Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.964
Filter
1.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717398

ABSTRACT

We use a multiscale symbolic approach to study the complex dynamics of temporal lobe refractory epilepsy employing high-resolution intracranial electroencephalogram (iEEG). We consider the basal and preictal phases and meticulously analyze the dynamics across frequency bands, focusing on high-frequency oscillations up to 240 Hz. Our results reveal significant periodicities and critical time scales within neural dynamics across frequency bands. By bandpass filtering neural signals into delta, theta, alpha, beta, gamma, and ripple high-frequency bands (HFO), each associated with specific neural processes, we examine the distinct nonlinear dynamics. Our method introduces a reliable approach to pinpoint intrinsic time lag scales τ within frequency bands of the basal and preictal signals, which are crucial for the study of refractory epilepsy. Using metrics such as permutation entropy (H), Fisher information (F), and complexity (C), we explore nonlinear patterns within iEEG signals. We reveal the intrinsic τmax that maximize complexity within each frequency band, unveiling the nonlinear subtle patterns of the temporal structures within the basal and preictal signal. Examining the H×F and C×F values allows us to identify differences in the delta band and a band between 200 and 220 Hz (HFO 6) when comparing basal and preictal signals. Differences in Fisher information in the delta and HFO 6 bands before seizures highlight their role in capturing important system dynamics. This offers new perspectives on the intricate relationship between delta oscillations and HFO waves in patients with focal epilepsy, highlighting the importance of these patterns and their potential as biomarkers.


Subject(s)
Biomarkers , Delta Rhythm , Humans , Biomarkers/metabolism , Delta Rhythm/physiology , Electroencephalography/methods , Epilepsy/physiopathology , Signal Processing, Computer-Assisted , Male , Nonlinear Dynamics , Female , Adult , Epilepsy, Temporal Lobe/physiopathology
2.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38725290

ABSTRACT

Information flow in brain networks is reflected in local field potentials that have both periodic and aperiodic components. The 1/fχ aperiodic component of the power spectra tracks arousal and correlates with other physiological and pathophysiological states. Here we explored the aperiodic activity in the human thalamus and basal ganglia in relation to simultaneously recorded cortical activity. We elaborated on the parameterization of the aperiodic component implemented by specparam (formerly known as FOOOF) to avoid parameter unidentifiability and to obtain independent and more easily interpretable parameters. This allowed us to seamlessly fit spectra with and without an aperiodic knee, a parameter that captures a change in the slope of the aperiodic component. We found that the cortical aperiodic exponent χ, which reflects the decay of the aperiodic component with frequency, is correlated with Parkinson's disease symptom severity. Interestingly, no aperiodic knee was detected from the thalamus, the pallidum, or the subthalamic nucleus, which exhibited an aperiodic exponent significantly lower than in cortex. These differences were replicated in epilepsy patients undergoing intracranial monitoring that included thalamic recordings. The consistently lower aperiodic exponent and lack of an aperiodic knee from all subcortical recordings may reflect cytoarchitectonic and/or functional differences. SIGNIFICANCE STATEMENT: The aperiodic component of local field potentials can be modeled to produce useful and reproducible indices of neural activity. Here we refined a widely used phenomenological model for extracting aperiodic parameters (namely the exponent, offset and knee), with which we fit cortical, basal ganglia, and thalamic intracranial local field potentials, recorded from unique cohorts of movement disorders and epilepsy patients. We found that the aperiodic exponent in motor cortex is higher in Parkinson's disease patients with more severe motor symptoms, suggesting that aperiodic features may have potential as electrophysiological biomarkers for movement disorders symptoms. Remarkably, we found conspicuous differences in the aperiodic parameters of basal ganglia and thalamic signals compared to those from neocortex.


