Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.912
Filter
1.
Sci Rep ; 14(1): 12430, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816541

ABSTRACT

Dietary trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) is a potential candidate in anti-obesity trials. A transgenic mouse was previously successfully established to determine the anti-obesity properties of t10c12-CLA in male mice that could produce endogenous t10c12-CLA. To test whether there is a different impact of t10c12-CLA on lipid metabolism in both sexes, this study investigated the adiposity and metabolic profiles of female Pai mice that exhibited a dose-dependent expression of foreign Pai gene and a shift of t10c12-CLA content in tested tissues. Compared to their gender-match wild-type littermates, Pai mice had no fat reduction but exhibited enhanced lipolysis and thermogenesis by phosphorylated hormone-sensitive lipase and up-regulating uncoupling proteins in brown adipose tissue. Simultaneously, Pai mice showed hepatic steatosis and hypertriglyceridemia by decreasing gene expression involved in lipid and glucose metabolism. Further investigations revealed that t10c10-CLA induced excessive prostaglandin E2, adrenaline, corticosterone, glucagon and inflammatory factors in a dose-dependent manner, resulting in less heat release and oxygen consumption in Pai mice. Moreover, fibroblast growth factor 21 overproduction only in monoallelic Pai/wt mice indicates that it was sensitive to low doses of t10c12-CLA. These results suggest that chronic t10c12-CLA has system-wide effects on female health via synergistic actions of various hormones.


Subject(s)
Corticosterone , Dinoprostone , Epinephrine , Fibroblast Growth Factors , Glucagon , Linoleic Acids, Conjugated , Mice, Transgenic , Animals , Female , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Mice , Linoleic Acids, Conjugated/pharmacology , Linoleic Acids, Conjugated/metabolism , Corticosterone/metabolism , Dinoprostone/metabolism , Glucagon/metabolism , Epinephrine/metabolism , Thermogenesis/drug effects , Thermogenesis/genetics , Male , Lipid Metabolism/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Fatty Liver/metabolism , Fatty Liver/genetics , Lipolysis/drug effects , Hypertriglyceridemia/metabolism , Hypertriglyceridemia/genetics , Adiposity/drug effects
2.
Eur Biophys J ; 53(4): 239-247, 2024 May.
Article in English | MEDLINE | ID: mdl-38625405

ABSTRACT

In this study, fluorescence recovery after photobleaching (FRAP) experiments were performed on RBC labeled by lipophilic fluorescent dye CM-DiI to evaluate the role of adenylyl cyclase cascade activation in changes of lateral diffusion of erythrocytes membrane lipids. Stimulation of adrenergic receptors with epinephrine (adrenaline) or metaproterenol led to the significant acceleration of the FRAP recovery, thus indicating an elevated membrane fluidity. The effect of the stimulation of protein kinase A with membrane-permeable analog of cAMP followed the same trend but was less significant. The observed effects are assumed to be driven by increased mobility of phospholipids resulting from the weakened interaction between the intermembrane proteins and RBC cytoskeleton due to activation of adenylyl cyclase signaling cascade.


Subject(s)
Adenylyl Cyclases , Erythrocyte Membrane , Fluorescence Recovery After Photobleaching , Membrane Fluidity , Adenylyl Cyclases/metabolism , Membrane Fluidity/drug effects , Humans , Erythrocyte Membrane/metabolism , Enzyme Activation , Signal Transduction/drug effects , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Epinephrine/pharmacology , Epinephrine/metabolism
3.
Protein J ; 43(2): 351-361, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605203

ABSTRACT

It is well known that preslaughter (antemortem) stress such as rough handling, transportation, a negative environment, physical discomfort, lack of consistent routine, and bad feed quality has a big impact on meat quality. The antemortem-induced poor meat quality is characterized by low pH, a pale and exudative appearance, and a soft texture. Previous studies indicate that antemortem stress plays a key role in regulating protein acetylation and glycolysis in postmortem (PM) muscle. However, the underlying molecular and biochemical mechanism is not clearly understood yet. In this study, we investigated the relationship between antemortem and protein acetylation and glycolysis using murine longissimus dorsi muscle isolated from ICR mice and murine muscle cell line C2C12 treated with epinephrine hydrochloride. Because adrenaline secretion increases in stressed animals, epinephrine hydrochloride was intraperitoneally injected epinephrine into mice to simulate pre-slaughter stress in this study to facilitate experimental operations and save experimental costs. Our findings demonstrated that protein acetylation in pyruvate kinase M1 (PKM1) form is significantly reduced by antemortem, and the reduced acetylation subsequently leads to an increase in PKM1 enzymatic activity which causes increased glycolysis in PM muscle. By using molecular approaches, we identified lysine 141 in PKM1 as a critical residue for acetylation. Our results in this study provide useful insight for controlling or improving meat quality in the future.


