Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.157
Filter
1.
Methods Mol Biol ; 2805: 113-124, 2024.
Article in English | MEDLINE | ID: mdl-39008177

ABSTRACT

The extracellular matrix (ECM) provides dynamic structural and molecular signals that affect the form and function of developing tissues. In order to parse how the individual features of the ECM impact cell- and tissue-level behavior during development, engineered culture models should reproduce key structural and molecular features of native ECM. Here, we describe a protocol for bioprinting epithelial cell aggregates embedded within a collagen-Matrigel ink in order to study the dynamic interplay between epithelial tissues and aligned networks of type I collagen fibers. Collagen fiber alignment and geometry can be spatially controlled by modulating the printing speed, nozzle geometry, surface chemistry, and degree of molecular crowding in the printing ink. We provide detailed procedures for generating epithelial cell aggregates, microextrusion printing collagen-Matrigel bioinks, culturing the three-dimensional (3D)-printed tissues, and imaging 3D-printed collagen-Matrigel constructs.


Subject(s)
Bioprinting , Collagen , Epithelial Cells , Extracellular Matrix , Hydrogels , Printing, Three-Dimensional , Tissue Engineering , Bioprinting/methods , Hydrogels/chemistry , Collagen/chemistry , Collagen/metabolism , Tissue Engineering/methods , Epithelial Cells/cytology , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Animals , Morphogenesis , Humans , Proteoglycans/chemistry , Proteoglycans/metabolism , Tissue Scaffolds/chemistry , Laminin/chemistry , Drug Combinations , Dogs , Epithelium/metabolism , Epithelium/growth & development
2.
Stem Cell Rev Rep ; 20(5): 1184-1199, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38498295

ABSTRACT

Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential. In recent years, large strides have been made with the development of induced pluripotent stem cell and organoid models of this essential dental lineage - both enabling modeling of human dental epithelium. Upon induction with several different signaling factors (such as transforming growth factor and bone morphogenetic proteins) these models display elevated expression of ameloblast markers and enamel matrix proteins. The advent of 3D bioprinting, and its potential combination with these advanced cellular tools, is poised to revolutionize the field - and its potential for tissue engineering, regenerative and personalized medicine. As the advancements in these technologies are rapidly evolving, we evaluate the current state-of-the-art regarding in vitro cell culture models of dental epithelium and ameloblast lineage with a particular focus toward their applicability for translational tissue engineering and regenerative/personalized medicine.


Subject(s)
Ameloblasts , Bioprinting , Organoids , Regeneration , Humans , Organoids/cytology , Organoids/metabolism , Ameloblasts/metabolism , Ameloblasts/cytology , Tooth/cytology , Tooth/growth & development , Animals , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Tissue Engineering/methods , Epithelium/metabolism , Epithelium/growth & development , Printing, Three-Dimensional , Models, Biological
4.
J Cell Biol ; 222(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37930352

ABSTRACT

Although mutations in the SCRIB gene lead to multiple morphological organ defects in vertebrates, the molecular pathway linking SCRIB to organ shape anomalies remains elusive. Here, we study the impact of SCRIB-targeted gene mutations during the formation of the gut epithelium in an organ-on-chip model. We show that SCRIB KO gut-like epithelia are flatter with reduced exposed surface area. Cell differentiation on filters further shows that SCRIB plays a critical role in the control of apical cell shape, as well as in the basoapical polarization of myosin light chain localization and activity. Finally, we show that SCRIB serves as a molecular scaffold for SHROOM2/4 and ROCK1 and identify an evolutionary conserved SHROOM binding site in the SCRIB carboxy-terminal that is required for SCRIB function in the control of apical cell shape. Our results demonstrate that SCRIB plays a key role in epithelial morphogenesis by controlling the epithelial apical contractility during cell differentiation.


