for a larger proportion than missense variants and were related to unfavorable prognosis (drug resistance or even sudden unexpected death in epilepsy; χ2 = 5.429, p = .020). And, the prognosis of probands with developmental delay/intellectual disability or focal cortical dysplasia was worse than that of probands with simple epilepsy (χ2 = -, p = .006). Besides, the overall penetrance of variants in DEPDC5 was 68.96% (231/335). SIGNIFICANCE: The study expands the variant spectrum of DEPDC5 and proves that the DEPDC5 variant plays a significant role in focal epilepsy. Due to the characteristics of phenotypic heterogeneity and incomplete penetrance, genetic testing is necessary despite no specific family history. And we propose to adopt the ACMG/AMP criteria refined by ClinGen Sequence Variant Interpretation Working Group, for consistency in usage and transparency in classification rationale. Moreover, we reveal an important message to clinicians that the prognosis of DEPDC5-affected patients is related to the variant type and complications.


Subject(s)
Epilepsies, Partial , GTPase-Activating Proteins , Genetic Association Studies , Phenotype , Humans , GTPase-Activating Proteins/genetics , Epilepsies, Partial/genetics , Epilepsies, Partial/physiopathology , Male , Female , Child , Cohort Studies , Child, Preschool , Adult , Adolescent , Genotype , Penetrance , Young Adult , Epilepsy/genetics , Epilepsy/physiopathology
2.
J Clin Neurosci ; 123: 15-22, 2024 May.
Article in English | MEDLINE | ID: mdl-38508018

ABSTRACT

BACKGROUND: Previous studies have established familial occurrence of epilepsy and seizure disorders and early age of epilepsy onset as predictors of genetic epilepsy, but have not evaluated the rate of their occurrence in patients with different epilepsy etiology. Our study determines the distribution of familial occurrence and age of epilepsy onset across structural focal epilepsy (FE) etiology in a large FE cohort. METHODS: Records of 1354 consecutive patients evaluated for epilepsy and seizure disorders in The Neurology Clinic, University Clinical Center of Serbia from 2008 to 2019 were screened for FE. Structural etiology, lobar diagnosis, familial occurrence, and age at epilepsy onset were determined. Patients with a. nonlesional focal epilepsy (NLFE), b. hippocampal sclerosis (HS) and c. congenital or perinatal etiology (CPE) were classified as NAFE, while patients with an identified acquired focal epilepsy (AFE) constituted the control group. RESULTS: We identified 965 patients with FE, 329 (34.1 %) with NLFE, 213 (22.1 %) with HS, 174 (18.0 %) with CPE and 249 (25.8 %) with AFE. Familial occurrence was identified in 160 (16.6 %), 19.1 % of patients with NAFE and 9.2 % of AFE (p = 0.003). Patients with NAFE had a younger age of epilepsy onset (13 vs. 18 years, p < 0.001). The highest proportion of familial occurrence was found in patients with NLFE (23.7 %), while the youngest median age of epilepsy onset was identified in patients with HS (12 years) and CPE (11 years). CONCLUSION: Patients with NAFE frequently have familial occurrence of epilepsy and have an earlier age of epilepsy onset than patients with AFE.


Subject(s)
Age of Onset , Epilepsies, Partial , Magnetic Resonance Imaging , Humans , Epilepsies, Partial/genetics , Epilepsies, Partial/etiology , Epilepsies, Partial/diagnostic imaging , Female , Male , Adult , Middle Aged , Adolescent , Young Adult , Child , Serbia/epidemiology , Child, Preschool , Hippocampus/pathology , Hippocampus/diagnostic imaging , Retrospective Studies
3.
Epilepsy Behav ; 153: 109716, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508103

