Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.911
Filter
1.
Brain Behav ; 14(6): e3549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849979

ABSTRACT

BACKGROUND: Although a growing body of research has indicated a strong link between oxidative stress and epilepsy, the exact nature of their interaction remains elusive. To elucidate this intricate relationship, we conducted a bidirectional Mendelian randomization (MR) analysis employing two independent datasets. METHODS: A two-sample MR analysis was performed using instrumental variables derived from genome-wide association study summary statistics of oxidative stress injury biomarkers (OSIB) and epilepsy. The OSIBs were selected from eight primary metabolic pathways associated with oxidative stress. Additionally, seven distinct epilepsy phenotypes were considered, which encompassed all epilepsy, generalized epilepsy, generalized tonic-clonic seizures, focal epilepsy, focal epilepsy with hippocampal sclerosis (focal HS), focal epilepsy with lesions other than HS (focal NHS), and lesion-negative focal epilepsy. Causal estimates were computed using the inverse-variance weighted method or the Wald ratio method, and the robustness of causality was assessed through sensitivity analyses. RESULTS: For OSIB and epilepsy, 520 and 23 genetic variants, respectively, were selectively extracted as instrumental variants. Genetically predicted higher kynurenine level was associated with a decreased risk of focal epilepsy (odds ratio [OR] 1.950, 95% CI 1.373-2.528, p = .023) and focal NHS (OR 1.276, 95% CI 1.100-1.453, p = .006). For reverse analysis, there was a suggestive effect of focal NHS on urate (OR 1.19 × 1015, 95% CI 11.19 × 1015 to 1.19 × 1015, p = .0000746) and total bilirubin (Tb) (OR 4.98, 95% CI 3.423-6.543, p = .044). In addition, genetic predisposition to focal HS was associated with higher Tb levels (OR 9.83, 95% CI 7.77-11.888, p = .034). CONCLUSION: This MR study provides compelling evidence of a robust association between oxidative stress and epilepsy, with a notable emphasis on a causal relationship between oxidative stress and focal epilepsy. Additional research is warranted to confirm the connection between oxidative stress and the risk of epilepsy and to unravel the underlying mechanisms.


Subject(s)
Epilepsy , Genome-Wide Association Study , Mendelian Randomization Analysis , Oxidative Stress , Humans , Oxidative Stress/physiology , Epilepsy/genetics , Epilepsy/metabolism , Biomarkers/metabolism , Biomarkers/blood
2.
Neuroreport ; 35(10): 612-620, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38813900

ABSTRACT

Epilepsy is a common neurologic disorder. While a good clinical solution is still missing, studies have confirmed that exosomes (Exos) derived from adipose-derived stem cells (ADSCs) had a therapeutic effect on various diseases, including neurological diseases. Therefore, this study aimed to reveal whether ADSC-Exo treatment could improve kainic acid (KA)-induced seizures in epileptic mice. ADSCs and Exos were isolated. Mice were generated with KA-induced epileptic seizures. ELISA was used to detect inflammatory factor expression. Luciferase reporter analysis detection showed a relationship among miR-23b-3p, STAT1, and glyoxylate reductase 1 (GlyR1). ADSC-Exos had a protective effect on KA-induced seizures by inhibiting inflammatory factor expression and the M1 microglia phenotype. The result showed that miR-23b-3p played an important role in the Exo-mediated protective effect in KA-induced seizures in epileptic mice by regulating STAT1 and GlyR1. Luciferase reporter analysis confirmed that miR-23b-3p interacted with the 3'-UTR of STAT1 and GlyR1. The miR-23b-3p inhibited M1 microglia-mediated inflammatory factor expression in microglial cells by regulating STAT1 and GlyR1. The downregulation of miR-23b-3p decreased the protective effect of ADSC-Exos on KA-induced seizures in epileptic mice. The miR-23b-3p from ADSC-Exos alleviated inflammation in mice with KA-induced epileptic seizures.