Subject(s)
Cell Differentiation , Epithelium , Membrane Proteins , Animals , Binding Sites , Biological Evolution , Cell Shape , Epithelium/growth & development , Microphysiological Systems , Membrane Proteins/physiology , Morphogenesis
5.
Anim Reprod Sci ; 249: 107198, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36791599

ABSTRACT

The soft-shelled turtle, Pelodiscus sinensis, is an important economic aquaculture species. Its reproduction exhibits seasonality; however, there is a lack of systematic studies focused on sperm maturation and epididymal storage. The testes and epididymides of P. sinensis were sampled from March to December. The seasonal reproduction and maturation of the spermatozoa were examined by anatomy, hematoxylin and eosin staining, AB-PAS staining, and immunohistochemistry. Spermatogenesis exhibited obvious seasonality in P. sinensis. It was found that the spermatogenic epithelium was most active during June to September, whereas the diameter of the epididymal tubules was smallest during June to October. As key enzymes of ATP metabolism, creatine kinases were highly expressed in the epididymal tubule epithelium during the breeding season, which may be important for the regulation of sperm maturation. In addition, the epididymal tubule epithelium changed with the season in June to September, the epididymal tubule epithelium proliferated to form villous structures, and secreted a large number of glycoproteins, which may be related to the rapid maturation of sperm during the breeding season. In conclusion, this study provided insights into the spermatogenesis of P. sinensis through histological analysis and enriched our understanding of reproduction in reptiles.


Subject(s)
Creatine Kinase , Epididymis , Spermatogenesis , Turtles , Seasons , Male , Animals , Epididymis/cytology , Epididymis/growth & development , Epididymis/metabolism , Creatine Kinase/genetics , Creatine Kinase/metabolism , Gene Expression/physiology , Epithelium/anatomy & histology , Epithelium/growth & development
6.
Nat Commun ; 13(1): 941, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177595

ABSTRACT

During development, pseudostratified epithelia undergo large scale morphogenetic events associated with increased mechanical stress. Using a variety of genetic and imaging approaches, we uncover that in the mouse E6.5 epiblast, where apical tension is highest, ASPP2 safeguards tissue integrity. It achieves this by preventing the most apical daughter cells from delaminating apically following division events. In this context, ASPP2 maintains the integrity and organisation of the filamentous actin cytoskeleton at apical junctions. ASPP2 is also essential during gastrulation in the primitive streak, in somites and in the head fold region, suggesting that it is required across a wide range of pseudostratified epithelia during morphogenetic events that are accompanied by intense tissue remodelling. Finally, our study also suggests that the interaction between ASPP2 and PP1 is essential to the tumour suppressor function of ASPP2, which may be particularly relevant in the context of tissues that are subject to increased mechanical stress.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Epithelium/growth & development , Morphogenesis , Tumor Suppressor Proteins/metabolism , Actin Cytoskeleton/metabolism , Animals , Caco-2 Cells , Cell Polarity , Dogs , Embryo Culture Techniques , Embryo, Mammalian , Epithelium/metabolism , Female , Gastrulation , Germ Layers , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Transgenic , Mutation , Primitive Streak , Receptors, Neuropeptide Y/metabolism , Stress, Mechanical , Tight Junctions/metabolism , Tumor Suppressor Proteins/genetics
7.
Cell Rep ; 38(7): 110379, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172130

ABSTRACT

Pluripotent-stem-cell-derived human intestinal organoids (HIOs) model some aspects of intestinal development and disease, but current culture methods do not fully recapitulate the diverse cell types and complex organization of the human intestine and are reliant on 3D extracellular matrix or hydrogel systems, which limit experimental control and translational potential for regenerative medicine. We describe suspension culture as a simple, low-maintenance method for culturing HIOs and for promoting in vitro differentiation of an organized serosal mesothelial layer that is similar to primary human intestinal serosal mesothelium based on single-cell RNA sequencing and histological analysis. Functionally, HIO serosal mesothelium has the capacity to differentiate into smooth-muscle-like cells and exhibits fibrinolytic activity. An inhibitor screen identifies Hedgehog and WNT signaling as regulators of human serosal mesothelial differentiation. Collectively, suspension HIOs represent a three-dimensional model to study the human serosal mesothelium.