ABSTRACT

OBJECTIVE: This study investigates the prevalence of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway in surgical specimens of malformations of cortical development (MCDs) and cases with negative histology. The study also aims to evaluate the predictive value of genotype-histotype findings on the surgical outcome. METHODS: The study included patients with drug-resistant focal epilepsy who underwent epilepsy surgery. Cases were selected based on histopathological diagnosis, focusing on MCDs and negative findings. We included brain tissues both as formalin-fixed, paraffin-embedded (FFPE) or fresh frozen (FF) samples. Single-molecule molecular inversion probes (smMIPs) analysis was conducted, targeting the MTOR gene in FFPE samples and 10 genes within the mTOR pathway in FF samples. Correlations between genotype-histotype and surgical outcome were examined. RESULTS: We included 78 patients for whom we obtained 28 FFPE samples and 50 FF tissues. Seventeen pathogenic variants (22 %) were identified and validated, with 13 being somatic within the MTOR gene and 4 germlines (2 DEPDC5, 1 TSC1, 1 TSC2). Pathogenic variants in mTOR pathway genes were exclusively found in FCDII and TSC cases, with a significant association between FCD type IIb and MTOR genotype (P = 0.003). Patients carrying mutations had a slightly better surgical outcome than the overall cohort, however it results not significant. The FCDII diagnosed cases more frequently had normal neuropsychological test, a higher incidence of auras, fewer multiple seizure types, lower occurrence of seizures with awareness impairment, less ictal automatisms, fewer Stereo-EEG investigations, and a longer period long-life of seizure freedom before surgery. SIGNIFICANCE: This study confirms that somatic MTOR variants represent the primary genetic alteration detected in brain specimens from FCDII/TSC cases, while germline DEPDC5, TSC1/TSC2 variants are relatively rare. Systematic screening for these mutations in surgically treated patients' brain specimens can aid histopathological diagnoses and serve as a biomarker for positive surgical outcomes. Certain clinical features associated with pathogenic variants in mTOR pathway genes may suggest a genetic etiology in FCDII patients.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Malformations of Cortical Development, Group I , Malformations of Cortical Development , Adult , Humans , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/surgery , TOR Serine-Threonine Kinases , Epilepsies, Partial/genetics , Epilepsies, Partial/diagnosis , Seizures , Germ Cells/pathology , Malformations of Cortical Development/pathology
5.
J Neurol ; 271(5): 2503-2508, 2024 May.
Article in English | MEDLINE | ID: mdl-38261030

ABSTRACT

We evaluated the utility of genetic testing in the pre-surgical evaluation of pediatric patients with drug-resistant focal epilepsy. This single-center retrospective study reviewed the charts of all pediatric patients referred for epilepsy surgery evaluation over a 5-year period. We extracted and analyzed results of genetic testing as well as clinical, EEG, and neuroimaging data. Of 125 patients referred for epilepsy surgical evaluation, 86 (69%) had some form of genetic testing. Of these, 18 (21%) had a pathogenic or likely pathogenic variant identified. Genes affected included NPRL3 (3 patients, all related), TSC2 (3 patients), KCNH1, CHRNA4, SPTAN1, DEPDC5, SCN2A, ARX, SCN1A, DLG4, and ST5. One patient had ring chromosome 20, one a 7.17p12 duplication, and one a 15q13 deletion. In six patients, suspected epileptogenic lesions were identified on brain MRI that were thought to be unrelated to the genetic finding. A specific medical therapy choice was allowed due to genetic diagnosis in three patients who did not undergo surgery. Obtaining a molecular diagnosis may dramatically alter management in pediatric patients with drug-resistant focal epilepsy. Genetic testing should be incorporated as part of standard investigations in the pre-surgical work-up of pediatric patients with drug-resistant focal epilepsy.


Subject(s)
Drug Resistant Epilepsy , Genetic Testing , Humans , Child , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Male , Female , Retrospective Studies , Adolescent , Child, Preschool , Infant , Electroencephalography , Magnetic Resonance Imaging , Epilepsies, Partial/genetics , Epilepsies, Partial/surgery , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/diagnosis , Preoperative Care
6.
Clin Genet ; 105(4): 397-405, 2024 04.
Article in English | MEDLINE | ID: mdl-38173219

ABSTRACT

CCDC88C gene, which encodes coiled-coil domain containing 88C, is essential for cell communication during neural development. Variants in the CCDC88C caused congenital hydrocephalus, some accompanied by seizures. In patients with epilepsy without acquired etiologies, we performed whole-exome sequencing (trio-based). Two de novo and two biallelic CCDC88C variants were identified in four cases with focal (partial) epilepsy. These variants did not present or had low frequencies in the gnomAD populations and were predicted to be damaging by multiple computational algorithms. Patients with de novo variants presented with adult-onset epilepsy, whereas patients with biallelic variants displayed infant-onset epilepsy. They all responded well to anti-seizure medications and were seizure-free. Further analysis showed that de novo variants were located at crucial domains, whereas one paired biallelic variants were located outside the crucial domains, and the other paired variant had a non-classical splicing and a variant located at crucial domain, suggesting a sub-molecular effect. CCDC88C variants associated with congenital hydrocephalus were all truncated, whereas epilepsy-associated variants were mainly missense, the proportion of which was significantly higher than that of congenital hydrocephalus-associated variants. CCDC88C is potentially associated with focal epilepsy with favorable outcome. The underlying mechanisms of phenotypic variation may correlation between genotype and phenotype.