Subject(s)
Exosomes , Inflammation , Kainic Acid , MicroRNAs , Seizures , Animals , Kainic Acid/toxicity , MicroRNAs/metabolism , MicroRNAs/genetics , Exosomes/metabolism , Mice , Inflammation/metabolism , Seizures/chemically induced , Seizures/metabolism , Male , Microglia/metabolism , Epilepsy/chemically induced , Epilepsy/metabolism , Epilepsy/therapy , STAT1 Transcription Factor/metabolism , Adipose Tissue/metabolism , Mice, Inbred C57BL
3.
Sci Rep ; 14(1): 11940, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789658

ABSTRACT

The classic ketogenic diet is an effective treatment option for drug-resistant epilepsy, but its high fat content challenges patient compliance. Optimizing liver ketone production guided by a method comparing substrates for their ketogenic potential may help to reduce the fat content of the diet without loss in ketosis induction. Here, we present a liver cell assay measuring the ß-hydroxybutyrate (ßHB) yield from fatty acid substrates. Even chain albumin-conjugated fatty acids comprising between 4 and 18 carbon atoms showed a sigmoidal concentration-ßHB response curve (CRC) whereas acetate and omega-3 PUFAs produced no CRC. While CRCs were not distinguished by their half-maximal effective concentration (EC50), they differed by maximum response, which related inversely to the carbon chain length and was highest for butyrate. The assay also suitably assessed the ßHB yield from fatty acid blends detecting shifts in maximum response from exchanging medium chain fatty acids for long chain fatty acids. The assay further detected a dual role for butyrate and hexanoic acid as ketogenic substrate at high concentration and ketogenic enhancer at low concentration, augmenting the ßHB yield from oleic acid and a fatty acid blend. The assay also found propionate to inhibit ketogenesis from oleic acid and a fatty acid blend at low physiological concentration. Although the in vitro assay shows promise as a tool to optimize the ketogenic yield of a fat blend, its predictive value requires human validation.


Subject(s)
3-Hydroxybutyric Acid , Diet, Ketogenic , Hepatocytes , Ketones , Diet, Ketogenic/methods , Humans , Hepatocytes/metabolism , Ketones/metabolism , 3-Hydroxybutyric Acid/metabolism , Epilepsy/diet therapy , Epilepsy/metabolism , Fatty Acids/metabolism , Drug Resistant Epilepsy/diet therapy , Drug Resistant Epilepsy/metabolism
4.
Proc Natl Acad Sci U S A ; 121(21): e2321388121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748583

ABSTRACT

Protocadherin19 (PCDH19)-related epilepsy syndrome is a rare disorder characterized by early-onset epilepsy, intellectual disability, and autistic behaviors. PCDH19 is located on the X chromosome and encodes a calcium-dependent single-pass transmembrane protein, which regulates cell-to-cell adhesion through homophilic binding. In human, 90% of heterozygous females, containing PCDH19 wild-type and mutant cells due to random X inactivation, are affected, whereas mutant males, containing only mutant cells, are typically not. The current view, the cellular interference, is that the altered interactions between wild-type and mutant cells during development, rather than loss of function itself, are responsible. However, studies using Pcdh19 knockout mice showed that the complete loss of function also causes autism-like behaviors both in males and females, suggesting that other functions of PCDH19 may also contribute to pathogenesis. To address whether mosaicism is required for PCDH19-related epilepsy, we generated Xenopus tropicalis tadpoles with complete or mosaic loss of function by injecting antisense morpholino oligonucleotides into the blastomeres of neural lineage at different stages of development. We found that either mosaic or complete knockdown results in seizure-like behaviors, which could be rescued by antiseizure medication, and repetitive behaviors. Our results suggest that the loss of PCDH19 function itself, in addition to cellular interference, may also contribute to PCDH19-related epilepsy.


