Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.106
Filter
1.
J Transl Med ; 22(1): 607, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951896

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a prevalent malignancy with complex heterogeneity within epithelial cells, which plays a crucial role in tumor progression and immune regulation. Yet, the clinical importance of the malignant epithelial cell-related genes (MECRGs) in ccRCC remains insufficiently understood. This research aims to undertake a comprehensive investigation into the functions and clinical relevance of malignant epithelial cell-related genes in ccRCC, providing valuable understanding of the molecular mechanisms and offering potential targets for treatment strategies. Using data from single-cell sequencing, we successfully identified 219 MECRGs and established a prognostic model MECRGS (MECRGs' signature) by synergistically analyzing 101 machine-learning models using 10 different algorithms. Remarkably, the MECRGS demonstrated superior predictive performance compared to traditional clinical features and 92 previously published signatures across six cohorts, showcasing its independence and accuracy. Upon stratifying patients into high- and low-MECRGS subgroups using the specified cut-off threshold, we noted that patients with elevated MECRGS scores displayed characteristics of an immune suppressive tumor microenvironment (TME) and showed worse outcomes after immunotherapy. Additionally, we discovered a distinct ccRCC tumor cell subtype characterized by the high expressions of PLOD2 (procollagen-lysine,2-oxoglutarate 5-dioxygenase 2) and SAA1 (Serum Amyloid A1), which we further validated in the Renji tissue microarray (TMA) cohort. Lastly, 'Cellchat' revealed potential crosstalk patterns between these cells and other cell types, indicating their potential role in recruiting CD163 + macrophages and regulatory T cells (Tregs), thereby establishing an immunosuppressive TME. PLOD2 + SAA1 + cancer cells with intricate crosstalk patterns indeed show promise for potential therapeutic interventions.


Subject(s)
Carcinoma, Renal Cell , Epithelial Cells , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Tumor Microenvironment/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Prognosis , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Male , Gene Expression Profiling , Machine Learning
2.
Transl Vis Sci Technol ; 13(7): 2, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949633

ABSTRACT

Purpose: We sought to evaluate the efficacy of growth differentiation factor (GDF)-15 treatment for suppressing epithelial-mesenchymal transition (EMT) and alleviating transforming growth factor ß2 (TGFß2)-induced lens opacity. Methods: To test whether GDF-15 is a molecule that prevents EMT, we pretreated the culture with GDF-15 in neural progenitor cells, retinal pigment epithelial cells, and lens epithelial cells and then treated with factors that promote EMT, GDF-11, and TGFß2, respectively. To further investigate the efficacy of GDF-15 on alleviating lens opacity, we used mouse lens explant culture to mimic secondary cataracts. We pretreated the lens culture with GDF-15 and then added TGFß2 to develop lens opacity (n = 3 for each group). Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure EMT protein and gene expression, respectively. Results: In cell culture, GDF-15 pretreatment significantly attenuated EMT marker expression in cultured cells induced by treatment with GDF-11 or TGFß2. In the lens explant culture, GDF-15 pretreatment also reduced mouse lens opacity induced by exposure to TGFß2. Conclusions: Our results indicate that GDF-15 could alleviate TGFß2-induced EMT and is a potential therapeutic agent to slow or prevent posterior capsular opacification (PCO) progression after cataract surgery. Translational Relevance: Cataracts are the leading cause of blindness worldwide, with the only current treatment involving surgical removal of the lens and replacement with an artificial lens. However, PCO, also known as secondary cataract, is a common complication after cataract surgery. The development of an adjuvant that slows the progression of PCO will be beneficial to the field of anterior complications.