Subject(s)
Epilepsies, Partial , Epilepsy , Hydrocephalus , Infant , Adult , Humans , Epilepsies, Partial/genetics , Epilepsy/genetics , Hydrocephalus/genetics , Genotype , Genetic Association Studies , Microfilament Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics
7.
Curr Opin Neurol ; 37(2): 105-114, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38235675

ABSTRACT

PURPOSE OF REVIEW: Over the past decade, it has become clear that brain somatic mosaicism is an important contributor to many focal epilepsies. The number of cases and the range of underlying pathologies with somatic mosaicism are rapidly increasing. This growth in somatic variant discovery is revealing dysfunction in distinct molecular pathways in different focal epilepsies. RECENT FINDINGS: We briefly summarize the current diagnostic yield of pathogenic somatic variants across all types of focal epilepsy where somatic mosaicism has been implicated and outline the specific molecular pathways affected by these variants. We will highlight the recent findings that have increased diagnostic yields such as the discovery of pathogenic somatic variants in novel genes, and new techniques that allow the discovery of somatic variants at much lower variant allele fractions. SUMMARY: A major focus will be on the emerging evidence that somatic mosaicism may contribute to some of the more common focal epilepsies such as temporal lobe epilepsy with hippocampal sclerosis, which could lead to it being re-conceptualized as a genetic disorder.


Subject(s)
Epilepsies, Partial , Epilepsy, Temporal Lobe , Humans , Mosaicism , Epilepsies, Partial/genetics , Brain , Mutation
8.
Seizure ; 116: 65-73, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37394306

ABSTRACT

PURPOSE: The SCAF4 gene encodes serine/arginine-related carboxyl-terminal domain-associated factor 4, which is highly expressed in the brain and potentially affects neurodevelopment. However, the functional significance of SCAF4 variants in human diseases remains unknown. METHODS: Trio-based whole-exome sequencing was performed in three individuals with focal epilepsy. Bioinformatics tools were used to assess the pathogenicity of SCAF4 variants. Knockout scaf4a/b zebrafish were created using CRISPR-Cas9 used to validate the phenotype. RESULTS: SCAF4 variants were identified in three individuals from three unrelated families with focal epilepsy. All patients had focal seizures and focal discharges on EEG recordings, with intellectual disability or motor retardation, skeletal abnormalities, and one had cryptorchidism. However, no recurrence was observed after short-term ASMs treatment. The identified SCAF4 variants included two nonsense variants and one compound heterozygous variant, consisting of a missense and an in-frame variant. A low frequency of SCAF4 variants was observed in gnomAD in this study. Computational modelling has suggested that missense variants lead to functional impairments. In zebrafish, abnormal epileptiform signals, skeletal development, and neurodevelopment have been found in scaf4a/b knockout compared to wild-type zebrafish. CONCLUSION: These results indicate that SCAF4 is associated with focal epilepsy accompanied by multisystem disorders. Otherwise, the management of patients with SCAF4 variants requires more attention to multisystem involvement.


Subject(s)
Epilepsies, Partial , Intellectual Disability , Male , Animals , Humans , Zebrafish , Epilepsies, Partial/complications , Epilepsies, Partial/genetics , Seizures/complications , Brain , Intellectual Disability/genetics , Serine-Arginine Splicing Factors/genetics
9.
Seizure ; 116: 100-106, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37741786