Subject(s)
Glycolysis , Mice, Inbred ICR , Muscle, Skeletal , Pyruvate Kinase , Animals , Glycolysis/drug effects , Mice , Pyruvate Kinase/metabolism , Acetylation , Muscle, Skeletal/metabolism , Muscle, Skeletal/enzymology , Cell Line , Stress, Physiological , Epinephrine/metabolism
4.
Exp Mol Med ; 56(5): 1150-1163, 2024 May.
Article in English | MEDLINE | ID: mdl-38689092

ABSTRACT

Hepatocellular carcinoma (HCC) is associated with a poor prognosis. Our previous study demonstrated that Pleomorphic adenoma gene like-2 (PLAGL2) was a potential therapeutic target in HCC. However, the mechanisms that lead to the upregulation of PLAGL2 in HCC remain unclear. The present study revealed that stress-induced epinephrine increased the expression of PLAGL2, thereby promoting the progression of HCC. Furthermore, PLAGL2 knockdown inhibited epinephrine-induced HCC development. Mechanistically, epinephrine upregulated ubiquitin-specific protease 10 (USP10) to stabilize PLAGL2 via the adrenergic ß-receptor-2-c-Myc (ADRB2-c-Myc) axis. Furthermore, PLAGL2 acted as a transcriptional regulator of USP10, forming a signaling loop. Taken together, these results reveal that stress-induced epinephrine activates the PLAGL2-USP10 signaling loop to enhance HCC progression. Furthermore, PLAGL2 plays a crucial role in psychological stress-mediated promotion of HCC progression.


Subject(s)
Carcinoma, Hepatocellular , DNA-Binding Proteins , Epinephrine , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA-Binding Proteins , Signal Transduction , Transcription Factors , Ubiquitin Thiolesterase , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/genetics , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/etiology , Liver Neoplasms/genetics , Epinephrine/metabolism , Epinephrine/pharmacology , Signal Transduction/drug effects , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Mice , Cell Line, Tumor , Disease Progression , Male , Stress, Physiological , Cell Proliferation
5.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474244

ABSTRACT

Adrenaline has recently been found to trigger phosphatidylserine (PS) exposure on blood platelets, resulting in amplification of the coagulation process, but the mechanism is only fragmentarily established. Using a panel of platelet receptors' antagonists and modulators of signaling pathways, we evaluated the importance of these in adrenaline-evoked PS exposure by flow cytometry. Calcium and sodium ion influx into platelet cytosol, after adrenaline treatment, was examined by fluorimetric measurements. We found a strong reduction in PS exposure after blocking of sodium and calcium ion influx via Na+/H+ exchanger (NHE) and Na+/Ca2+ exchanger (NCX), respectively. ADP receptor antagonists produced a moderate inhibitory effect. Substantial limitation of PS exposure was observed in the presence of GPIIb/IIIa antagonist, phosphoinositide-3 kinase (PI3-K) inhibitors, or prostaglandin E1, a cyclic adenosine monophosphate (cAMP)-elevating agent. We demonstrated that adrenaline may develop a procoagulant response in human platelets with the substantial role of ion exchangers (NHE and NCX), secreted ADP, GPIIb/IIIa-dependent outside-in signaling, and PI3-K. Inhibition of the above mechanisms and increasing cytosolic cAMP seem to be the most efficient procedures to control adrenaline-evoked PS exposure in human platelets.


Subject(s)
Blood Platelets , Platelet Activation , Humans , Blood Platelets/metabolism , Calcium/metabolism , Epinephrine/metabolism , Platelet Aggregation Inhibitors/pharmacology , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Sodium/metabolism , Thrombin/metabolism
6.
Bull Math Biol ; 86(2): 17, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228814

ABSTRACT

During aerobic exercise, women oxidize significantly more lipids and less carbohydrates than men. This sexual dimorphism in substrate metabolism has been attributed, in part, to the observed differences in epinephrine and glucagon levels between men and women during exercise. To identify the underpinning candidate physiological mechanisms for these sex differences, we developed a sex-specific multi-scale mathematical model that relates cellular metabolism in the organs to whole-body responses during exercise. We conducted simulations to test the hypothesis that sex differences in the exercise-induced changes to epinephrine and glucagon would result in the sexual dimorphism of hepatic metabolic flux rates via the glucagon-to-insulin ratio (GIR). Indeed, model simulations indicate that the shift towards lipid metabolism in the female model is primarily driven by the liver. The female model liver exhibits resistance to GIR-mediated glycogenolysis, which helps maintain hepatic glycogen levels. This decreases arterial glucose levels and promotes the oxidation of free fatty acids. Furthermore, in the female model, skeletal muscle relies on plasma free fatty acids as the primary fuel source, rather than intramyocellular lipids, whereas the opposite holds true for the male model.