Subject(s)
Cadherins , Epilepsy , Mosaicism , Protocadherins , Xenopus , Animals , Cadherins/genetics , Cadherins/metabolism , Female , Epilepsy/genetics , Epilepsy/metabolism , Male , Behavior, Animal , Humans
5.
Clinics (Sao Paulo) ; 79: 100372, 2024.
Article in English | MEDLINE | ID: mdl-38733688

ABSTRACT

OBJECTIVE: This study aims to analyze the relationship between the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Epilepsy (EP), as well as its mechanism of action. METHODS: Thirty Wistar rats were divided into a control group (without treatment), a model group (EP modeling), and an inhibition group (EP modeling + intervention by Keap1/Nrf2 signaling pathway inhibitor ATRA) and subject to Morris water maze experiment. Then, the expression of Oxidative Stress (OS) markers, ferroptosis-associated proteins and Keap1/Nrf2 pathway in rat hippocampus was measured. In addition, rat hippocampal neuronal cell HT22 was purchased and treated accordingly based on the results of grouping, and cell proliferation and apoptosis in the three groups were determined. RESULTS: Compared with rats in the model group, those in the inhibition group showed shorter escape latency and an increased number of platform crossings (p < 0.05). Significant OS and neuron ferroptosis, increased apoptosis rate, elevated Keap1 expression, and decreased Nrf2 expression were observed in the model group compared to the control group (p < 0.05). The inhibition group exhibited notably improved OS and ferroptosis, as well as enhanced neuronal viability (p < 0.05). CONCLUSION: Inhibition of the Keap1/Nrf2 pathway can reverse the OS and neuron viability in EP rats.


Subject(s)
Epilepsy , Ferroptosis , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Rats, Wistar , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/physiology , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress/physiology , Signal Transduction/physiology , Ferroptosis/physiology , Ferroptosis/drug effects , Neurons/metabolism , Epilepsy/metabolism , Epilepsy/physiopathology , Male , Hippocampus/metabolism , Apoptosis/physiology , Rats , Disease Progression , Disease Models, Animal
6.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791587

ABSTRACT

Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.


Subject(s)
Alzheimer Disease , Epilepsy , Interneurons , Parvalbumins , Humans , Interneurons/metabolism , Interneurons/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Parvalbumins/metabolism , Animals , Epilepsy/physiopathology , Epilepsy/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Brain/metabolism , Brain/physiopathology
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 515-522, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597443

ABSTRACT

OBJECTIVE: To explore the inhibitory effect of saikosonin a (SSa) on pentylenetetrazol-induced acute epilepsy seizures in a mouse model of depression and explore the mechanism mediating this effect. METHODS: Male C57BL/6J mouse models of depression was established by oral administration of corticosterone via drinking water for 3 weeks, and acute epileptic seizures were induced by intraperitoneal injection of a single dose of pentylenetetrazole. The effect of intraperitoneal injection of SSa prior to the treatment on depressive symptoms and epileptic seizures were assessed using behavioral tests, epileptic seizure grading and hippocampal morphology observation. ELISA was used to detect blood corticosterone levels of the mice, and RTqPCR was performed to detect the pro- and anti-inflammatory factors. Microglia activation in the mice was observed using immunofluorescence staining. RESULTS: The mouse model of corticosterone-induced depression showed body weight loss and obvious depressive behaviors with significantly increased serum corticosterone level (all P < 0.05). Compared with those with pentylenetetrazole-induced epilepsy alone, the epileptic mice with comorbid depression showed significantly shorter latency of epileptic seizures, increased number, grade and duration of of seizures, reduced Nissl bodies in hippocampal CA1 and CA3 neurons, increased number of Iba1-positive cells, and significantly enhanced hippocampal expressions of IL-1ß, IL-10, TNF-α and IFN-γ. Pretreatment of the epileptic mice with SSa significantly prolonged the latency of epileptic seizures, reduced the number, duration, and severity of seizures, increased the number of Nissl bodies, decreased the number of Iba1-positive cells, and reduced the expression levels of IL-1ß, IL-10, TNF-α, and IFN-γ in the hippocampus (P < 0.05). CONCLUSION: Depressive state aggravates epileptic seizures, increases microglia activation, and elevates inflammation levels. SSA treatment can alleviate acute epileptic seizures in mouse models of depression possibly by suppressing microglia activation-mediated inflammation.