ABSTRACT

BACKGROUND: NPRL2-related epilepsy, caused by pathogenic germline variants of the NPRL2 gene, is a newly discovered childhood epilepsy linked to enhanced mTORC1 signalling. However, the phenotype and genotype of NPRL2 variants are still poorly understood. Here, we summarize the association between the phenotype and genotype of NPRL2-related epilepsy. METHODS: A retrospective analysis was conducted for four Chinese children with epilepsy due to likely pathogenic NPRL2 variants identified through whole-exome sequencing (WES). Previous reports of patients with NPRL2-related epilepsy were reviewed systematically. RESULTS: One of our patients presented focal epilepsy involving the central region, which should be distinguished from self-limited epilepsy with centrotemporal spikes (SeLECTS). The four novel likely pathogenic NPRL2 variants consisted of two nonsense variants, one frameshift variant, and one copy number variant (CNV). Bioinformatics analysis revealed the two nonsense variants to be highly conserved and cause alterations in protein structure. Including our four cases, a total of 33 patients with NPRL2-related epilepsy have been identified to date. The most common presentation is focal epilepsy (70%), including sleep-related hypermotor epilepsy (SHE), temporal lobe epilepsy (TLE), and frontal lobe epilepsy (FLE). Infantile epileptic spasms syndrome (IESS) is also a notable feature of NPRL2-related epilepsy. Malformations of cortical development (MCD, 8/20), especially focal cortical dysplasia (FCD, 6/20), are common neuroimaging abnormalities. Two-thirds of the NPRL2 variants reported are loss of function (LoF) (14/21). Among these mutations, c.100C>T (p.Arg34*) and c.314T>C (p.Leu105Pro) have been detected in two families (likely due to a founder effect). CONCLUSION: NPRL2-related epilepsy shows high phenotypic and genotypic heterogeneity. Our study expands the genotype spectrum of NPRL2-related epilepsy, and the phenotype of focal epilepsy involving the central region should be clearly distinguished with SeLECTS, with reference value for clinical diagnosis.


Subject(s)
Epilepsies, Partial , Epilepsy, Reflex , Child , Humans , Retrospective Studies , GTPase-Activating Proteins/genetics , Epilepsies, Partial/genetics , Epilepsies, Partial/diagnosis , Genotype , Phenotype , Tumor Suppressor Proteins/genetics
10.
Epilepsia Open ; 9(1): 33-40, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37902097

ABSTRACT

Nitrogen permease regulator-like 3 (NPRL3) has been reported to play a role in seizure onset. The principal manifestation of NPRL3-related epilepsy is a range of epilepsy-associated syndromes, such as familial focal epilepsy with variable foci (FFEVF), sleep-related hypermotor epilepsy (SHE), and temporal lobe epilepsy (TLE). The association between phenotype and genotype of NPRL3 mutations remains inadequately described. This study aimed to explore the phenotypic and genotypic spectra of NPRL3-related epilepsy. We reported two novel NPRL3 variants in two unrelated epilepsy cases, including a nonsense (c.1174C > T, p.Gln392*) and a missense variant (c.1322C > T, p.Thr441Met). Following a review of the literature, a total of 116 cases of NPRL3-related epilepsy were assessed, mostly with nonsense and frameshift mutations. Our findings suggest that patients harboring various NPRL3 variants exhibit variable clinical manifestations. In addition, it may be worthwhile to consider the existence of NPRL3 mutations in epilepsy patients with a family history. This study provides useful information for the treatment and prognosis by expanding the phenotypic and genotypic spectrum of NPRL3-related epilepsy. PLAIN LANGUAGE SUMMARY: This study expands the phenotypic and genotypic spectra of NPRL3-related epilepsy by reporting two cases with different novel variants. Following a review of the literature, it was observed that patients harboring various NPRL3 variants exhibited a variability of clinical manifestations. Also, patients carrying nonsense mutations are frequently prone to drug resistance and other severe comorbidities such as developmental delay, but more cases need to be collected to confirm these findings.