Subject(s)
Epithelium/growth & development , Intestines/growth & development , Organoids/growth & development , Serous Membrane/growth & development , Tissue Culture Techniques , Alginates/pharmacology , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line , Collagen/pharmacology , Drug Combinations , Epithelium/drug effects , Hedgehog Proteins/metabolism , Humans , Intestines/ultrastructure , Laminin/pharmacology , Muscle, Smooth/cytology , Organoids/drug effects , Organoids/ultrastructure , Proteoglycans/pharmacology , Serous Membrane/drug effects , Serous Membrane/ultrastructure , Signal Transduction/drug effects , Suspensions , Wnt Proteins/metabolism
8.
Cell Rep ; 38(7): 110375, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172155

ABSTRACT

Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin ß1 and inhibits its downstream signaling, and Integrin ß1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin ß1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct.


Subject(s)
Epithelium , Glycoproteins , Integrin beta1 , Mammary Glands, Animal , Morphogenesis , Signal Transduction , Animals , Cell Movement/genetics , Cell Polarity , Cell Proliferation , Down-Regulation , Epithelial Cells/metabolism , Epithelium/growth & development , Female , Gene Expression Regulation, Neoplastic , Glycoproteins/metabolism , Integrin beta1/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mice, Transgenic , Models, Biological , Protein Binding
9.
Cells ; 10(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34943975

ABSTRACT

Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.


Subject(s)
Lung/growth & development , Mesenchymal Stem Cells/metabolism , Organogenesis/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Airway Remodeling/genetics , Cell Differentiation/genetics , Epithelial-Mesenchymal Transition/genetics , Epithelium/growth & development , Epithelium/metabolism , Epithelium/pathology , Humans , Lung/metabolism , Lung/pathology , Mesenchymal Stem Cells/cytology , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/growth & development , Respiratory Mucosa/metabolism
10.
Bull Exp Biol Med ; 172(1): 100-104, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34787779

ABSTRACT

We studied the dynamics of morphological changes in the operated segment of the uterine horn of Sprague-Dawley rats during the first 2 weeks of the wound-healing process after a full-thickness surgical incision with regard to the estrous cycle phase. Morphometric parameters of injured uterine right horn were compared with those in the intact left horn of the same animal as a control of changes determined by the hormonal background. It was found that the uterine epithelium in the focus of injury was restored as soon as on day 2 after surgery under the influence of estrous cycle hormones. By day 4, the wound space was completely filled with the endometrial tissue on the side of the uterine lumen and coved by the attached adipose tissue of the mesentery on the side of the abdominal cavity. The thickness of the uterine wall and the uterine lumen differed most strongly between the operated and intact uterine horns during the first 3 days and on day 6 after surgery. The size of the healing area increased during the first three days and reached the peak value by day 3, but then decreased to minimum by day 6.


Subject(s)
Endometrium/growth & development , Estrous Cycle/physiology , Surgical Wound/pathology , Uterus/surgery , Wound Healing/physiology , Animals , Epithelium/growth & development , Female , Rats , Rats, Sprague-Dawley
11.
J Photochem Photobiol B ; 225: 112332, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34653929