Subject(s)
Glucagon , Sex Characteristics , Female , Humans , Male , Glucagon/metabolism , Fatty Acids, Nonesterified/metabolism , Models, Biological , Mathematical Concepts , Exercise/physiology , Insulin/metabolism , Insulin/pharmacology , Epinephrine/metabolism , Muscle, Skeletal , Lipid Metabolism
7.
J Nat Med ; 78(1): 42-52, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37698739

ABSTRACT

Ligustilide (LIG) is the main active ingredient of Angelica sinensis (Oliv.) Diels, which could promote focal angiogenesis to exert neuroprotection. However, there was no report that verified the exact effects of LIG on endometrial angiogenesis and the pregnancy outcomes. To explore the effects of LIG on low endometrial receptivity (LER) and angiogenesis, pregnancy rats were assigned into Control (saline treatment), LER (hydroxyurea-adrenaline treatment), LIG 20 mg/kg and LIG 40 mg/kg groups. Hematoxylin and eosin (H&E) staining was performed to evaluate endometrial morphology. Quantitative real-time PCR, immunofluorescence staining, western blot and immunohistochemistry staining were employed to assess the expression of endometrial receptivity factors and angiogenesis-related gene/protein, respectively. RNA sequencing was used to analyze the effects of LIG on LER caused by Kidney deficiency and blood stasis. We found that endometrial thickness and the implanted embryo number were substantially reduced in the hydroxyurea-adrenaline-treated pregnancy rats. At the same time, the gene and protein expressions of ERα, LIF, VEGFA and CD31 in the endometrium were markedly reduced, while the expressions of MUC1, E-cadherin were increased in the LER group. Administration of LIG raised the endometrial thickness and implanted embryos, as well as reversed the expressions of these factors. Collectively, our findings revealed that LIG could facilitate embryo implantation via recovery of the endometrium receptivity and promotion of endometrial angiogenesis.


Subject(s)
Hydroxyurea , Pregnancy Outcome , Pregnancy , Female , Rats , Animals , Hydroxyurea/metabolism , Hydroxyurea/pharmacology , Angiogenesis , Endometrium/metabolism , Epinephrine/metabolism , Epinephrine/pharmacology
8.
Microbiol Res ; 279: 127561, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056174

ABSTRACT

Edwardsiella piscicida is a widespread pathogen that infects various fish species and causes massive hemorrhagic septicemia, resulting in significant property damage to the global aquaculture industry. Type III and VI secretion systems (T3/T6SS), controlled by the master regulator EsrB, are important virulence factors of E. piscicida that enable bacterial colonization and evasion from host immune clearance. In this study, we demonstrate that the QseE-QseF two-component system negatively regulated esrB expression by reanalysis of Tn-seq data. Moreover, the response regulator QseF directly bound to esrB promoter and inhibited the expression of T3/T6SS genes, especially in the presence of epinephrine. Furthermore, in response to the prompt increasing of epinephrine level, the host immune genes were delayed repressed and QseE-QseF timely inhibited the expression of T3/T6SS genes to evade immune clearance. In summary, this study enhances our understanding and knowledge of the conditional pathogenesis mechanism and virulence regulation network of E. piscicida.


Subject(s)
Edwardsiella , Fish Diseases , Animals , Virulence/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Epinephrine/metabolism , Fish Diseases/microbiology
9.
Cell Commun Signal ; 21(1): 346, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38037039