Subject(s)
Basal Ganglia , Cerebral Cortex , Thalamus , Humans , Male , Female , Thalamus/physiology , Cerebral Cortex/physiology , Basal Ganglia/physiology , Parkinson Disease/physiopathology , Middle Aged , Adult , Epilepsy/physiopathology , Aged , Electroencephalography/methods
3.
Comput Biol Med ; 176: 108565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744007

ABSTRACT

Epilepsy is a prevalent chronic disorder of the central nervous system. The timely and accurate seizure prediction using the scalp Electroencephalography (EEG) signal can make patients adopt reasonable preventive measures before seizures occur and thus reduce harm to patients. In recent years, deep learning-based methods have made significant progress in solving the problem of epileptic seizure prediction. However, most current methods mainly focus on modeling short- or long-term dependence in EEG, while neglecting to consider both. In this study, we propose a Parallel Dual-Branch Fusion Network (PDBFusNet) which aims to combine the complementary advantages of Convolutional Neural Network (CNN) and Transformer. Specifically, the features of the EEG signal are first extracted using Mel Frequency Cepstral Coefficients (MFCC). Then, the extracted features are delivered into the parallel dual-branches to simultaneously capture the short- and long-term dependencies of EEG signal. Further, regarding the Transformer branch, a novel feature fusion module is developed to enhance the ability of utilizing time, frequency, and channel information. To evaluate our proposal, we perform sufficient experiments on the public epileptic EEG dataset CHB-MIT, where the accuracy, sensitivity, specificity and precision are 95.76%, 95.81%, 95.71% and 95.71%, respectively. PDBFusNet shows superior performance compared to state-of-the-art competitors, which confirms the effectiveness of our proposal.


Subject(s)
Electroencephalography , Epilepsy , Seizures , Humans , Electroencephalography/methods , Epilepsy/physiopathology , Epilepsy/diagnosis , Seizures/physiopathology , Seizures/diagnosis , Signal Processing, Computer-Assisted , Neural Networks, Computer , Deep Learning
5.
Sci Rep ; 14(1): 10792, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734752

ABSTRACT

Epilepsy is a chronic neurological disease, characterized by spontaneous, unprovoked, recurrent seizures that may lead to long-term disability and premature death. Despite significant efforts made to improve epilepsy detection clinically and pre-clinically, the pervasive presence of noise in EEG signals continues to pose substantial challenges to their effective application. In addition, discriminant features for epilepsy detection have not been investigated yet. The objective of this study is to develop a hybrid model for epilepsy detection from noisy and fragmented EEG signals. We hypothesized that a hybrid model could surpass existing single models in epilepsy detection. Our approach involves manual noise rejection and a novel statistical channel selection technique to detect epilepsy even from noisy EEG signals. Our proposed Base-2-Meta stacking classifier achieved notable accuracy (0.98 ± 0.05), precision (0.98 ± 0.07), recall (0.98 ± 0.05), and F1 score (0.98 ± 0.04) even with noisy 5-s segmented EEG signals. Application of our approach to the specific problem like detection of epilepsy from noisy and fragmented EEG data reveals a performance that is not only superior to others, but also is translationally relevant, highlighting its potential application in a clinic setting, where EEG signals are often noisy or scanty. Our proposed metric DF-A (Discriminant feature-accuracy), for the first time, identified the most discriminant feature with models that give A accuracy or above (A = 95 used in this study). This groundbreaking approach allows for detecting discriminant features and can be used as potential electrographic biomarkers in epilepsy detection research. Moreover, our study introduces innovative insights into the understanding of these features, epilepsy detection, and cross-validation, markedly improving epilepsy detection in ways previously unavailable.