ABSTRACT

Skin wounds represent a burden in healthcare. Our aim was to investigate for the first time the effects of defocused high-power diode laser (DHPL) on skin healing in an animal experimental model and compare it with gold standard low-level laser therapy. Male Wistar rats were divided into 5 groups: Negative control; Sham; 0.1 W laser (L0.1 W); DHPL Dual 1 W (DHPLD1 W); and DHPL Dual 2 W (DHPLD2 W). Rats were euthanized on days 3, 5, 10, 14 and 21. Clinical, morphological, PicroSirus, oxidative stress (MDA, SOD and GSH) and cytokines (IL-1ß, IL-10 and TNF-α) analyses were performed. A faster clinical repair was observed in all laser groups at D10 and D14. DHPLD1 W exhibited lower inflammation and better reepithelization compared to other groups at D10. DHPL protocols modulated oxidative stress by decreasing MDA and increasing SOD and GSH. Collagen maturation was triggered by all protocols tested and L0.1 W modulated cytokines release (IL-1ß and TNF-α) at D3. In conclusion, DHPL, especially DHPL1 W protocol, accelerated skin healing by triggering reepithelization and collagen maturation and modulating inflammation and oxidative stress.


Subject(s)
Collagen/metabolism , Laser Therapy/methods , Skin/physiopathology , Wound Healing/radiation effects , Animals , Cytokines/metabolism , Epithelium/growth & development , Epithelium/radiation effects , Inflammation/prevention & control , Male , Oxidation-Reduction , Oxidative Stress/radiation effects , Rats , Rats, Wistar , Skin/metabolism
12.
Nat Commun ; 12(1): 4697, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349123

ABSTRACT

Polarized epithelial cells can organize into complex structures with a characteristic central lumen. Lumen formation requires that cells coordinately orient their polarity axis so that the basolateral domain is on the outside and apical domain inside epithelial structures. Here we show that the transmembrane aminopeptidase, CD13, is a key determinant of epithelial polarity orientation. CD13 localizes to the apical membrane and associates with an apical complex with Par6. CD13-deficient cells display inverted polarity in which apical proteins are retained on the outer cell periphery and fail to accumulate at an intercellular apical initiation site. Here we show that CD13 is required to couple apical protein cargo to Rab11-endosomes and for capture of endosomes at the apical initiation site. This role in polarity utilizes the short intracellular domain but is independent of CD13 peptidase activity.


Subject(s)
CD13 Antigens/metabolism , Cell Polarity , Epithelial Cells/cytology , Epithelium/growth & development , Adaptor Proteins, Signal Transducing/metabolism , CD13 Antigens/chemistry , CD13 Antigens/genetics , Caco-2 Cells , Cell Membrane/metabolism , Endocytosis , Endosomes/metabolism , Epithelial Cells/metabolism , Humans , Membrane Proteins/metabolism , Protein Domains , rab GTP-Binding Proteins/metabolism
13.
Genes Genomics ; 43(9): 1087-1094, 2021 09.
Article in English | MEDLINE | ID: mdl-34302633

ABSTRACT

BACKGROUND: In tooth bioengineering for replacement therapy of missing teeth, the utilized cells must possess an inductive signal-forming ability to initiate odontogenesis. This ability is called odontogenic potential. In mice, the odontogenic potential signal is known to be translocated from the epithelium to the mesenchyme at the early bud stage in the developing molar tooth germ. However, the identity of the molecular constituents of this process remains unclear. OBJECTIVE: The purpose of this study is to determine the molecular identity of odontogenic potential and to provide a new perspective in the field of tooth development research. METHODS: In this study, whole transcriptome profiles of the mouse molar tooth germ epithelium and mesenchyme were investigated using the RNA sequencing (RNA-seq) technique. The analyzed transcriptomes corresponded to two developmental stages, embryonic day 11.5 (E11.5) and 14.5 (E14.5), which represent the odontogenic potential shifts. RESULTS: We identified differentially expressed genes (DEGs), which were specifically overexpressed in both the E11.5 epithelium and E14.5 mesenchyme, but not expressed in their respective counterparts. Of the 55 DEGs identified, the top three most expressed transcription factor genes (transcription factor AP-2 beta isoform 3 [TFAP2B], developing brain homeobox protein 2 [DBX2], and insulin gene enhancer protein ISL-1 [ISL1]) and three tooth development-related genes (transcription factor HES-5 [HES5], platelet-derived growth factor D precursor [PDGFD], semaphrin-3 A precursor [SEMA3A]) were selected and validated by quantitative RT-PCR. Using immunofluorescence staining, the TFAP2B protein expression was found to be localized only at the E11.5 epithelium and E14.5 mesenchyme. CONCLUSIONS: Thus, our empirical findings in the present study may provide a new perspective into the characterization of the molecules responsible for the odontogenic potential and may have an implication in the cell-based whole tooth regeneration strategy.