ABSTRACT

In essence, the ß2 adrenergic receptor (ß2AR) plays an antiproliferative role by increasing the intracellular cyclic 3',5'-adenosine monophosphate (cAMP) concentration through Gαs coupling, but interestingly, ß2AR antagonists are able to effectively inhibit fibroblast-like synoviocytes (FLSs) proliferation, thus ameliorating experimental RA, indicating that the ß2AR signalling pathway is impaired in RA FLSs via unknown mechanisms. The local epinephrine (Epi) level was found to be much higher in inflammatory joints than in normal joints, and high-level stimulation with Epi or isoproterenol (ISO) directly promoted FLSs proliferation and migration due to impaired ß2AR signalling and cAMP production. By applying inhibitor of receptor internalization, and small interfering RNA (siRNA) of Gαs and Gαi, and by using fluorescence resonance energy transfer and coimmunoprecipitation assays, a switch in Gαs-Gαi coupling to ß2AR was observed in inflammatory FLSs as well as in FLSs with chronic ISO stimulation. This Gαi coupling was then revealed to be initiated by G protein coupled receptor kinase 2 (GRK2) but not ß-arrestin2 or protein kinase A-mediated phosphorylation of ß2AR. Inhibiting the activity of GRK2 with the novel GRK2 inhibitor paeoniflorin-6'-O-benzene sulfonate (CP-25), a derivative of paeoniflorin, or the accepted GRK2 inhibitor paroxetine effectively reversed the switch in Gαs-Gαi coupling to ß2AR during inflammation and restored the intracellular cAMP level in ISO-stimulated FLSs. As expected, CP-25 significantly inhibited the hyperplasia of FLSs in a collagen-induced arthritis (CIA) model (CIA FLSs) and normal FLSs stimulated with ISO and finally ameliorated CIA in rats. Together, our findings revealed the pathological changes in ß2AR signalling in CIA FLSs, determined the underlying mechanisms and identified the pharmacological target of the GRK2 inhibitor CP-25 in treating CIA. Video Abstract.


Subject(s)
Arthritis, Experimental , Synoviocytes , Animals , Rats , Arthritis, Experimental/pathology , Cell Proliferation , Cells, Cultured , Epinephrine/metabolism , Epinephrine/pharmacology , Epinephrine/therapeutic use , Fibroblasts/metabolism , Inflammation/metabolism , Isoproterenol/metabolism , Isoproterenol/pharmacology , Isoproterenol/therapeutic use , Signal Transduction , Synoviocytes/metabolism , Synoviocytes/pathology
10.
J Physiol Pharmacol ; 74(4)2023 Aug.
Article in English | MEDLINE | ID: mdl-37865958

ABSTRACT

Baicalin is a plant-derived, biologically active compound exerting numerous advantageous effects. Adipocytes store and release energy in the process of lipogenesis and lipolysis. Rodent studies have shown that baicalin treatment positively affects fat tissue, however, data on the direct influence of this compound on adipocyte metabolism is lacking. In the present research, the short-term effects of 25, 50, and 100 µM baicalin on glucose transport, conversion to lipids, and oxidation, and also on lipolysis in primary rat adipocytes were explored. Lipolysis was measured as glycerol release from adipocytes. It was shown that 100 µM baicalin reduced glucose oxidation but at any concentration did not affect glucose transport and lipogenesis. Baicalin significantly increased the adipocyte response to physiological and pharmacological lipolytic stimuli (such as epinephrine - adrenergic agonist, DPCPX - adenosine A1 receptor antagonist, and amrinone - cAMP phosphodiesterase inhibitor). The stimulatory effects of baicalin on epinephrine-induced lipolysis were markedly diminished by insulin (activator of cAMP phosphodiesterases) and H-89 (PKA inhibitor). It was also demonstrated that baicalin evoked a similar rise in epinephrine-induced lipolysis in the presence of glucose and alanine. Our results provided evidence that baicalin may reduce glucose oxidation and is capable of enhancing lipolysis in primary rat adipocytes. The action on lipolysis is glucose-independent and covers both the adrenergic and adenosine A1 receptor pathways. The rise in cAMP content is proposed to be responsible for the observed potentiation of the lipolytic process.


Subject(s)
Adipocytes , Flavonoids , Rats , Animals , Rats, Wistar , Adipocytes/metabolism , Flavonoids/pharmacology , Lipolysis , Epinephrine/pharmacology , Epinephrine/metabolism , Adenosine/metabolism , Adenosine/pharmacology , Glucose/metabolism , Insulin/metabolism
11.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R504-R522, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37602383