Subject(s)
Electroencephalography , Epilepsy , Electroencephalography/methods , Humans , Epilepsy/diagnosis , Epilepsy/physiopathology , Signal Processing, Computer-Assisted , Algorithms , Signal-To-Noise Ratio
7.
PLoS One ; 19(5): e0301043, 2024.
Article in English | MEDLINE | ID: mdl-38748712

ABSTRACT

BACKGROUND: A person with epilepsy experiences recurrent seizures as a result of a persistent underlying disorder. About 50 million people globally are impacted by it, with 4 million of those being in Sub-Saharan Africa. One of the most frequent comorbidities that raise the mortality and morbidity rates of epileptic patients is abnormal Electrocardiographic (ECG) findings. Thus, the purpose of this study is to evaluate the prevalence of abnormal ECG findings in epileptic patients that might lead to increased risk of sudden cardiac death. METHODOLOGY: A hospital based cross-sectional study was at Jimma Medical Center of Ethiopia on epileptic patients who were on follow-up at neurologic clinics during the data collection period. The malignant ECG characteristics and was identified using the ECG abnormality tool. To facilitate analysis, the gathered data was imported into Epidata version 3.1 and exported to the SPSS version 26. The factors of abnormal ECG and sudden death risk were examined using bivariate logistic regression. RESULTS: The study comprised 190 epileptic patients, with a mean age of 32 years. There were more men than women, making up 60.2%. A 43.2% (n = 80) frequency of ECG abnormalities was identified. According to the study, early repolarization abnormalities were the most common ECG abnormalities and increased with male sex and the length of time a person had seizures (AOR) of 4.751 and 95% CI (.273,.933), p = 0.029, compared to their female counterparts. CONCLUSION: The frequency of malignant ECG alterations in epileptic patients on follow-up at Jimma Medical Center in Ethiopia is described in the study. According to the study, there were significant ECG alterations in epileptic individuals. Male gender and longer duration of epilepsy raise the risk of abnormal ECG findings that could result in sudden cardiac death.


Subject(s)
Electrocardiography , Epilepsy , Humans , Male , Female , Ethiopia/epidemiology , Epilepsy/epidemiology , Epilepsy/physiopathology , Epilepsy/complications , Adult , Cross-Sectional Studies , Prevalence , Young Adult , Middle Aged , Adolescent , Risk Factors , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Hospitals
8.
Neuropharmacology ; 253: 109968, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692453

ABSTRACT

Microglia are described as the immune cells of the brain, their immune properties have been extensively studied since first described, however, their neural functions have only been explored over the last decade. Microglia have an important role in maintaining homeostasis in the central nervous system by surveying their surroundings to detect pathogens or damage cells. While these are the classical functions described for microglia, more recently their neural functions have been defined; they are critical to the maturation of neurons during embryonic and postnatal development, phagocytic microglia remove excess synapses during development, a process called synaptic pruning, which is important to overall neural maturation. Furthermore, microglia can respond to neuronal activity and, together with astrocytes, can regulate neural activity, contributing to the equilibrium between excitation and inhibition through a feedback loop. Hypoxia at birth is a serious neurological condition that disrupts normal brain function resulting in seizures and epilepsy later in life. Evidence has shown that microglia may contribute to this hyperexcitability after neonatal hypoxia. This review will summarize the existing data on the role of microglia in the pathogenesis of neonatal hypoxia and the plausible mechanisms that contribute to the development of hyperexcitability after hypoxia in neonates. This article is part of the Special Issue on "Microglia".


Subject(s)
Epilepsy , Microglia , Microglia/physiology , Microglia/pathology , Humans , Animals , Epilepsy/physiopathology , Epilepsy/pathology , Infant, Newborn , Hypoxia/physiopathology , Brain/pathology , Brain/physiopathology
9.
Medicina (Kaunas) ; 60(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38792951

ABSTRACT

Background and objectives: while acute ischemic stroke is the leading cause of epilepsy in the elderly population, data about its risk factors have been conflicting. Therefore, the aim of our study is to determine the association of early and late epileptic seizures after acute ischemic stroke with cerebral cortical involvement and electroencephalographic changes. Materials and methods: a prospective cohort study in the Hospital of the Lithuanian University of Health Sciences Kaunas Clinics Department of Neurology was conducted and enrolled 376 acute ischemic stroke patients. Data about the demographical, clinical, radiological, and encephalographic changes was gathered. Patients were followed for 1 year after stroke and assessed for late ES. Results: the incidence of ES was 4.5%, the incidence of early ES was 2.7% and the incidence of late ES was 2.4%. The occurrence of early ES increased the probability of developing late ES. There was no association between acute cerebral cortical damage and the occurrence of ES, including both early and late ES. However, interictal epileptiform discharges were associated with the occurrence of ES, including both early and late ES.