Subject(s)
Epilepsy , Oleanolic Acid/analogs & derivatives , Pentylenetetrazole , Saponins , Male , Mice , Animals , Pentylenetetrazole/adverse effects , Interleukin-10 , Microglia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Depression , Corticosterone/metabolism , Corticosterone/pharmacology , Corticosterone/therapeutic use , Mice, Inbred C57BL , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Disease Models, Animal
8.
Neuropharmacology ; 251: 109942, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38570066

ABSTRACT

Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/ß-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/ß-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/ß-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Humans , Epilepsy, Temporal Lobe/chemically induced , beta Catenin/metabolism , Neuroinflammatory Diseases , Epilepsy/metabolism , Neurogenesis , Catenins/metabolism , Hippocampus/metabolism
9.
Neurology ; 102(9): e209304, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38626375

ABSTRACT

BACKGROUND AND OBJECTIVES: Although commonly used in the evaluation of patients for epilepsy surgery, the association between the detection of localizing 18fluorine fluorodeoxyglucose PET (18F-FDG-PET) hypometabolism and epilepsy surgery outcome is uncertain. We conducted a systematic review and meta-analysis to determine whether localizing 18F-FDG-PET hypometabolism is associated with favorable outcome after epilepsy surgery. METHODS: A systematic literature search was undertaken. Eligible publications included evaluation with 18F-FDG-PET before epilepsy surgery, with ≥10 participants, and those that reported surgical outcome at ≥12 months. Random-effects meta-analysis was used to calculate the odds of achieving a favorable outcome, defined as Engel class I, International League Against Epilepsy class 1-2, or seizure-free, with localizing 18F-FDG-PET hypometabolism, defined as concordant with the epilepsy surgery resection zone. Meta-regression was used to characterize sources of heterogeneity. RESULTS: The database search identified 8,916 studies, of which 98 were included (total patients n = 4,104). Localizing 18F-FDG-PET hypometabolism was associated with favorable outcome after epilepsy surgery for all patients with odds ratio (OR) 2.68 (95% CI 2.08-3.45). Subgroup analysis yielded similar findings for those with (OR 2.64, 95% CI 1.54-4.52) and without epileptogenic lesion detected on MRI (OR 2.49, 95% CI 1.80-3.44). Concordance with EEG (OR 2.34, 95% CI 1.43-3.83), MRI (OR 1.69, 95% CI 1.19-2.40), and triple concordance with both (OR 2.20, 95% CI 1.32-3.64) was associated with higher odds of favorable outcome. By contrast, diffuse 18F-FDG-PET hypometabolism was associated with worse outcomes compared with focal hypometabolism (OR 0.34, 95% CI 0.22-0.54). DISCUSSION: Localizing 18F-FDG-PET hypometabolism is associated with favorable outcome after epilepsy surgery, irrespective of the presence of an epileptogenic lesion on MRI. The extent of 18F-FDG-PET hypometabolism provides additional information, with diffuse hypometabolism associated with worse surgical outcome than focal 18F-FDG-PET hypometabolism. These findings support the incorporation of 18F-FDG-PET into routine noninvasive investigations for patients being evaluated for epilepsy surgery to improve epileptogenic zone localization and to aid patient selection for surgery.


Subject(s)
Epilepsy , Fluorodeoxyglucose F18 , Humans , Fluorodeoxyglucose F18/metabolism , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/surgery , Epilepsy/metabolism , Positron-Emission Tomography , Magnetic Resonance Imaging
10.
CNS Neurosci Ther ; 30(4): e14735, 2024 04.
Article in English | MEDLINE | ID: mdl-38676299

ABSTRACT

The etiology of epilepsy is ascribed to the synchronized aberrant neuronal activity within the brain. Circular RNAs (circRNAs), a class of non-coding RNAs characterized by their circular structures and covalent linkage, exert a substantial influence on this phenomenon. CircRNAs possess stereotyped replication, transience, repetitiveness, and paroxysm. Additionally, MicroRNA (miRNA) plays a crucial role in the regulation of diverse pathological processes, including epilepsy. CircRNA is of particular significance due to its ability to function as a competing endogenous RNA, thereby sequestering or inhibiting miRNA activity through binding to target mRNA. Our review primarily concentrates on elucidating the pathological and functional roles, as well as the underlying mechanisms, of circRNA-miRNA-mRNA networks in epilepsy. Additionally, it explores the potential utility of these networks for early detection and therapeutic intervention.