ABSTRACT

Top ocean predators such as marine mammals are threatened by intensifying anthropogenic activity, and understanding the combined effects of multiple stressors on their physiology is critical for conservation efforts. We investigated potential interactions between stress hormones and bisphenol contaminants in a model marine mammal, the northern elephant seal (NES). We exposed precision-cut adipose tissue slices (PCATS) from blubber of weaned NES pups to cortisol (CORT), epinephrine (EPI), bisphenol A (BPA), bisphenol S (BPS), or their combinations (CORT-EPI, BPA-EPI, and BPS-EPI) ex vivo and identified hundreds of genes that were differentially regulated in response to these treatments. CORT altered expression of genes associated with lipolysis and adipogenesis, whereas EPI and CORT-EPI-regulated genes were associated with responses to hormones, lipid and protein turnover, immune function, and transcriptional and epigenetic regulation of gene expression, suggesting that EPI has wide-ranging and prolonged impacts on the transcriptional landscape and function of blubber. Bisphenol treatments alone had a weak impact on gene expression compared with stress hormones. However, the combination of EPI with bisphenols altered expression of genes associated with inflammation, cell stress, DNA damage, regulation of nuclear hormone receptor activity, cell cycle, mitochondrial function, primary ciliogenesis, and lipid metabolism in blubber. Our results suggest that CORT, EPI, bisphenols, and their combinations impact cellular, immune, and metabolic homeostasis in marine mammal blubber, which may affect the ability of marine mammals to sustain prolonged fasting during reproduction and migration, renew tissues, and mount appropriate responses to immune challenges and additional stressors.


Subject(s)
Hydrocortisone , Seals, Earless , Animals , Hydrocortisone/metabolism , Epigenesis, Genetic , Adipose Tissue/metabolism , Epinephrine/pharmacology , Epinephrine/metabolism , Seals, Earless/physiology
12.
Exp Eye Res ; 233: 109561, 2023 08.
Article in English | MEDLINE | ID: mdl-37429521

ABSTRACT

Adrenaline is a sympathomimetic drug used to maintain pupil dilation and to decrease the risk of bleeding. The aim of this study was to demonstrate if adrenaline could exert antifibrotic effects in glaucoma surgery. Adrenaline was tested in fibroblast-populated collagen contraction assays and there was a dose-response decrease in fibroblast contractility: matrices decreased to 47.4% (P = 0.0002) and 86.6% (P = 0.0036) with adrenaline 0.0005% and 0.01%, respectively. There was no significant decrease in cell viability even at high concentrations. Human Tenon's fibroblasts were also treated with adrenaline (0%, 0.0005%, 0.01%) for 24 h and RNA-Sequencing was performed on the Illumina NextSeq 2000. We carried out detailed gene ontology, pathway, disease and drug enrichment analyses. Adrenaline 0.01% upregulated 26 G1/S and 11 S-phase genes, and downregulated 23 G2 and 17 M-phase genes (P < 0.05). Adrenaline demonstrated similar pathway enrichment to mitosis and spindle checkpoint regulation. Adrenaline 0.05% was also injected subconjunctivally during trabeculectomy, PreserFlo Microshunt and Baerveldt 350 tube surgeries, and patients did not experience any adverse effects. Adrenaline is a safe and cheap antifibrotic drug that significantly blocks key cell cycle genes when used at high concentrations. Unless contraindicated, we recommend subconjunctival injections of adrenaline (0.05%) in all glaucoma bleb-forming surgeries.


Subject(s)
Glaucoma , Trabeculectomy , Humans , Glaucoma/drug therapy , Glaucoma/genetics , Glaucoma/surgery , Epinephrine/pharmacology , Epinephrine/metabolism , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/metabolism , Genes, cdc , Fibroblasts/metabolism
13.
Int Immunopharmacol ; 120: 110301, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37224648

ABSTRACT

AIMS: Circumstantial anxiety as well as chronic stress may stimulate the release of stress hormones including catecholamines. Adrenaline toxicity has been implicated in many cardiovascular conditions. Considering previous literature that suggests the oxidative potential of the adrenaline-copper entity, we have investigated its potential nocuous role in isolated adult rat cardiomyocytes, the underlying molecular mechanism, and its possible protection by melatonin. MAIN METHODS: Given the mechanistic congruity of adrenaline-copper (AC) with the well-established H2O2-copper-ascorbate (HCA) system of free radical generation, we have used the latter as a representative model to study the cytotoxic nature of AC. We further investigated the cardioprotective efficacy of melatonin in both the stress models through scanning electron microscopy, immunofluorescence, flow cytometry, and western blot analysis. KEY FINDINGS: Results show that melatonin significantly protects AC-treated cardiomyocytes from ROS-mediated membrane damage, disruption of mitochondrial membrane potential, antioxidant imbalance, and distortion of cellular morphology. Melatonin protects cardiomyocytes from inflammation by downregulating pro-inflammatory mediators viz., COX-2, NF-κB, TNF-α, and upregulating anti-inflammatory IL-10. Melatonin significantly ameliorated cardiomyocyte apoptosis in AC and HCA-treated cells as evidenced by decreased BAX/BCL-2 ratio and subsequent suppression of caspase-9 and caspase-3 levels. The isothermal calorimetric study revealed that melatonin inhibits the binding of adrenaline bitartrate with copper in solution, which fairly explains the rescue potential of melatonin against AC-mediated toxicity in cardiomyocytes. SIGNIFICANCE: Findings suggest that the multipronged strategy of melatonin that includes its antioxidant, anti-inflammatory, anti-apoptotic, and overall cardioprotective ability may substantiate its potential therapeutic efficacy against adrenaline-copper-induced damage and death of adult rat cardiomyocytes.