Subject(s)
Cataract , Epithelial-Mesenchymal Transition , Growth Differentiation Factor 15 , Lens, Crystalline , Transforming Growth Factor beta2 , Animals , Epithelial-Mesenchymal Transition/drug effects , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/pharmacology , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/genetics , Cataract/pathology , Cataract/metabolism , Cataract/prevention & control , Mice , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Lens, Crystalline/drug effects , Mice, Inbred C57BL , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Blotting, Western , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism
3.
Cell Death Dis ; 15(7): 473, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956064

ABSTRACT

Damage to renal tubular epithelial cells (RTECs) signaled the onset and progression of sepsis-associated acute kidney injury (SA-AKI). Recent research on mitochondria has revealed that mitophagy plays a crucial physiological role in alleviating injury to RTECs and it is suppressed progressively by the inflammation response in SA-AKI. However, the mechanism by which inflammation influences mitophagy remains poorly understood. We examined how macrophage migration inhibitory factor (MIF), a pro-inflammatory protein, influences the PINK1-Parkin pathway of mitophagy by studying protein-protein interactions when MIF was inhibited or overexpressed. Surprisingly, elevated levels of MIF were found to directly bind to PINK1, disrupting its interaction with Parkin. This interference hindered the recruitment of Parkin to mitochondria and impeded the initiation of mitophagy. Furthermore, this outcome led to significant apoptosis of RTECs, which could, however, be reversed by an MIF inhibitor ISO-1 and/or a new mitophagy activator T0467. These findings highlight the detrimental impact of MIF on renal damage through its disruption of the interaction between PINK1 and Parkin, and the therapeutic potential of ISO-1 and T0467 in mitigating SA-AKI. This study offers a fresh perspective on treating SA-AKI by targeting MIF and mitophagy.


Subject(s)
Acute Kidney Injury , Macrophage Migration-Inhibitory Factors , Mitophagy , Protein Kinases , Sepsis , Ubiquitin-Protein Ligases , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Sepsis/complications , Sepsis/metabolism , Animals , Humans , Mitochondria/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Apoptosis , Protein Binding , Male , Intramolecular Oxidoreductases/metabolism
4.
Cells ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38994991

ABSTRACT

Clostridium perfringens (C. perfringens), a Gram-positive bacterium, produces a variety of toxins and extracellular enzymes that can lead to disease in both humans and animals. Common symptoms include abdominal swelling, diarrhea, and intestinal inflammation. Severe cases can result in complications like intestinal hemorrhage, edema, and even death. The primary toxins contributing to morbidity in C. perfringens-infected intestines are CPA, CPB, CPB2, CPE, and PFO. Amongst these, CPB, CPB2, and CPE are implicated in apoptosis development, while CPA is associated with cell death, increased intracellular ROS levels, and the release of the inflammatory factor IL-18. However, the exact mechanism by which PFO toxins exert their effects in the infected gut is still unidentified. This study demonstrates that a C. perfringens PFO toxin infection disrupts the intestinal epithelial barrier function through in vitro and in vivo models. This study emphasizes the notable influence of PFO toxins on intestinal barrier integrity in the context of C. perfringens infections. It reveals that PFO toxins increase ROS production by causing mitochondrial damage, triggering pyroptosis in IPEC-J2 cells, and consequently resulting in compromised intestinal barrier function. These results offer a scientific foundation for developing preventive and therapeutic approaches against C. perfringens infections.


Subject(s)
Bacterial Toxins , Clostridium perfringens , Epithelial Cells , Hemolysin Proteins , Intestinal Mucosa , Pyroptosis , Reactive Oxygen Species , Clostridium perfringens/pathogenicity , Bacterial Toxins/toxicity , Bacterial Toxins/metabolism , Pyroptosis/drug effects , Animals , Hemolysin Proteins/metabolism , Hemolysin Proteins/toxicity , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Reactive Oxygen Species/metabolism , Cell Line , Mice , Humans , Mitochondria/metabolism , Mitochondria/drug effects
5.
Sci Rep ; 14(1): 15778, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982264

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is the most predominant type of idiopathic interstitial pneumonia and has an increasing incidence, poor prognosis, and unclear pathogenesis. In order to investigate the molecular mechanisms underlying IPF further, we performed single-cell RNA sequencing analysis on three healthy controls and five IPF lung tissue samples. The results revealed a significant shift in epithelial cells (ECs) phenotypes in IPF, which may be attributed to the differentiation of alveolar type 2 cells to basal cells. In addition, several previously unrecognized basal cell subtypes were preliminarily identified, including extracellular matrix basal cells, which were increased in the IPF group. We identified a special population of fibroblasts that highly expressed extracellular matrix-related genes, POSTN, CTHRC1, COL3A1, COL5A2, and COL12A1. We propose that the close interaction between ECs and fibroblasts through ligand-receptor pairs may have a critical function in IPF development. Collectively, these outcomes provide innovative perspectives on the complexity and diversity of basal cells and fibroblasts in IPF and contribute to the understanding of possible mechanisms in pathological lung fibrosis.