Subject(s)
Molar/growth & development , Odontogenesis/genetics , Tooth Germ/growth & development , Transcriptome/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Epithelium/growth & development , Epithelium/metabolism , Gene Expression Regulation, Developmental/genetics , Genetic Association Studies , Homeodomain Proteins/genetics , Humans , LIM-Homeodomain Proteins/genetics , Lymphokines/genetics , Mesoderm/growth & development , Mesoderm/metabolism , Mice , Molar/metabolism , Platelet-Derived Growth Factor/genetics , RNA-Seq , Repressor Proteins/genetics , Semaphorin-3A/genetics , Tooth Germ/metabolism , Transcription Factor AP-2/genetics , Transcription Factors/genetics
14.
Dev Cell ; 56(12): 1700-1711.e8, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34081909

ABSTRACT

What regulates the spatiotemporal distribution of cell elimination in tissues remains largely unknown. This is particularly relevant for epithelia with high rates of cell elimination where simultaneous death of neighboring cells could impair epithelial sealing. Here, using the Drosophila pupal notum (a single-layer epithelium) and a new optogenetic tool to trigger caspase activation and cell extrusion, we first showed that death of clusters of at least three cells impaired epithelial sealing; yet, such clusters were almost never observed in vivo. Accordingly, statistical analysis and simulations of cell death distribution highlighted a transient and local protective phase occurring near every cell death. This protection is driven by a transient activation of ERK in cells neighboring extruding cells, which inhibits caspase activation and prevents elimination of cells in clusters. This suggests that the robustness of epithelia with high rates of cell elimination is an emerging property of local ERK feedback.


Subject(s)
Caspases/genetics , Drosophila melanogaster/genetics , Epithelial Cells/ultrastructure , Epithelium/growth & development , Animals , Apoptosis/genetics , Cell Death/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/ultrastructure , Epithelial Cells/cytology , Epithelium/ultrastructure , MAP Kinase Signaling System/genetics , Pupa/genetics , Pupa/growth & development , Pupa/ultrastructure , Single-Cell Analysis
15.
Curr Biol ; 31(14): 3086-3097.e7, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34087104

ABSTRACT

At the early stage of cancer development, oncogenic mutations often cause multilayered epithelial structures. However, the underlying molecular mechanism still remains enigmatic. By performing a series of screenings targeting plasma membrane proteins, we have found that collagen XVII (COL17A1) and CD44 accumulate in RasV12-, Src-, or ErbB2-transformed epithelial cells. In addition, the expression of COL17A1 and CD44 is also regulated by cell density and upon apical cell extrusion. We further demonstrate that the expression of COL17A1 and CD44 is profoundly upregulated at the upper layers of multilayered, transformed epithelia in vitro and in vivo. The accumulated COL17A1 and CD44 suppress mitochondrial membrane potential and reactive oxygen species (ROS) production. The diminished intracellular ROS level then promotes resistance against ferroptosis-mediated cell death upon cell extrusion, thereby positively regulating the formation of multilayered structures. To further understand the functional role of COL17A1, we performed comprehensive metabolome analysis and compared intracellular metabolites between RasV12 and COL17A1-knockout RasV12 cells. The data imply that COL17A1 regulates the metabolic pathway from the GABA shunt to mitochondrial complex I through succinate, thereby suppressing the ROS production. Moreover, we demonstrate that CD44 regulates membrane accumulation of COL17A1 in multilayered structures. These results suggest that CD44 and COL17A1 are crucial regulators for the clonal expansion of transformed cells within multilayered epithelia, thus being potential targets for early diagnosis and preventive treatment for precancerous lesions.