Subject(s)
Melatonin , Rats , Animals , Melatonin/pharmacology , Melatonin/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Copper/toxicity , Copper/metabolism , Myocytes, Cardiac/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Apoptosis , Inflammation/drug therapy , Inflammation/metabolism , Epinephrine/metabolism
14.
PLoS One ; 18(2): e0282098, 2023.
Article in English | MEDLINE | ID: mdl-36821630

ABSTRACT

Burkholderia pseudomallei is a facultative intracellular bacterial pathogen that causes melioidosis, a severe invasive disease of humans. We previously reported that the stress-related catecholamine hormone epinephrine enhances motility of B. pseudomallei, transcription of flagellar genes and the production of flagellin. It has been reported that the QseBC two-component sensory system regulates motility and virulence-associated genes in other Gram-negative bacteria in response to stress-related catecholamines, albeit disparities between studies exist. We constructed and whole-genome sequenced a mutant of B. pseudomallei with a deletion spanning the predicted qseBC homologues (bpsl0806 and bpsl0807). The ΔqseBC mutant exhibited significantly reduced swimming and swarming motility and reduced transcription of fliC. It also exhibited a defect in biofilm formation and net intracellular survival in J774A.1 murine macrophage-like cells. While epinephrine enhanced bacterial motility and fliC transcription, no further reduction in these phenotypes was observed with the ΔqseBC mutant in the presence of epinephrine. Plasmid-mediated expression of qseBC suppressed bacterial growth, complicating attempts to trans-complement mutant phenotypes. Our data support a role for QseBC in motility, biofilm formation and net intracellular survival of B. pseudomallei, but indicate that it is not essential for epinephrine-induced motility per se.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Animals , Humans , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia pseudomallei/metabolism , Epinephrine/pharmacology , Epinephrine/metabolism , Flagellin/metabolism
15.
Arch Dermatol Res ; 315(2): 173-180, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35226170

ABSTRACT

Catecholamines (epinephrine, norepinephrine and dopamine) are considered toxic to the melanocytes and may play an important role in the development of depigmented patches on the skin. This study was done to evaluate the levels of catecholamines in skin and plasma samples of active vitiligo patients' and gene expression changes in catecholamines' metabolism regulatory genes (COMT and GTPCH1), immunoregulatory genes (CTLA4 and PTPN22), and Catalase in active vitiligo patients. In this single-centre, prospective, case-control study, 30 patients with active vitiligo were recruited and skin biopsies from the perilesional site and plasma samples were collected. Skin biopsies from the normal site in vitiligo patients and healthy controls (n = 15) and plasma samples from controls were also obtained. Catecholamines' estimation was done via high-performance liquid chromatography. Gene expression variations were investigated via reverse transcription-polymerase chain reaction (PCR) and real-time PCR. Epinephrine, norepinephrine and dopamine levels were significantly higher in perilesional skin biopsies as compared to controls (P = 0.035, 0.024, and 0.006, respectively). However, epinephrine, norepinephrine and dopamine levels observed in patients' plasma samples were comparable to controls. The mRNA expression level of the Catalase gene was found to be upregulated at the perilesional site of patients as compared to the non-affected site of same patients (P < 0.001) and healthy controls (P = 0.037). Transcriptional expression of GTPCH1 and COMT were observed to be increased significantly at the perilesional site of patients in comparison to controls (P = 0.004 and P = 0.046, respectively). Our results support the presence of oxidative stress, inflammation and induced immune response in vitiligo patients at the perilesional sites. The increased inflammatory response may lead to catecholamines upregulation resulting in oxidative stress and melanocyte damage.