Subject(s)
Fibroblasts , Idiopathic Pulmonary Fibrosis , Sequence Analysis, RNA , Single-Cell Analysis , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , Single-Cell Analysis/methods , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Male , Lung/pathology , Lung/metabolism , Extracellular Matrix/metabolism , Middle Aged
6.
Cell Commun Signal ; 22(1): 357, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987851

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.


Subject(s)
Cellular Senescence , Epithelial Cells , Exosomes , Kidney Tubules , Macrophages , MicroRNAs , Telomere , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Exosomes/metabolism , Exosomes/genetics , Animals , Epithelial Cells/metabolism , Epithelial Cells/pathology , Macrophages/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Mice , Telomere/genetics , Telomere/metabolism , Humans , Mice, Inbred C57BL , Male , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Fibrosis/genetics , Angiotensin II
7.
Cell Commun Signal ; 22(1): 351, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970061

ABSTRACT

BACKGROUND: Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS: Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS: Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION: Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.


Subject(s)
Diabetic Nephropathies , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Humans , Macrophages/metabolism , Macrophages/drug effects , Inflammasomes/metabolism , Connexin 43/metabolism , Connexin 43/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Adenosine Triphosphate/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology
8.
Eur J Med Res ; 29(1): 371, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014509

ABSTRACT

Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease primarily affecting exocrine glands such as the salivary glands, leading to impaired secretion and sicca symptoms. As the mainstay of salivation, salivary gland epithelial cells (SGECs) have an important role in the pathology of pSS. Emerging evidence suggests that the interplay between immunological factors and SGECs may not be the initial trigger or the sole mechanism responsible for xerostomia in pSS, challenging conventional perceptions. To deepen our understanding, current research regarding SGECs in pSS was reviewed. Among the extensive aberrations in cellular architecture and function, this review highlighted certain alterations of SGECs that were identified to occur independently of or in absence of lymphocytic infiltration. In particular, some of these alterations may serve as upstream factors of immuno-inflammatory responses. These findings underscore the significance of introspecting the pathogenesis of pSS and developing interventions targeting SGECs in the early stages of the disease.


Subject(s)
Epithelial Cells , Salivary Glands , Sjogren's Syndrome , Sjogren's Syndrome/pathology , Sjogren's Syndrome/immunology , Humans , Epithelial Cells/pathology , Salivary Glands/pathology
9.
Kidney Int ; 106(2): 185-188, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032963

ABSTRACT

Acute kidney injury is still associated with high morbidity and mortality. Reichardt et al. investigated DNA-binding protein-A (Ybx3) in acute kidney injury induced by ischemia-reperfusion injury and found that mice lacking Ybx3 have altered mitochondrial function and increased antioxidant activity, making them more resistant to ischemia-reperfusion injury-acute kidney injury. The study highlights a new role of the multifaceted protein DNA-binding protein-A, which could be potentially therapeutically exploited.


Subject(s)
Acute Kidney Injury , Epithelial Cells , Kidney Tubules , Reperfusion Injury , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/etiology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mice , Kidney Tubules/metabolism , Kidney Tubules/pathology , Kidney Tubules/cytology , Humans , Mitochondria/metabolism , Oxidative Stress
10.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000289