Subject(s)
Epilepsy , Gene Regulatory Networks , MicroRNAs , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Epilepsy/genetics , Epilepsy/metabolism , Gene Regulatory Networks/physiology , Gene Regulatory Networks/genetics , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA, Competitive Endogenous
11.
Cell Biochem Funct ; 42(3): e4003, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597235

ABSTRACT

Neuronal pentraxin 2 (Nptx2), a member of the synaptic protein family linked to excitatory synaptic formation, is found to be upregulated in epileptic mice, yet its role in epilepsy has been unclear. In vivo, we constructed a mouse model of epilepsy by using kainic acid induction. In vitro experiments, a Mg2+-free medium was used to induce epileptiform discharges in neurons. The results showed that the Nptx2 was upregulated in epileptic mice. Moreover, Nptx2 knockdown reduced the number of seizures and seizure duration. Knocking down Nptx2 not only reduced the number and duration of seizures but also showed a decrease in electroencephalogram amplitude. Behavioral tests indicated improvements in learning and memory abilities after Nptx2 knockdown. The Nissl staining and Timms staining revealed that Nptx2 silencing mitigated epilepsy-induced brain damage. The immunofluorescence staining revealed that Nptx2 absence resulted in a reduction of apoptosis. Nptx2 knockdown reduced Bax, cleaved caspase3, and cleaved caspase9 expression, while increased Bcl-2 expression. Notably, Nptx2 knockdown inhibited GluA1 phosphorylation at the S831 site and reduced the GluA1 membrane expression. The PSD95 expression declined in the epilepsy model, while the Nptx2 knockdown reversed it. Collectively, our study indicated that Nptx2 silencing not only alleviated brain damage and neuron apoptosis but also improved learning and memory ability in epileptic mice, suggesting Nptx2 as a promising target for epilepsy treatment.


Subject(s)
Epilepsy , Nerve Tissue Proteins , Seizures , Animals , Mice , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Epilepsy/chemically induced , Epilepsy/metabolism , Hippocampus/metabolism , Phosphorylation , Seizures/chemically induced , Seizures/metabolism
12.
Neuroscience ; 546: 157-177, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38574797

ABSTRACT

Epilepsy is one of the most widespread and complex diseases in the central nervous system (CNS), affecting approximately 65 million people globally, an important factor resulting in neurological disability-adjusted life year (DALY) and progressive cognitive dysfunction. Medication is the most essential treatment. The currently used drugs have shown drug resistance in some patients and only control symptoms; the development of novel and more efficacious pharmacotherapy is imminent. Increasing evidence suggests neuroinflammation is involved in the occurrence and development of epilepsy, and high expression of NLRP3 inflammasome has been observed in the temporal lobe epilepsy (TLE) brain tissue of patients and animal models. The inflammasome is a crucial cause of neuroinflammation by activating IL-1ß and IL-18. Many preclinical studies have confirmed that regulating NLRP3 inflammasome pathway can prevent the development of epilepsy, reduce the severity of epilepsy, and play a neuroprotective role. Therefore, regulating NLRP3 inflammasome could be a potential target for epilepsy treatment. In summary, this review describes the priming and activation of inflammasome and its biological function in the progression of epilepsy. In addition, we reviewes the current pharmacological researches for epilepsy based on the regulation of NLRP3 inflammasome, aiming to provide a basis and reference for developing novel antiepileptic drugs.