Subject(s)
Epilepsies, Partial , Epilepsy, Reflex , Epileptic Syndromes , Humans , GTPase-Activating Proteins/genetics , Epilepsies, Partial/genetics , Genotype , Phenotype
11.
Brain ; 147(4): 1264-1277, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37939785

ABSTRACT

Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epileptic Syndromes , Malformations of Cortical Development , Humans , Fluorodeoxyglucose F18 , Malformations of Cortical Development/genetics , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/genetics , Epilepsies, Partial/pathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/surgery , Magnetic Resonance Imaging/methods , Seizures/complications , TOR Serine-Threonine Kinases , GTPase-Activating Proteins/genetics
12.
Neuropediatrics ; 55(1): 1-8, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984419

ABSTRACT

There is insufficient evidence regarding the efficacy of epilepsy surgery in patients with pharmacoresistant focal epilepsy and coexistent DEPDC5 (dishevelled EGL-10 and pleckstrin domain-containing protein 5) pathogenic (P), likely pathogenic (LP), or variance of unknown significance (VUS) variants. To conduct a systematic review on the literature regarding the use and efficacy of epilepsy surgery as an intervention for patients with DEPDC5 variants who have pharmacoresistant epilepsy. A systematic review of the current literature published regarding the outcomes of epilepsy surgery for patients with DEPDC5 variants was conducted. Demographics and individual patient data were recorded and analyzed. Subsequent statistical analysis was performed to assess significance of the findings. A total of eight articles comprising 44 DEPDC5 patients with genetic variants undergoing surgery were included in this study. The articles primarily originated in high-income countries (5/8, 62.5%). The average age of the subjects was 10.06 ± 9.41 years old at the time of study. The most common form of epilepsy surgery was focal resection (38/44, 86.4%). Thirty-seven of the 40 patients (37/40, 92.5%) with reported seizure frequency results had improvement. Twenty-nine out of 38 patients (29/38, 78.4%) undergoing focal resection achieved Engel Score I postoperatively, and two out of four patients achieved International League Against Epilepsy I (50%). Epilepsy surgery is effective in patients with pharmacoresistant focal epilepsy and coexistent DEPDC5 P, LP, or VUS variants.


Subject(s)
Epilepsies, Partial , Epilepsy , Malformations of Cortical Development , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Seizures/genetics , Seizures/surgery , Epilepsies, Partial/genetics , Epilepsies, Partial/surgery , GTPase-Activating Proteins/genetics
13.
Seizure ; 114: 40-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039806

ABSTRACT

PURPOSE: At onset of generalized seizures, focal electroclinical features are commonly seen, while generalized onset seizures with focal evolution (GOFE) are largely unknown bearing the risk of misclassification. METHODS: In two German epilepsy-centers, patients with GOFE documented by video-EEG monitoring (VEM) between 2017 and 2022 were identified retrospectively. In addition to analysis of ictal electroclinical features, detailed epilepsy and family history, response to antiseizure medication (ASM), and findings from neuroimaging were considered. RESULTS: We identified five patients with GOFE, three females, age 14 to 22 years. All patients developed genetic generalized epilepsy in childhood or adolescence, each presenting with two or three generalized seizure types. In each of the five patients, one GOFE was recorded by VEM. At onset, EEG seizure patterns were characterized by generalized spike-wave discharges at 2.5 to 3.5/sec for 9 to 16 s followed by focal evolution of the discharges. Interictally, all patients presented with generalized spike-wave discharges without focal abnormalities. Semiology at onset was behavioral arrest in two patients and generalized increase in tone in one, while two onsets were clinically inapparent. Semiological signs during focal evolution were variable, comprising head and body version, figure 4 sign, unilateral arm clonic activity, and staring with oral automatisms. In one case, focality involved both hemispheres successively. CONCLUSION: Prominent focal semiological features in GOFE carry a high risk of misclassification as focal seizures and epilepsy and thus wrong choice of ASM. This calls for low-threshold VEM if any doubts of focal genesis of seizures exist.


Subject(s)
Epilepsies, Partial , Epilepsy, Generalized , Epilepsy , Female , Adolescent , Humans , Young Adult , Adult , Epilepsies, Partial/genetics , Epilepsies, Partial/diagnosis , Retrospective Studies , Seizures/genetics , Seizures/diagnosis , Epilepsy, Generalized/drug therapy , Electroencephalography
14.
Seizure ; 116: 30-36, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36894399