Subject(s)
Cell Transformation, Neoplastic , Epithelium/growth & development , Hyaluronan Receptors/metabolism , Non-Fibrillar Collagens/metabolism , Animals , Cell Line , Cell Transformation, Neoplastic/genetics , Dogs , Ferroptosis , Humans , Madin Darby Canine Kidney Cells , Membrane Potential, Mitochondrial , Mice , Reactive Oxygen Species
16.
Commun Biol ; 4(1): 757, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145387

ABSTRACT

Although impaired keratinocyte migration is a recognized hallmark of chronic wounds, the molecular mechanisms underpinning impaired cell movement are poorly understood. Here, we demonstrate that both diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) exhibit global deregulation of cytoskeletal organization in genomic comparison to normal skin and acute wounds. Interestingly, we found that DFUs and VLUs exhibited downregulation of ArhGAP35, which serves both as an inactivator of RhoA and as a glucocorticoid repressor. Since chronic wounds exhibit elevated levels of cortisol and caveolin-1 (Cav1), we posited that observed elevation of Cav1 expression may contribute to impaired actin-cytoskeletal signaling, manifesting in aberrant keratinocyte migration. We showed that Cav1 indeed antagonizes ArhGAP35, resulting in increased activation of RhoA and diminished activation of Cdc42, which can be rescued by Cav1 disruption. Furthermore, we demonstrate that both inducible keratinocyte specific Cav1 knockout mice, and MßCD treated diabetic mice, exhibit accelerated wound closure. Taken together, our findings provide a previously unreported mechanism by which Cav1-mediated cytoskeletal organization prevents wound closure in patients with chronic wounds.


Subject(s)
Caveolin 1/genetics , Foot Ulcer/pathology , GTPase-Activating Proteins/genetics , Keratinocytes/metabolism , Repressor Proteins/genetics , Varicose Ulcer/pathology , Wound Healing/physiology , Animals , Caveolin 1/metabolism , Cell Line , Cell Movement/genetics , Cytoskeleton/pathology , Diabetic Foot/pathology , Down-Regulation/genetics , Epithelial Cells/metabolism , Epithelium/growth & development , GTPase-Activating Proteins/metabolism , Glucocorticoids/pharmacology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Repressor Proteins/metabolism , Wound Healing/genetics , cdc42 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
17.
Acta Histochem ; 123(5): 151737, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34116359

ABSTRACT

Early weaning is usually applied to improve the reproductive efficiency of sheep in mutton production, while the development of rumen is of vital importance for sheep weaning age. Translationally controlled tumor protein (TCTP) is a highly conserved protein which participates in multiple tissue and organ development. Thus, we hypothesized that TCTP was involved in sheep rumen development. Histological analyses of sheep rumen epithelium showed that the epithelium formed tough shaped papillae without growing from birth to day 15 of age, after which it rapidly developed to functional epithelia on day 45 of age. We then found TCTP expressed in stratum basale, stratum spinosum and stratum granulosum of rumen epithelium. TCTP protein expression remained at a relative low level from day 0 to day 15 of age, it then significantly increased on day 30 (p < 0.05) and gradually decreased until day 60. Furthermore, to explore the role of TCTP in sheep rumen and its regulation, we found the ratio of Ki67 positive cell in stratum basale cells followed the similar pattern as the expression of TCTP. We also found the ratio of acetate:propionate in rumen fluid decreased from day 30 to day 60 of age (p < 0.05). To conclude, our data indicated that TCTP participated in rumen papillae growth by promoting rumen stratum basale cell proliferation.