Subject(s)
Anticonvulsants , Epilepsy , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Animals , Epilepsy/drug therapy , Epilepsy/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism
14.
J Mol Med (Berl) ; 102(6): 761-771, 2024 06.
Article in English | MEDLINE | ID: mdl-38653825

ABSTRACT

Epilepsy is a neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to diverse etiology, pathobiology, and pharmacotherapy-resistant variants. The anticonvulsive effects of herbal leads with biocompatibility and toxicity considerations have attracted much interest, inspiring mechanistic analysis with the view of their use for engagement of new targets and combination with antiseizure pharmacotherapies. This article presents a comprehensive overview of the key molecular players and putative action mechanisms of the most common antiepileptic herbals demonstrated in tissue culture and preclinical models. From the review of the literature, it emerges that their effects are mediated via five distinct mechanisms: (1) reduction of membrane excitability through inhibition of cation channels, (2) improvement of mitochondrial functions with antioxidant effects, (3) enhancement in synaptic transmission mediated by GABAA receptors, (4) improvement of immune response with anti-inflammatory action, and (5) suppression of protein synthesis and metabolism. While some of the primary targets and action mechanisms of herbal anticonvulsants (1, 3) are shared with antiseizure pharmacotherapies, herbal leads also engage with distinct mechanisms (2, 4, and 5), suggesting new drug targets and opportunities for their integration with antiseizure medications. Addressing outstanding questions through research and in silico modeling should facilitate the future use of herbals as auxiliary therapy in epilepsy and guide the development of treatment of pharmacoresistant seizures through rigorous trials and regulatory approval.


Subject(s)
Anticonvulsants , Humans , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Animals , Drug Resistant Epilepsy/drug therapy , Drug Resistant Epilepsy/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism
15.
Open Biol ; 14(4): 230383, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629124

ABSTRACT

Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.


Subject(s)
Brain , Cell Adhesion , Protocadherins , Animals , Mice , Brain/cytology , Brain/growth & development , Epilepsy/metabolism , Neurons/metabolism
16.
Zhen Ci Yan Jiu ; 49(4): 415-423, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649211

ABSTRACT

OBJECTIVES: To explore the mechanism of core points in acupuncture and moxibustion treatment for epilepsy by using data mining technique, so as to provide a reference for clinical practice and experimental research. METHODS: The data comes from relevant documents collected from CNKI, Wanfang, SinoMed, VIP, PubMed, Embase, Cochrane Library, EBSCO, Web of Science databases. The selected acupoints were analyzed in descriptive statistics, high-frequency acupoints group and core acupoint prescription. Further, potential target mining, "core acupoint prescription-target-epilepsy" network construction, protein-protein interactions (PPI) network establishment and core target extraction, gene ontology (GO) and KEGG gene enrichment analysis of the core acupoint prescription were carried out to predict its anti-epileptic potential mechanism. RESULTS: A total of 122 acupoint prescriptions were included. The core acupoint prescriptions were Baihui (GV20), Hegu (LI4), Neiguan (PC6), Shuigou (GV26) and Taichong (LR3). 277 potential targets were identified, among which 134 were shared with epilepsy. The core targets were extracted by PPI network topology analysis, including signal transducer and activator of transcription 3, tumor necrosis factor (TNF), interleukin (IL)-6, protein kinase B1, c-Jun N-terminal kinase, brain-derived neurotrophic factor, tumor protein 53, vascular endothelial growth factor A, Caspase-3, epidermal growth factor receptor, etc. The main anti-epileptic pathways of the core acupoints were predicted by KEGG enrichment, including lipid and atherosclerosis, neurodegeneration, phosphatidylinositol-3-kinase/protein B kinase signaling pathway, mitogen-activated protein kinase signaling pathway, cyclic adenosine monophosphate signaling pathway, TNF signaling pathway, IL-17 signaling pathway, hypoxia-inducible factor-1 signaling pathway, apoptosis, etc., involving neuronal death, synaptic plasticity, oxidative stress, inflammation and other related biological process. CONCLUSIONS: The core acupoint prescription of acupuncture and moxibustion intervention for epilepsy can act on multiple targets and multiple pathways to exert anti-epileptic effects, which can provide a theoretical basis for further clinical application and mechanism research.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Data Mining , Epilepsy , Moxibustion , Humans , Epilepsy/therapy , Epilepsy/genetics , Epilepsy/metabolism , Protein Interaction Maps , Signal Transduction
17.
Neurochem Int ; 176: 105725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561151