ABSTRACT

Inflammatory bowel disease (IBD) is an immunologically complex disorder involving genetic, microbial, and environmental risk factors. Its global burden has continued to rise since industrialization, with epidemiological studies suggesting that ambient particulate matter (PM) in air pollution could be a contributing factor. Prior animal studies have shown that oral PM10 exposure promotes intestinal inflammation in a genetic IBD model and that PM2.5 inhalation exposure can increase intestinal levels of pro-inflammatory cytokines. PM10 and PM2.5 include ultrafine particles (UFP), which have an aerodynamic diameter of <0.10 µm and biophysical and biochemical properties that promote toxicity. UFP inhalation, however, has not been previously studied in the context of murine models of IBD. Here, we demonstrated that ambient PM is toxic to cultured Caco-2 intestinal epithelial cells and examined whether UFP inhalation affected acute colitis induced by dextran sodium sulfate and 2,4,6-trinitrobenzenesulfonic acid. C57BL/6J mice were exposed to filtered air (FA) or various types of ambient PM reaerosolized in the ultrafine size range at ~300 µg/m3, 6 h/day, 3-5 days/week, starting 7-10 days before disease induction. No differences in weight change, clinical disease activity, or histology were observed between the PM and FA-exposed groups. In conclusion, UFP inhalation exposure did not exacerbate intestinal inflammation in acute, chemically-induced colitis models.


Subject(s)
Colitis , Dextran Sulfate , Mice, Inbred C57BL , Particulate Matter , Trinitrobenzenesulfonic Acid , Particulate Matter/toxicity , Animals , Colitis/chemically induced , Colitis/pathology , Mice , Humans , Dextran Sulfate/toxicity , Caco-2 Cells , Trinitrobenzenesulfonic Acid/toxicity , Trinitrobenzenesulfonic Acid/adverse effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial Cells/metabolism , Disease Models, Animal , Male , Particle Size
11.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999957

ABSTRACT

Abnormalities in mucosal immunity are involved in the onset and progression of ulcerative colitis (UC), resulting in a high incidence of colorectal cancer (CRC). While high-mobility group box-1 (HMGB1) is overexpressed during colorectal carcinogenesis, its role in UC-related carcinogenesis remains unclear. In the present study, we investigated the role of HMGB1 in UC-related carcinogenesis and sporadic CRC. Both the azoxymethane colon carcinogenesis and dextran sulfate sodium colitis carcinogenesis models demonstrated temporal increases in mucosal HMGB1 levels. Activated CD8+ cells initially increased and then decreased, whereas exhausted CD8+ cells increased. Additionally, we observed increased regulatory CD8+ cells, decreased naïve CD8+ cells, and decreased mucosal epithelial differentiation. In the in vitro study, HMGB1 induced energy reprogramming from oxidative phosphorylation to glycolysis in CD8+ cells and intestinal epithelial cells. Furthermore, in UC dysplasia, UC-related CRC, and hyperplastic mucosa surrounding human sporadic CRC, we found increased mucosal HMGB1, decreased activated CD8+ cells, and suppressed mucosal epithelial differentiation. However, we observed increased activated CD8+ cells in active UC mucosa. These findings indicate that HMGB1 plays an important role in modulating mucosal immunity and epithelial dedifferentiation in both UC-related carcinogenesis and sporadic CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Differentiation , Colitis, Ulcerative , HMGB1 Protein , Immunity, Mucosal , Intestinal Mucosa , HMGB1 Protein/metabolism , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Male , Epithelial Cells/metabolism , Epithelial Cells/pathology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/immunology , Mice, Inbred C57BL , Carcinogenesis/immunology , Carcinogenesis/pathology , Carcinogenesis/metabolism
12.
Adv Exp Med Biol ; 1445: 157-168, 2024.
Article in English | MEDLINE | ID: mdl-38967758