Subject(s)
Cerebral Cortex , Electroencephalography , Epilepsy , Ischemic Stroke , Humans , Male , Female , Prospective Studies , Electroencephalography/methods , Aged , Middle Aged , Cerebral Cortex/physiopathology , Epilepsy/physiopathology , Epilepsy/complications , Ischemic Stroke/complications , Ischemic Stroke/physiopathology , Lithuania/epidemiology , Incidence , Seizures/physiopathology , Seizures/etiology , Seizures/epidemiology , Risk Factors , Cohort Studies , Aged, 80 and over , Brain Ischemia/physiopathology , Brain Ischemia/complications , Stroke/complications , Stroke/physiopathology
10.
Neurology ; 102(11): e209430, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38768406

ABSTRACT

BACKGROUND AND OBJECTIVES: Tailoring epilepsy surgery using intraoperative electrocorticography (ioECoG) has been debated, and modest number of epilepsy surgery centers apply this diagnostic method. We assessed the current evidence to use ioECoG-tailored epilepsy surgery for improving postsurgical outcome. METHODS: PubMed and Embase were searched for original studies reporting on ≥10 cases who underwent ioECoG-tailored surgery for epilepsy, with a follow-up of at least 6 months. We used a random-effects model to calculate the overall rate of patients achieving favorable seizure outcome (FSO), defined as Engel class I, ILAE class 1, or seizure-free status. Meta-regression was used to investigate potential sources of heterogeneity. We calculated the odds ratio (OR) for estimating variables on FSO:ioECoG vs non-ioECoG-tailored surgery (if included studies contained patients with non-ioECoG-tailored surgery), ioECoG-tailored epilepsy surgery in children vs adults, temporal (TL) vs extratemporal lobe (eTL), MRI-positive vs MRI-negative, and complete vs incomplete resection of tissue that generated interictal epileptiform discharges (IEDs). A Bayesian network meta-analysis was conducted for underlying pathologies. We assessed the evidence certainty using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). RESULTS: Eighty-three studies (82 observational studies, 1 trial) comprising 3,631 patients with ioECoG-tailored surgery were included. The overall pooled rate of patients who attained FSO after ioECoG-tailored surgery was 74% (95% CI 71-77) with significant heterogeneity, which was predominantly attributed to pathologies and seizure outcome classifications. Twenty-two studies contained non-ioECoG-tailored surgeries. IoECoG-tailored surgeries reached a higher rate of FSO than non-ioECoG-tailored surgeries (OR 2.10 [95% CI 1.37-3.24]; p < 0.01; very low certainty). Complete resection of tissue that displayed IEDs in ioECoG predicted FSO better compared with incomplete resection (OR 3.04 [1.76-5.25]; p < 0.01; low certainty). We found insignificant difference in FSO after ioECoG-tailored surgery in children vs adults, TL vs eTL, or MRI-positive vs MRI-negative. The network meta-analysis showed that the odds of FSO was lower for malformations of cortical development than for tumors (OR 0.47 95% credible interval 0.25-0.87). DISCUSSION: Although limited by low-quality evidence, our meta-analysis shows a relatively good surgical outcome (74% FSO) after epilepsy surgery with ioECoG, especially in tumors, with better outcome for ioECoG-tailored surgeries in studies describing both and better outcome after complete removal of IED areas.