Subject(s)
Vitiligo , Humans , Catecholamines/metabolism , Catalase/genetics , Catalase/metabolism , Dopamine/metabolism , Case-Control Studies , Prospective Studies , Melanocytes/metabolism , Epinephrine/metabolism , Norepinephrine/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 22
16.
Prostate ; 83(3): 237-245, 2023 02.
Article in English | MEDLINE | ID: mdl-36373761

ABSTRACT

BACKGROUND: There is accumulating evidence that propranolol, an antagonist of beta-1 and beta-2 adrenoreceptors, extends survival of patients with prostate cancer; yet it is not known whether propranolol inhibits beta-adrenergic signaling in prostate cancer cells, or systemic effects of propranolol play the leading role in slowing down cancer progression. Recently initiated clinical studies offer a possibility to test whether administration of propranolol inhibits signaling pathways in prostate tumors, however, there is limited information on the dynamics of signaling pathways activated downstream of beta-2 adrenoreceptors in prostate cancer cells and on the inactivation of these pathways upon propranolol administration. METHODS: Western blot analysis was used to test the effects of epinephrine and propranolol on activation of protein kinase (PKA) signaling in mouse prostates and PKA, extracellular signal-regulated kinase (ERK), and protein kinase B/AKT (AKT) signaling in prostate cancer cell lines. RESULTS: In prostate cancer cell lines epinephrine induced robust phosphorylation of PKA substrates pS133CREB and pS157VASP that was evident 2 min after treatments and lasted for 3-6 h. Epinephrine induced phosphorylation of AKT in PTEN-positive 22Rv1 cells, whereas changes of constitutive AKT phosphorylation were minimal in PTEN-negative PC3, C42, and LNCaP cells. A modest short-term increase of pERK in response to epinephrine was observed in all tested cell lines. Incubation of prostate cancer cells with 10-fold molar excess of propranolol for 30 min inhibited all downstream pathways activated by epinephrine. Subjecting mice to immobilization stress induced phosphorylation of S133CREB, whereas injection of propranolol at 1.5 mg/kg prevented the stress-induced phosphorylation. CONCLUSIONS: The analysis of pS133CREB and pS157VASP allows measuring activation of PKA signaling downstream of beta-2 adrenoreceptors. Presented results on the ratio of propranolol/epinephrine and the time needed to inhibit signaling downstream of beta-2 adrenoreceptors will help to design clinical studies that examine the effects of propranolol on prostate tumors.


Subject(s)
Propranolol , Prostatic Neoplasms , Humans , Male , Animals , Mice , Propranolol/pharmacology , Propranolol/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Phosphorylation , Epinephrine/pharmacology , Epinephrine/metabolism
17.
Methods Mol Biol ; 2565: 43-55, 2023.
Article in English | MEDLINE | ID: mdl-36205886

ABSTRACT

Transmission electron microscopy and the use of glutaraldehyde-osmium fixation allow to distinguish norepinephrine from epinephrine granules in the adrenochromaffin cells, a difficult distinction with histochemical methods if both types of granules are present in the same cell. Here we describe all the steps necessary to process the adrenochromaffin tissue for the transmission electron microscopy; this protocol is suitable for any kind of adrenal tissue, and personally we used it in mammals, reptiles, and amphibians.


Subject(s)
Adrenal Medulla , Chromaffin Cells , Adrenal Medulla/metabolism , Animals , Chromaffin Cells/metabolism , Epinephrine/metabolism , Glutaral , Mammals/metabolism , Microscopy, Electron, Transmission , Norepinephrine , Osmium
18.
Sci Rep ; 12(1): 17167, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229484

ABSTRACT

Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular disease. While intermittent hypoxia (IH) and catecholamine release play an important role in this increased risk, the mechanisms are incompletely understood. We have recently reported that IH causes endothelial cell (EC) activation, an early phenomenon in the development of cardiovascular disease, via IH-induced catecholamine release. Here, we investigated the effects of IH and epinephrine on gene expression in human aortic ECs using RNA-sequencing. We found a significant overlap between IH and epinephrine-induced differentially expressed genes (DEGs) including enrichment in leukocyte migration, cytokine-cytokine receptor interaction, cell adhesion and angiogenesis. Epinephrine caused higher number of DEGs compared to IH. Interestingly, IH when combined with epinephrine had an inhibitory effect on epinephrine-induced gene expression. Combination of IH and epinephrine induced MT1G (Metallothionein 1G), which has been shown to be highly expressed in ECs from parts of aorta (i.e., aortic arch) where atherosclerosis is more likely to occur. In conclusion, epinephrine has a greater effect than IH on EC gene expression in terms of number of genes and their expression level. IH inhibited the epinephrine-induced transcriptional response. Further investigation of the interaction between IH and epinephrine is needed to better understand how OSA causes cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Sleep Apnea, Obstructive , Aorta/metabolism , Cardiovascular Diseases/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Epinephrine/metabolism , Epinephrine/pharmacology , Humans , Hypoxia/metabolism , Metallothionein/metabolism , RNA/metabolism , Receptors, Cytokine/metabolism
19.
Exp Eye Res ; 224: 109235, 2022 11.
Article in English | MEDLINE | ID: mdl-36049555