ABSTRACT

As the locus for air exchange, lung tissue is perpetually exposed to a significant quantity of foreign pathogens. Consequently, lung has developed a refined and intricate immune system. Beyond their physical and chemical barrier roles, lung epithelial cells can contribute to immune defence through the expression of Toll-like receptors (TLRs) and other pattern recognition receptors, along with the secretion of cytokines. Emerging evidence demonstrates that lung epithelial cells can generate and secrete immunoglobulins (Igs), including IgM, IgA, or IgG, thus performing antibody function. Moreover, malignantly transformed lung epithelial cells have been discovered to produce high levels of Ig, predominantly IgG, which do not fulfill the role of antibodies, but instead carries out tumour-promoting activity. Structural analysis has indicated that the biological activity of IgG produced by lung cancer cells differs from that of Igs produced by normal lung epithelial cells due to the unique glycosylation modification. Specifically, the sialylated IgG (SIA-IgG), characterised by a non-traditional N-glycosylation modification at the Asn162 site of Igγ CH1, is highly expressed in tumour stem cells. It has been demonstrated that SIA-IgG relies on this unique sialylation modification to promote tumorigenesis, metastasis, and immune evasion. Current results have proven that the Ig produced by lung epithelial cells has multifaceted biological activities, including immune defence functions under physiological conditions, while acquiring tumour-promoting activity during malignant transformation. These insights possess potential for the diagnosis and treatment of lung cancer as novel biomarkers and targets.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Animals , Epithelial Cells/metabolism , Epithelial Cells/immunology , Epithelial Cells/pathology , Glycosylation , Lung/immunology , Lung/pathology , Lung/metabolism , Immunoglobulins/metabolism , Immunoglobulins/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism
13.
J Hazard Mater ; 474: 134601, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38823098

ABSTRACT

Deoxynivalenol (DON) is a secondary metabolite produced by fungi, which causes serious health issues worldwide due to its widespread presence in human and animal diets. Necroptosis is a newly proposed cell death mode and has been proposed as a potential mechanism of intestinal disease. This study aimed to investigate the role of necroptosis in intestinal damage caused by DON exposure. Piglets were fed diets with or without 4 mg/kg DON for 3 weeks or given a gavage of 2 mg/kg BW DON or sterile saline to investigate the effects of chronic or acute DON exposure on the gut, respectively. IPEC-1 cells were challenged with different concentrations of DON to investigate the effect of DON exposure on the intestinal epithelial cells (IECs) in vitro. Subsequently, the inhibitors of necroptosis were used to treat cells or piglets prior to DON challenge. Chronic and acute DON exposure both caused morphological damage, reduction of disaccharidase activity, decrease of tight junction protein expression, inflammation of the small intestine, and necroptosis of intestinal epithelial cells in piglets. Necroptosis was also detected when IPEC-1 cell damage was induced by DON in vitro. The suppression of necroptosis in IPEC-1 cells by inhibitors (necrostatin-1 (Nec-1), GSK'872, or GW806742X) alleviated cell death, the decrease of tight junction protein expression, oxidative stress, and the inflammatory response induced by DON. Furthermore, pre-treatment with Nec-1 in piglets was also observed to protect the intestine against DON-induced enterotoxicity. Additionally, the expression of histone methyltransferase SETDB1 was abnormally downregulated upon chronic and acute DON exposure in piglets, and necroptosis was activated in IPEC-1 cells due to knockout of SETDB1. Collectively, these results demonstrate that necroptosis of IECs is a mechanism of DON-induced enterotoxicity and SETDB1 mediates necroptosis upon DON exposure in IECs, suggesting the potential for targeted inhibition of necroptosis to alleviate mycotoxin-induced enterotoxicity and intestinal disease.


Subject(s)
Histone-Lysine N-Methyltransferase , Necroptosis , Trichothecenes , Trichothecenes/toxicity , Animals , Necroptosis/drug effects , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Swine , Cell Line , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Intestines/drug effects , Intestines/pathology
14.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892050

ABSTRACT

Breast cancer is the most common cancer amongst women worldwide. Recently, owing to screening programs and new technologies, the survival rate has increased significantly. Breast cancer can potentially develop metastases, and, despite them, lung metastases generally occur within five years of breast cancer diagnosis. In this study, the objective was to analyze the effect of breast cancer-derived EVs on a lung epithelial cell line. BEAS-2B cells were treated with extracellular vesicles (EVs) derived from triple-negative breast cancer cells (TNBCs), e.g., MDA-MB-231 and HS578T, separated using differential ultracentrifugation. We observed an increased growth, migration, and invasiveness of normal epithelial lung cells over time in the presence of TNBC EVs compared to the control. Therefore, these data suggest that EVs released by tumor cells contain biological molecules capable of influencing the pro-tumorigenic activity of normal cells. Exploring the role of EVs in oncology research and their potential cargo may be novel biomarkers for early cancer detection and further diagnosis.