ABSTRACT

OBJECTIVES: The MED12 gene encodes mediator complex subunit 12, which is a component of the mediator complex involved in the transcriptional regulation of nearly all RNA polymerase II-dependent genes. MED12 variants have previously been associated with developmental disorders with or without nonspecific intellectual disability. This study aims to explore the association between MED12 variants and epilepsy. MATERIALS AND METHODS: Trios-based whole-exome sequencing was performed in a cohort of 349 unrelated cases with partial (focal) epilepsy without acquired causes. The genotype-phenotype correlations of MED12 variants were analyzed. RESULTS: Five hemizygous missense MED12 variants, including c.958A>G/p.Ile320Val, c.1757G>A/p.Ser586Asn, c.2138C>T/p.Pro713Leu, c.3379T>C/p.Ser1127Pro, and c.4219A>C/p.Met1407Leu were identified in five unrelated males with partial epilepsy. All patients showed infrequent focal seizures and achieved seizure free without developmental abnormalities or intellectual disability. All the hemizygous variants were inherited from asymptomatic mothers (consistent with the X-linked recessive inheritance pattern) and were absent in the general population. The two variants with damaging hydrogen bonds were associated with early-onset seizures. Further genotype-phenotype analysis revealed that congenital anomaly disorder (Hardikar syndrome) was associated with (de novo) destructive variants in an X-linked dominant inheritance pattern, whereas epilepsy was associated with missense variants in an X-linked recessive inheritance pattern. Phenotypic features of intellectual disability appeared as the intermediate phenotype in terms of both genotype and inheritance. Epilepsy-related variants were located at the MED12-LCEWAV domain and the regions between MED12-LCEWAV and MED12-POL. CONCLUSION: MED12 is a potentially causative gene for X-linked recessive partial epilepsy without developmental or intellectual abnormalities. The genotype-phenotype correlation of MED12 variants explains the phenotypic variations and can help the genetic diagnosis.


Subject(s)
Epilepsies, Partial , Epilepsy , Intellectual Disability , Male , Humans , Intellectual Disability/genetics , Genes, X-Linked/genetics , Phenotype , Mediator Complex/genetics , Mediator Complex/chemistry , Mediator Complex/metabolism , Epilepsies, Partial/genetics , Epilepsy/genetics , Transcription Factors/genetics
15.
Epilepsia ; 65(3): 792-804, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38101940

ABSTRACT

OBJECTIVE: Copy number variants (CNVs) contribute to genetic risk and genetic etiology of both rare and common epilepsies. Whereas many studies have explored the role of CNVs in sporadic or severe cases, fewer have been done in familial generalized and focal epilepsies. METHODS: We analyzed exome sequence data from 267 multiplex families and 859 first-degree relative pairs with a diagnosis of genetic generalized epilepsies or nonacquired focal epilepsies to predict CNVs. Validation and segregation studies were performed using an orthogonal method when possible. RESULTS: We identified CNVs likely to contribute to epilepsy risk or etiology in the probands of 43 of 1116 (3.9%) families, including known recurrent CNVs (16p13.11 deletion, 15q13.3 deletion, 15q11.2 deletion, 16p11.2 duplication, 1q21.1 duplication, and 5-Mb duplication of 15q11q13). We also identified CNVs affecting monogenic epilepsy genes, including four families with CNVs disrupting the DEPDC5 gene, and a de novo deletion of HNRNPU in one affected individual from a multiplex family. Several large CNVs (>500 kb) of uncertain clinical significance were identified, including a deletion in 18q, a large duplication encompassing the SCN1A gene, and a 15q13.3 duplication (BP4-BP5). SIGNIFICANCE: The overall CNV landscape in common familial epilepsies is similar to that of sporadic epilepsies, with large recurrent deletions at 15q11, 15q13, and 16p13 contributing in 2.5%-3% of families. CNVs that interrupt known epilepsy genes and rare, large CNVs were also identified. Multiple etiologies were found in a subset of families, emphasizing the importance of genetic testing for multiple affected family members. Rare CNVs found in a single proband remain difficult to interpret and require larger cohorts to confirm their potential role in disease. Overall, our work indicates that CNVs contribute to the complex genetic architecture of familial generalized and focal epilepsies, supporting the role for clinical testing in affected individuals.