ABSTRACT

We previously demonstrated vasoactive intestinal polypeptide (VIP) eyedrops reduce intraocular pressure (IOP) and stabilize cytoskeleton of the Schlemm's canal (SC) endothelium in a chronic ocular hypertension rat model. Here we determine if the trabecular meshwork (TM) releases endogenous VIP and affect SC in paracrine manner, and whether this cellular interaction via VIP is strengthened under stimulated sympathetic activity. A rat model of moderate-intensity exercise was established to stimulate sympathetic activation. IOP post exercise was measured by a rebound tonometer. Sympathetic nerve activity at the TM was immunofluorescence-stained with DßH and PGP9.5. Morphological changes of TM and SC were quantitatively measured by hematoxylin-eosin (HE) staining. Further, epinephrine was applied to mimic sympathetic excitation on primary rat TM cells, and ELISA to measure VIP levels in the medium. The cytoskeleton protective effect of VIP in the epinephrine-stimulated conditioned medium (Epi-CM) was evaluated in oxidative stressed human umbilical vein endothelial cells (HUVECs). Elevated sympathetic nerve activity was found at TM post exercise. Changes accompanying the sympathetic excitation included thinned TM, expanded SC and decreased IOP, which were consistent with epinephrine treatment. Epinephrine decreased TM cell size, enhanced VIP expression and release in the medium in vitro. Epi-CM restored linear F-actin and cell junction integrity in H2O2 treated HUVECs. Blockage of VIP receptor by PG99-465 attenuated the protective capability of Epi-CM. VIP expression was upregulated at TM and the inner wall of SC post exercise in vivo. PG99-465 significantly attenuated exercise-induced SC expansion and IOP reduction. Thus, the sympathetic activation promoted VIP release from TM cells and subsequently expanded SC via stabilizing cytoskeleton, which resulted in IOP reduction.


Subject(s)
Trabecular Meshwork , Vasoactive Intestinal Peptide , Animals , Humans , Rats , Actins/metabolism , Culture Media, Conditioned/pharmacology , Epinephrine/metabolism , Human Umbilical Vein Endothelial Cells , Hydrogen Peroxide/pharmacology , Intraocular Pressure , Ophthalmic Solutions/pharmacology , Receptors, Vasoactive Intestinal Peptide/metabolism , Trabecular Meshwork/metabolism , Vasoactive Intestinal Peptide/pharmacology , Vasoactive Intestinal Peptide/metabolism
20.
Brain Res ; 1795: 148072, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36075465

ABSTRACT

We investigated the effects of catecholamines, adrenaline and noradrenaline, as well as ß-adrenoceptor (AR) modulators on a resting membrane potential at the junctional and extrajunctional regions of mouse fast-twitch Levator auris longus muscle. The aim of the study was to find which AR subtypes, signaling molecules and Na,K-ATPase isoforms are involved in the hyperpolarizing action of catecholamines and whether this action could be accompanied by changes in the pump abundance on the sarcolemma. Adrenaline, noradrenaline and specific ß2-AR agonist induced hyperpolarization of both junctional and extrajunctional membrane, but the underlying mechanisms were different. In the junctional membrane the hyperpolarization depended on α2 isoform of the Na,K-ATPase and Gi-protein, whereas in the extrajunctional regions the hyperpolarization mainly relied on α1 isoform of Na,K-ATPase and adenylyl cyclase activities. In both junctional and extrajunctional regions, AR activation caused an increase in Na,K-ATPase abundance in the plasmalemma in a protein kinase A-dependent manner. Thus, the compartment-specific mechanisms are responsible for catecholamine-mediated hyperpolarization in the skeletal muscle.


Subject(s)
Catecholamines , Sodium-Potassium-Exchanging ATPase , Adenylyl Cyclases/metabolism , Animals , Catecholamines/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Epinephrine/metabolism , Mice , Muscle, Skeletal/metabolism , Norepinephrine/metabolism , Protein Isoforms/metabolism , Receptors, Adrenergic/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...