Subject(s)
Cell Movement , Cell Proliferation , Epithelial Cells , Extracellular Vesicles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Extracellular Vesicles/metabolism , Female , Cell Line, Tumor , Epithelial Cells/metabolism , Epithelial Cells/pathology , Lung/metabolism , Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology
15.
Cell Biol Toxicol ; 40(1): 47, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869718

ABSTRACT

Long noncoding RNAs play an important role in several pathogenic processes in diabetic nephropathy, but the relationship with epithelial-mesenchymal transition in DN is unclear. Herein, we found that KIFAP3-5:1 expression was significantly down-regulated in DN plasma samples, db/db mouse kidney tissues and high glucose treated renal tubular epithelial cells compared to normal healthy samples and untreated cells. Overexpression of KIFAP3-5:1 improved renal fibrosis in db/db mice and rescued epithelial-mesenchymal transition of high glucose cultured renal tubular epithelial cells. The silence of KIFAP3-5:1 will exacerbate the progression of EMT. Mechanistically, KIFAP3-5:1 was confirmed to directly target to the -488 to -609 element of the PRRX1 promoter and negatively modulate PRRX1 mRNA and protein expressions. Furthermore, rescue assays demonstrated that the knockdown of PRRX1 counteracted the KIFAP3-5:1 low expression-mediated effects on EMT in hRPTECs cultured under high glucose. The plasma KIFAP3-5:1 of DN patients is highly correlated with the severity of renal dysfunction and plays an important role in the prediction model of DN diseases. These findings suggested that KIFAP3-5:1 plays a critical role in regulation of renal EMT and fibrosis through suppress PRRX1, and highlight the clinical potential of KIFAP3-5:1 to assist in the diagnosis of diabetic nephropathy.


Subject(s)
Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Homeodomain Proteins , Kidney Tubules , RNA, Long Noncoding , Epithelial-Mesenchymal Transition/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Humans , Mice , Kidney Tubules/metabolism , Kidney Tubules/pathology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Epithelial Cells/metabolism , Epithelial Cells/pathology , Glucose/metabolism , Glucose/pharmacology , Fibrosis , Mice, Inbred C57BL , Female , Middle Aged
16.
Sci Rep ; 14(1): 12879, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839896

ABSTRACT

Paneth cells (PCs), a subset of intestinal epithelial cells (IECs) found at the base of small intestinal crypts, play an essential role in maintaining intestinal homeostasis. Altered PCs function is associated with diverse intestinal pathologies, including ileal Crohn's disease (CD). CD patients with ileal involvement have been previously demonstrated to display impairment in PCs and decreased levels of anti-microbial peptides. Although the immunosuppressive drug Azathioprine (AZA) is widely used in CD therapy, the impact of AZA on IEC differentiation remains largely elusive. In the present study, we hypothesized that the orally administered drug AZA also exerts its effect through modulation of the intestinal epithelium and specifically via modulation of PC function. AZA-treated CD patients exhibited an ileal upregulation of AMPs on both mRNA and protein levels compared to non-AZA treated patients. Upon in vitro AZA stimulation, intestinal epithelial cell line MODE-K exhibited heightened expression levels of PC marker in concert with diminished cell proliferation but boosted mitochondrial OXPHOS activity. Moreover, differentiation of IECs, including PCs differentiation, was boosted in AZA-treated murine small intestinal organoids and was associated with decreased D-glucose consumption and decreased growth rates. Of note, AZA treatment strongly decreased Lgr5 mRNA expression as well as Ki67 positive cells. Further, AZA restored dysregulated PCs associated with mitochondrial dysfunction. AZA-dependent inhibition of IEC proliferation is accompanied by boosted mitochondria function and IEC differentiation into PC.