Subject(s)
Epilepsies, Partial , Epilepsy , Epileptic Syndromes , Humans , DNA Copy Number Variations/genetics , Epilepsy/genetics , Epilepsies, Partial/genetics , Genetic Testing , Epileptic Syndromes/genetics
16.
Nat Genet ; 55(11): 1920-1928, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872450

ABSTRACT

Somatic mosaicism is a known cause of neurological disorders, including developmental brain malformations and epilepsy. Brain mosaicism is traditionally attributed to post-zygotic genetic alterations arising in fetal development. Here we describe post-zygotic rescue of meiotic errors as an alternate origin of brain mosaicism in patients with focal epilepsy who have mosaic chromosome 1q copy number gains. Genomic analysis showed evidence of an extra parentally derived chromosome 1q allele in the resected brain tissue from five of six patients. This copy number gain is observed only in patient brain tissue, but not in blood or buccal cells, and is strongly enriched in astrocytes. Astrocytes carrying chromosome 1q gains exhibit distinct gene expression signatures and hyaline inclusions, supporting a novel genetic association for astrocytic inclusions in epilepsy. Further, these data demonstrate an alternate mechanism of brain chromosomal mosaicism, with parentally derived copy number gain isolated to brain, reflecting rescue in other tissues during development.


Subject(s)
Epilepsies, Partial , Mosaicism , Humans , Mouth Mucosa , Mutation , Brain , Epilepsies, Partial/genetics
17.
Neuropathol Appl Neurobiol ; 49(5): e12937, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37740653

ABSTRACT

OBJECTIVE: Mesial Temporal Lobe Epilepsy-associated Hippocampal Sclerosis (MTLE-HS) is a syndrome associated with various aetiologies. We previously identified CD34-positive extravascular stellate cells (CD34+ cells) possibly related to BRAFV600E oncogenic variant in a subset of MTLE-HS. We aimed to identify the BRAFV600E oncogenic variants and characterise the CD34+ cells. METHODS: We analysed BRAFV600E oncogenic variant by digital droplet Polymerase Chain Reaction in 53 MTLE-HS samples (25 with CD34+ cells) and nine non-expansive neocortical lesions resected during epilepsy surgery (five with CD34+ cells). Ex vivo multi-electrode array recording, immunolabelling, methylation microarray and single nuclei RNAseq were performed on BRAFwildtype MTLE-HS and BRAFV600E mutant non-expansive lesion of hippocampus and/or neocortex. RESULTS: We identified a BRAFV600E oncogenic variant in five MTLE-HS samples with CD34+ cells (19%) and in five neocortical samples with CD34+ cells (100%). Single nuclei RNAseq of resected samples revealed two unique clusters of abnormal cells (including CD34+ cells) associated with senescence and oligodendrocyte development in both hippocampal and neocortical BRAFV600E mutant samples. The co-expression of the oncogene-induced senescence marker p16INK4A and the outer subventricular zone radial glia progenitor marker HOPX in CD34+ cells was confirmed by multiplex immunostaining. Pseudotime analysis showed that abnormal cells share a common lineage from progenitors to myelinating oligodendrocytes. Epilepsy surgery led to seizure freedom in eight of the 10 patients with BRAF mutant lesions. INTERPRETATION: BRAFV600E underlies a subset of MTLE-HS and epileptogenic non-expansive neocortical focal lesions. Detection of the oncogenic variant may help diagnosis and open perspectives for targeted therapies.


Subject(s)
Epilepsies, Partial , Epilepsy, Temporal Lobe , Epilepsy , Neocortex , Humans , Epilepsy, Temporal Lobe/pathology , Neocortex/pathology , Proto-Oncogene Proteins B-raf/genetics , Hippocampus/pathology , Epilepsies, Partial/genetics , Epilepsies, Partial/complications , Epilepsies, Partial/pathology , Epilepsy/pathology , Sclerosis/pathology , Magnetic Resonance Imaging
18.
Stem Cell Res ; 72: 103195, 2023 10.
Article in English | MEDLINE | ID: mdl-37722146

ABSTRACT

The DEPDC5 gene (OMIM 614191) has been proven to be a frequent cause of familial and sporadic focal epilepsy. A human induced pluripotent stem cell (iPSC) line was generated from a child diagnosed with focal epilepsy, which was caused by DEDPC5 mutation. The iPSC line expresses high pluripotency markers, carries the DEDPC5 mutation, and can differentiate into three germ layers in vitro. The iPSC lines offer a promising technique for studying the pathogenesis and conducting drug screening of DEDPC5-related epilepsy.