Subject(s)
Electrocorticography , Epilepsy , Intraoperative Neurophysiological Monitoring , Seizures , Humans , Electrocorticography/methods , Epilepsy/surgery , Epilepsy/diagnostic imaging , Epilepsy/physiopathology , Intraoperative Neurophysiological Monitoring/methods , Seizures/surgery , Seizures/physiopathology , Treatment Outcome , Neurosurgical Procedures/methods
11.
Genes (Basel) ; 15(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38790177

ABSTRACT

SATB1 (MIM #602075) is a relatively new gene reported only in recent years in association with neurodevelopmental disorders characterized by variable facial dysmorphisms, global developmental delay, poor or absent speech, altered electroencephalogram (EEG), and brain abnormalities on imaging. To date about thirty variants in forty-four patients/children have been described, with a heterogeneous spectrum of clinical manifestations. In the present study, we describe a new patient affected by mild intellectual disability, speech disorder, and non-specific abnormalities on EEG and neuroimaging. Family studies identified a new de novo frameshift variant c.1818delG (p.(Gln606Hisfs*101)) in SATB1. To better define genotype-phenotype associations in the different types of reported SATB1 variants, we reviewed clinical data from our patient and from the literature and compared manifestations (epileptic activity, EEG abnormalities and abnormal brain imaging) due to missense variants versus those attributable to loss-of-function/premature termination variants. Our analyses showed that the latter variants are associated with less severe, non-specific clinical features when compared with the more severe phenotypes due to missense variants. These findings provide new insights into SATB1-related disorders.


Subject(s)
Brain , Electroencephalography , Epilepsy , Matrix Attachment Region Binding Proteins , Humans , Matrix Attachment Region Binding Proteins/genetics , Epilepsy/genetics , Epilepsy/diagnostic imaging , Epilepsy/physiopathology , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Male , Female , Loss of Function Mutation , Intellectual Disability/genetics , Intellectual Disability/diagnostic imaging , Intellectual Disability/pathology , Neuroimaging/methods , Child , Frameshift Mutation/genetics , Phenotype , Child, Preschool
12.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791587

ABSTRACT

Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.


Subject(s)
Alzheimer Disease , Epilepsy , Interneurons , Parvalbumins , Humans , Interneurons/metabolism , Interneurons/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Parvalbumins/metabolism , Animals , Epilepsy/physiopathology , Epilepsy/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Brain/metabolism , Brain/physiopathology
14.
Sci Rep ; 14(1): 10667, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724576

ABSTRACT

The study introduces a new online spike encoding algorithm for spiking neural networks (SNN) and suggests new methods for learning and identifying diagnostic biomarkers using three prominent deep learning neural network models: deep BiLSTM, reservoir SNN, and NeuCube. EEG data from datasets related to epilepsy, migraine, and healthy subjects are employed. Results reveal that BiLSTM hidden neurons capture biological significance, while reservoir SNN activities and NeuCube spiking dynamics identify EEG channels as diagnostic biomarkers. BiLSTM and reservoir SNN achieve 90 and 85% classification accuracy, while NeuCube achieves 97%, all methods pinpointing potential biomarkers like T6, F7, C4, and F8. The research bears implications for refining online EEG classification, analysis, and early brain state diagnosis, enhancing AI models with interpretability and discovery. The proposed techniques hold promise for streamlined brain-computer interfaces and clinical applications, representing a significant advancement in pattern discovery across the three most popular neural network methods for addressing a crucial problem. Further research is planned to study how early can these diagnostic biomarkers predict an onset of brain states.