Subject(s)
Azathioprine , Cell Differentiation , Crohn Disease , Intestinal Mucosa , Paneth Cells , Crohn Disease/drug therapy , Crohn Disease/pathology , Crohn Disease/metabolism , Azathioprine/pharmacology , Paneth Cells/metabolism , Paneth Cells/drug effects , Paneth Cells/pathology , Humans , Cell Differentiation/drug effects , Animals , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Female , Male , Ileum/drug effects , Ileum/metabolism , Ileum/pathology , Adult , Organoids/drug effects , Organoids/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Cell Proliferation/drug effects , Middle Aged , Cell Line , Severity of Illness Index
17.
Invest Ophthalmol Vis Sci ; 65(6): 37, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38935029

ABSTRACT

Purpose: To investigate the molecular mechanism of pathological keratinization in the chronic phase of ocular surface (OS) diseases. Methods: In this study, a comprehensive gene expression analysis was performed using oligonucleotide microarrays on OS epithelial cells obtained from three patients with pathological keratinization (Stevens-Johnson syndrome [n = 1 patient], ocular cicatricial pemphigoid [n = 1 patient], and anterior staphyloma [n = 1 patient]). The controls were three patients with conjunctivochalasis. The expression in some transcripts was confirmed using quantitative real-time PCR. Results: Compared to the controls, 3118 genes were significantly upregulated by a factor of 2 or more than one-half in the pathological keratinized epithelial cells (analysis of variance P < 0.05). Genes involved in keratinization, lipid metabolism, and oxidoreductase were upregulated, while genes involved in cellular response, as well as known transcription factors (TFs), were downregulated. Those genes were further analyzed with respect to TFs and retinoic acid (RA) through gene ontology analysis and known reports. The expression of TFs MYBL2, FOXM1, and SREBF2, was upregulated, and the TF ELF3 was significantly downregulated. The expression of AKR1B15, RDH12, and CRABP2 (i.e., genes related to RA, which is known to suppress keratinization) was increased more than twentyfold, whereas the expression of genes RARB and RARRES3 was decreased by 1/50. CRABP2, RARB, and RARRES3 expression changes were also confirmed by qRT-PCR. Conclusions: In pathological keratinized ocular surfaces, common transcript changes, including abnormalities in vitamin A metabolism, are involved in the mechanism of pathological keratinization.


Subject(s)
Gene Expression Regulation , Real-Time Polymerase Chain Reaction , Humans , Female , Male , Aged , Middle Aged , Oligonucleotide Array Sequence Analysis , Gene Expression Profiling , Pemphigoid, Benign Mucous Membrane/genetics , Pemphigoid, Benign Mucous Membrane/metabolism , Keratins/metabolism , Keratins/genetics , Corneal Diseases/genetics , Corneal Diseases/metabolism , Corneal Diseases/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Conjunctival Diseases/genetics , Conjunctival Diseases/metabolism , Conjunctival Diseases/pathology
18.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 541-545, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825897

ABSTRACT

Objective: To investigate the clinicopathological features, diagnosis and differential diagnosis of pseudocarcinomatous hyperplasia of the fallopian tubes. Methods: Sixteen cases of pseudocarcinomatous hyperplasia of the fallopian tubes diagnosed at Obstetrics and Gynecology Hospital of Fudan University from January 2011 to January 2024 were collected.The pathological sections were reviewed, the clinical and pathological data were consulted, and immunohistochemical examination was conducted along with follow-up. Results: The patients were aged from 19 to 57 years, with an average age of 41 and a median age of 38. Among the 16 cases, 4 were located in the right fallopian tubes, 6 in the left fallopian tubes, while the remaining cases presented bilaterally. The general manifestations were tubal edema, crispness and purulent secretion in the lumen. Morphologically, the fallopian tube mucosa exhibited a significant infiltration of neutrophils, lymphocytes and plasma cells. The epithelial cells of the fallopian tube displayed evident proliferation, stratification and disorganized arrangement leading to formation of small glandular cavity with back-to-back, fissure-like and sieve-like structures. Immunohistochemical analysis revealed positivity for CK7 and WT1, along with wild-type p53 expression, Ki-67 index ranged from 5% to 20%. During the follow-up period ranging from 1 to 156 months, all the patients remained free of disease. Conclusions: Pseudocarcinomatous hyperplasia of the fallopian tube is a rare non-neoplastic lesion, which can lead to epithelial hyperplasia and atypical hyperplasia. The most important significance of recognizing this lesion lies in avoiding misdiagnosis of fallopian tube cancer during intraoperative and postoperative pathological examination. This ensures that clinicians can administer correct clinical interventions.