ABSTRACT

Epilepsy constitutes a global health concern, affecting millions of individuals and approximately one-third of patients exhibit drug resistance. Recent investigations have revealed alterations in cerebral iron content in both epilepsy patients and animal models. However, the extant literature lacks a comprehensive exploration into the ramifications of modulating iron homeostasis as an intervention in epilepsy. This study investigated the impact of deferasirox, a iron ion chelator, on epilepsy. This study unequivocally substantiated the antiepileptic efficacy of deferasirox in a kainic acid-induced epilepsy model. Furthermore, deferasirox administration mitigated seizure susceptibility in a pentylenetetrazol-induced kindling model. Conversely, the augmentation of iron levels through supplementation has emerged as a potential exacerbating factor in the precipitating onset of epilepsy. Intriguingly, our investigation revealed a hitherto unreported discovery: ITPRIP was identified as a pivotal modulator of excitatory synaptic transmission, regulating seizures in response to deferasirox treatment. In summary, our findings indicate that deferasirox exerts its antiepileptic effects through the precise targeting of ITPRIP and amelioration of cerebral iron homeostasis, suggesting that deferasirox is a promising and novel therapeutic avenue for interventions in epilepsy.


Subject(s)
Anticonvulsants , Brain , Deferasirox , Epilepsy , Iron Chelating Agents , Iron , Membrane Proteins , Animals , Male , Mice , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Brain/drug effects , Brain/metabolism , Deferasirox/pharmacology , Epilepsy/drug therapy , Epilepsy/metabolism , Homeostasis/drug effects , Homeostasis/physiology , Iron/metabolism , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Kindling, Neurologic/drug effects , Pentylenetetrazole/toxicity , Rats, Sprague-Dawley , Membrane Proteins/drug effects , Membrane Proteins/metabolism
18.
Neurochem Int ; 176: 105746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641027

ABSTRACT

PURPOSE: Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS: Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS: Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION: We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.


Subject(s)
Cell Survival , Computer Simulation , Epilepsy , Sirolimus , TOR Serine-Threonine Kinases , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Animals , Phosphorylation/drug effects , Mice , Cell Survival/drug effects , Cell Survival/physiology , Cell Line
20.
Front Biosci (Landmark Ed) ; 29(4): 142, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38682185

ABSTRACT

Innate lymphocytes, including microglial cells, astrocytes, and oligodendrocytes, play a crucial role in initiating neuroinflammatory reactions inside the central nervous system (CNS). The prime focus of this paper is on the involvement and interplay of neurons and glial cells in neurological disorders such as Alzheimer's Disease (AD), Autism Spectrum Disorder (ASD), epilepsy, and multiple sclerosis (MS). In this review, we explore the specific contributions of microglia and astrocytes and analyzes multiple pathways implicated in neuroinflammation and disturbances in excitatory and inhibitory processes. Firstly, we elucidate the mechanisms through which toxic protein accumulation in AD results in synaptic dysfunction and deregulation of the immune system and examines the roles of microglia, astrocytes, and hereditary factors in the pathogenesis of the disease. Secondly, we focus on ASD and the involvement of glial cells in the development of the nervous system and the formation of connections between neurons and investigates the genetic connections associated with these processes. Lastly, we also address the participation of glial cells in epilepsy and MS, providing insights into their pivotal functions in both conditions. We also tried to give an overview of seven different pathways like toll-like receptor signalling pathway, MyD88-dependent and independent pathway, etc and its relevance in the context with these neurological disorders. In this review, we also explore the role of activated glial cells in AD, ASD, epilepsy, and MS which lead to neuroinflammation. Even we focus on excitatory and inhibitory imbalance in all four neurological disorders as imbalance affect the proper functioning of neuronal circuits. Finally, this review concludes that there is necessity for additional investigation on glial cells and their involvement in neurological illnesses.


Subject(s)
Nervous System Diseases , Neuroglia , Neurons , Animals , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Astrocytes/metabolism , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , Cell Communication , Epilepsy/genetics , Epilepsy/metabolism , Epilepsy/physiopathology , Microglia/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/physiopathology , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Neuroglia/metabolism , Neuroinflammatory Diseases/metabolism , Neurons/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...