Subject(s)
Epilepsies, Partial , Induced Pluripotent Stem Cells , Child , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Epilepsies, Partial/genetics , Epilepsies, Partial/metabolism , Epilepsies, Partial/pathology , Heterozygote , GTPase-Activating Proteins/genetics
19.
Eur J Neurol ; 30(10): 3341-3346, 2023 10.
Article in English | MEDLINE | ID: mdl-37422919

ABSTRACT

BACKGROUND: Pathogenic variants in the GAP activity towards RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2, NPRL3) cause focal epilepsy through hyperactivation of the mechanistic target of rapamycin pathway. We report our experience using everolimus in patients with refractory GATOR1-related epilepsy. METHODS: We performed an open-label observational study of everolimus for drug-resistant epilepsy caused by variants in DEPDC5, NPRL2 and NPRL3. Everolimus was titrated to a target serum concentration (5-15 ng/mL). The primary outcome measure was change in mean monthly seizure frequency compared with baseline. RESULTS: Five patients were treated with everolimus. All had highly active (median baseline seizure frequency, 18/month) and refractory focal epilepsy (failed 5-16 prior anti-seizure medications). Four had DEPDC5 variants (three loss-of-function, one missense) and one had a NPRL3 splice-site variant. All patients with DEPDC5 loss-of-function variants had significantly reduced seizures (74.3%-86.1%), although one stopped everolimus after 12 months due to psychiatric symptoms. Everolimus was less effective in the patient with a DEPDC5 missense variant (43.9% seizure frequency reduction). The patient with NPRL3-related epilepsy had seizure worsening. The most common adverse event was stomatitis. CONCLUSIONS: Our study provides the first human data on the potential benefit of everolimus precision therapy for epilepsy caused by DEPDC5 loss-of-function variants. Further studies are needed to support our findings.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Humans , Everolimus/adverse effects , Epilepsies, Partial/drug therapy , Epilepsies, Partial/genetics , GTPase-Activating Proteins/genetics , Drug Resistant Epilepsy/drug therapy , Drug Resistant Epilepsy/genetics
20.
Epilepsia Open ; 8(4): 1314-1330, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37491868

ABSTRACT

OBJECTIVE: NPRL3-related epilepsy (NRE) is an emerging condition set within the wide GATOR-1 spectrum with a particularly heterogeneous and elusive phenotypic expression. Here, we delineated the genotype-phenotype spectrum of NRE, reporting an illustrative familial case and reviewing pertinent literature. METHODS: Through exome sequencing (ES), we investigated a 12-year-old girl with recurrent focal motor seizures during sleep, suggestive of sleep-related hypermotor epilepsy (SHE), and a family history of epilepsy in siblings. Variant segregation analysis was performed by Sanger sequencing. All previously published NRE patients were thoroughly reviewed and their electroclinical features were analyzed and compared with the reported subjects. RESULTS: In the proband, ES detected the novel NPRL3 frameshift variant (NM_001077350.3): c.151_152del (p.Thr51Glyfs*5). This variant is predicted to cause a loss of function and segregated in one affected brother. The review of 76 patients from 18 publications revealed the predominance of focal-onset seizures (67/74-90%), with mainly frontal and frontotemporal (32/67-47.7%), unspecified (19/67-28%), or temporal (9/67-13%) onset. Epileptic syndromes included familial focal epilepsy with variable foci (FFEVF) (29/74-39%) and SHE (11/74-14.9%). Fifteen patients out of 60 (25%) underwent epilepsy surgery, 11 of whom achieved complete seizure remission (11/15-73%). Focal cortical dysplasia (FCD) type 2A was the most frequent histopathological finding. SIGNIFICANCE: We reported an illustrative NPRL3-related epilepsy (NRE) family with incomplete penetrance. This condition consists of a heterogeneous spectrum of clinical and neuroradiological features. Focal-onset motor seizures are predominant, and almost half of the cases fulfill the criteria for SHE or FFEVF. MRI-negative cases are prevalent, but the association with malformations of cortical developments (MCDs) is significant, especially FCD type 2a. The beneficial impact of epilepsy surgery in patients with MCD-related epilepsy further supports the inclusion of brain MRI in the workup of NRE patients.


Subject(s)
Epilepsies, Partial , Epilepsy, Partial, Motor , Epilepsy, Reflex , Epileptic Syndromes , Male , Female , Humans , Child , Epilepsies, Partial/genetics , Seizures/genetics , GTPase-Activating Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...