Subject(s)
Fallopian Tubes , Hyperplasia , Humans , Female , Adult , Hyperplasia/pathology , Middle Aged , Fallopian Tubes/pathology , Fallopian Tubes/metabolism , Diagnosis, Differential , Tumor Suppressor Protein p53/metabolism , Keratin-7/metabolism , Fallopian Tube Neoplasms/pathology , Fallopian Tube Neoplasms/metabolism , Fallopian Tube Neoplasms/surgery , Fallopian Tube Neoplasms/diagnosis , Ki-67 Antigen/metabolism , WT1 Proteins/metabolism , Young Adult , Epithelial Cells/pathology , Epithelial Cells/metabolism , Immunohistochemistry , Fallopian Tube Diseases/pathology , Fallopian Tube Diseases/metabolism , Fallopian Tube Diseases/diagnosis
19.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892170

ABSTRACT

Elevated oxidative stress can play a pivotal role in autoimmune diseases by exacerbating inflammatory responses and tissue damage. In Sjögren's disease (SjD), the contribution of oxidative stress in the disease pathogenesis remains unclear. To address this question, we created mice with a tamoxifen-inducible conditional knockout (KO) of a critical antioxidant enzyme, superoxide dismutase 2 (Sod2), in the salivary glands (i-sg-Sod2 KO mice). Following tamoxifen treatment, Sod2 deletion occurred primarily in the ductal epithelium, and the salivary glands showed a significant downregulation of Sod2 expression. At twelve weeks post-treatment, salivary glands from the i-sg-Sod2 KO mice exhibited increased 3-Nitrotyrosine staining. Bulk RNA-seq revealed alterations in gene expression pathways related to ribosome biogenesis, mitochondrial function, and oxidative phosphorylation. Significant changes were noted in genes characteristic of salivary gland ionocytes. The i-sg-Sod2 KO mice developed reversible glandular hypofunction. However, this functional loss was not accompanied by glandular lymphocytic foci or circulating anti-nuclear antibodies. These data demonstrate that although localized oxidative stress in salivary gland ductal cells was insufficient for SjD development, it induced glandular dysfunction. The i-sg-Sod2 KO mouse resembles patients classified as non-Sjögren's sicca and will be a valuable model for deciphering oxidative-stress-mediated glandular dysfunction and recovery mechanisms.


Subject(s)
Epithelial Cells , Mice, Knockout , Mitochondria , Oxidative Stress , Salivary Glands , Sjogren's Syndrome , Superoxide Dismutase , Animals , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Salivary Glands/pathology , Salivary Glands/metabolism , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Sjogren's Syndrome/genetics , Mice , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mitochondria/metabolism , Disease Models, Animal
20.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38903015

ABSTRACT

Structural changes to the vocal fold (VF) epithelium, namely, loosened intercellular junctions, have been reported in VF benign lesions. The potential mechanisms responsible for the disruption of cell junctions do not address the contribution of resident microbial communities to this pathological phenomenon. In this study, we focused on determining the relationship between Streptococcus pseudopneumoniae (SP), a dominant bacterial species associated with benign lesions, and Streptococcus salivarius (SS), a commensal bacterium, with human VF epithelial cells in our three-dimensional model of the human VF mucosa. This experimental system enabled direct deposition of bacteria onto constructs at the air/liquid interface, allowing for the assessment of bacterium-host interactions at the cellular, molecular and ultrastructural levels. Our findings demonstrate that SP disrupts VF epithelial integrity and initiates inflammation via the exported products HtrA1 and pneumolysin. In contrast, SS attaches to the VF epithelium, reduces inflammation and induces Mmp2-mediated apical desquamation of infected cells to mitigate the impact of pathogens. In conclusion, this study highlights the complexity of microbial involvement in VF pathology and potential VF mucosal restoration in the presence of laryngeal commensals.


Subject(s)
Streptococcus salivarius , Vocal Cords , Humans , Vocal Cords/microbiology , Vocal Cords/pathology , Streptococcus salivarius/physiology , Epithelial Cells/microbiology , Epithelial Cells/pathology , Mucous Membrane/microbiology , Mucous Membrane/pathology , Inflammation/pathology , Inflammation/microbiology , Streptococcus pneumoniae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...