Subject(s)
Biomarkers , Brain , Electroencephalography , Epilepsy , Migraine Disorders , Neural Networks, Computer , Humans , Electroencephalography/methods , Epilepsy/diagnosis , Epilepsy/physiopathology , Biomarkers/analysis , Pilot Projects , Migraine Disorders/diagnosis , Migraine Disorders/physiopathology , Brain/physiopathology , Deep Learning , Algorithms , Male , Adult , Female
15.
Sensors (Basel) ; 24(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732929

ABSTRACT

The treatment of epilepsy, the second most common chronic neurological disorder, is often complicated by the failure of patients to respond to medication. Treatment failure with anti-seizure medications is often due to the presence of non-epileptic seizures. Distinguishing non-epileptic from epileptic seizures requires an expensive and time-consuming analysis of electroencephalograms (EEGs) recorded in an epilepsy monitoring unit. Machine learning algorithms have been used to detect seizures from EEG, typically using EEG waveform analysis. We employed an alternative approach, using a convolutional neural network (CNN) with transfer learning using MobileNetV2 to emulate the real-world visual analysis of EEG images by epileptologists. A total of 5359 EEG waveform plot images from 107 adult subjects across two epilepsy monitoring units in separate medical facilities were divided into epileptic and non-epileptic groups for training and cross-validation of the CNN. The model achieved an accuracy of 86.9% (Area Under the Curve, AUC 0.92) at the site where training data were extracted and an accuracy of 87.3% (AUC 0.94) at the other site whose data were only used for validation. This investigation demonstrates the high accuracy achievable with CNN analysis of EEG plot images and the robustness of this approach across EEG visualization software, laying the groundwork for further subclassification of seizures using similar approaches in a clinical setting.


Subject(s)
Electroencephalography , Epilepsy , Machine Learning , Neural Networks, Computer , Seizures , Humans , Electroencephalography/methods , Seizures/diagnosis , Seizures/physiopathology , Epilepsy/diagnosis , Epilepsy/physiopathology , Adult , Male , Algorithms , Female , Middle Aged
16.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732969

ABSTRACT

The recent scientific literature abounds in proposals of seizure forecasting methods that exploit machine learning to automatically analyze electroencephalogram (EEG) signals. Deep learning algorithms seem to achieve a particularly remarkable performance, suggesting that the implementation of clinical devices for seizure prediction might be within reach. However, most of the research evaluated the robustness of automatic forecasting methods through randomized cross-validation techniques, while clinical applications require much more stringent validation based on patient-independent testing. In this study, we show that automatic seizure forecasting can be performed, to some extent, even on independent patients who have never been seen during the training phase, thanks to the implementation of a simple calibration pipeline that can fine-tune deep learning models, even on a single epileptic event recorded from a new patient. We evaluate our calibration procedure using two datasets containing EEG signals recorded from a large cohort of epileptic subjects, demonstrating that the forecast accuracy of deep learning methods can increase on average by more than 20%, and that performance improves systematically in all independent patients. We further show that our calibration procedure works best for deep learning models, but can also be successfully applied to machine learning algorithms based on engineered signal features. Although our method still requires at least one epileptic event per patient to calibrate the forecasting model, we conclude that focusing on realistic validation methods allows to more reliably compare different machine learning approaches for seizure prediction, enabling the implementation of robust and effective forecasting systems that can be used in daily healthcare practice.


Subject(s)
Algorithms , Deep Learning , Electroencephalography , Seizures , Humans , Electroencephalography/methods , Seizures/diagnosis , Seizures/physiopathology , Calibration , Signal Processing, Computer-Assisted , Epilepsy/diagnosis , Epilepsy/physiopathology , Machine Learning
18.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38781106

ABSTRACT

The brain is a complex network, and diseases can alter its structures and connections between regions. Therefore, we can try to formalize the action of diseases by using operators acting on the brain network. Here, we propose a conceptual model of the brain, seen as a multilayer network, whose intra-lobe interactions are formalized as the diagonal blocks of an adjacency matrix. We propose a general and abstract definition of disease as an operator altering the weights of the connections between neural agglomerates, that is, the elements of the brain matrix. As models, we consider examples from three neurological disorders: epilepsy, Alzheimer-Perusini's disease, and schizophrenia. The alteration of neural connections can be seen as alterations of communication pathways, and thus, they can be described with a new channel model.


Subject(s)
Brain , Models, Neurological , Nerve Net , Humans , Brain/physiopathology , Nerve Net/physiopathology , Nervous System Diseases/physiopathology , Epilepsy/physiopathology , Schizophrenia/physiopathology , Alzheimer Disease/physiopathology
19.
Sci Rep ; 14(1): 11491, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769115

ABSTRACT

Several attempts for speech brain-computer interfacing (BCI) have been made to decode phonemes, sub-words, words, or sentences using invasive measurements, such as the electrocorticogram (ECoG), during auditory speech perception, overt speech, or imagined (covert) speech. Decoding sentences from covert speech is a challenging task. Sixteen epilepsy patients with intracranially implanted electrodes participated in this study, and ECoGs were recorded during overt speech and covert speech of eight Japanese sentences, each consisting of three tokens. In particular, Transformer neural network model was applied to decode text sentences from covert speech, which was trained using ECoGs obtained during overt speech. We first examined the proposed Transformer model using the same task for training and testing, and then evaluated the model's performance when trained with overt task for decoding covert speech. The Transformer model trained on covert speech achieved an average token error rate (TER) of 46.6% for decoding covert speech, whereas the model trained on overt speech achieved a TER of 46.3% ( p > 0.05 ; d = 0.07 ) . Therefore, the challenge of collecting training data for covert speech can be addressed using overt speech. The performance of covert speech can improve by employing several overt speeches.


Subject(s)
Brain-Computer Interfaces , Electrocorticography , Speech , Humans , Female , Male , Adult , Speech/physiology , Speech Perception/physiology , Young Adult , Feasibility Studies , Epilepsy/physiopathology , Neural Networks, Computer , Middle Aged , Adolescent
20.
Seizure ; 118: 148-155, 2024 May.
Article in English | MEDLINE | ID: mdl-38704883

ABSTRACT

PURPOSE: This study aimed to identify continuous epileptiform discharges (CEDs) on electroencephalograms (EEG) and to determine their clinical significance in children with congenital Zika syndrome (CZS). METHODS: This prospective cohort study included 75 children diagnosed with CZS born from March 2015 and followed up until September 2018 (age up to 36 months). EEG was performed to detect CEDs up to 24 months old. Data on obstetric, demographic, and clinical signs; cranial computed tomography (CT); ophthalmology examination; anti-seizure medication; growth; and motor development were collected. Fisher's exact test was used to verify the associations between categorical variables, and the T- test was used to compare the mean z-scores of anthropometric measurements between the groups with and without CED. RESULTS: CEDs were identified in 41 (54.67 %) children. The mean age of CEDs identification was 12.24 ± 6.86 months. Bilateral CEDs were shown in 62.89 % of EEGs. CEDs were associated with severe congenital microcephaly, defined by z-score >3 standard deviation of head circumference (HC) below the mean for sex and age (p = 0.025), and worse outcomes, including first seizure before 6 months (p = 0.004), drug-resistant epilepsy (p < 0.001), chorioretinal scarring or mottling (p = 0.002), and severe CT findings (p = 0.002). The CED group had lower mean z-scores of HC up to 24 months of age. CONCLUSION: This is the first description of the prevalence and significance of CEDs that also remains during wakefulness in patients with CZS. New investigations may suggest that it is more appropriate to classify the EEG not as a CED, but as a periodic pattern. Anyway, CEDs may be a marker of neurological severity in children with CSZ.


Subject(s)
Electroencephalography , Zika Virus Infection , Humans , Zika Virus Infection/complications , Zika Virus Infection/physiopathology , Zika Virus Infection/congenital , Female , Male , Infant , Prospective Studies , Child, Preschool , Microcephaly/physiopathology , Microcephaly/diagnostic imaging , Epilepsy/physiopathology , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...