Subject(s)
Epithelium/growth & development , Gene Expression Regulation, Developmental , Rumen/growth & development , Tumor Protein, Translationally-Controlled 1/metabolism , Animal Feed/analysis , Animals , Cell Proliferation , Epithelial Cells/metabolism , Ki-67 Antigen/biosynthesis , Male , Protein Biosynthesis , Sheep , Time Factors , Weaning
18.
J Biol Chem ; 297(1): 100848, 2021 07.
Article in English | MEDLINE | ID: mdl-34058200

ABSTRACT

Within the intestinal epithelium, regulation of intracellular protein and vesicular trafficking is of utmost importance for barrier maintenance, immune responses, and tissue polarity. RAB11A is a small GTPase that mediates the anterograde transport of protein cargos to the plasma membrane. Loss of RAB11A-dependent trafficking in mature intestinal epithelial cells results in increased epithelial proliferation and nuclear accumulation of Yes-associated protein (YAP), a key Hippo-signaling transducer that senses cell-cell contacts and regulates tissue growth. However, it is unclear how RAB11A regulates YAP intracellular localizations. In this report, we examined the relationship of RAB11A to epithelial junctional complexes, YAP, and the associated consequences on colonic epithelial tissue repair. We found that RAB11A controls the biochemical associations of YAP with multiple components of adherens and tight junctions, including α-catenin, ß-catenin, and Merlin, a tumor suppressor. In the absence of RAB11A and Merlin, we observed enhanced YAP-ß-catenin complex formation and nuclear translocation. Upon chemical injury to the intestine, mice deficient in RAB11A were found to have reduced epithelial integrity, decreased YAP localization to adherens and tight junctions, and increased nuclear YAP accumulation in the colon epithelium. Thus, RAB11A-regulated trafficking regulates the Hippo-YAP signaling pathway for rapid reparative response after tissue injury.


Subject(s)
Cell Cycle Proteins/genetics , Colitis/genetics , Neurofibromin 2/genetics , Transcription Factors/genetics , beta Catenin/genetics , rab GTP-Binding Proteins/genetics , Adherens Junctions/genetics , Animals , Caco-2 Cells , Cell Proliferation/genetics , Colitis/chemically induced , Colitis/pathology , Colon/growth & development , Colon/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Epithelium/growth & development , Epithelium/pathology , Humans , Mice , Tight Junctions/genetics , alpha Catenin/genetics
19.
Curr Opin Genet Dev ; 69: 122-128, 2021 08.
Article in English | MEDLINE | ID: mdl-33848957

ABSTRACT

The elaborate ornaments and weapons of sexual selection, such as the vast array of horns observed in scarab beetles, are some of the most striking outcomes of evolution. How these novel traits have arisen, develop, and respond to condition is governed by a complex suite of interactions that require coordination between the environment, whole-animal signals, cell-cell signals, and within-cell signals. Endocrine factors, developmental patterning genes, and sex-specific gene expression have been shown to regulate beetle horn size, shape, and location, yet no overarching mechanism of horn shape has been described. Recent advances in microscopy and computational analyses combined with a functional genetic approach have revealed that patterning genes combined with intricate epithelial folding and movement are responsible for the final shape of a beetle head horn.


Subject(s)
Biological Evolution , Body Patterning/genetics , Coleoptera/genetics , Horns/anatomy & histology , Animals , Coleoptera/anatomy & histology , Coleoptera/growth & development , Epithelium/anatomy & histology , Epithelium/growth & development , Gene Expression Regulation, Developmental/genetics , Horns/growth & development , Species Specificity
20.
Development ; 148(6)2021 03 23.
Article in English | MEDLINE | ID: mdl-33658222

ABSTRACT

The actomyosin complex plays crucial roles in various life processes by balancing the forces generated by cellular components. In addition to its physical function, the actomyosin complex participates in mechanotransduction. However, the exact role of actomyosin contractility in force transmission and the related transcriptional changes during morphogenesis are not fully understood. Here, we report a mechanogenetic role of the actomyosin complex in branching morphogenesis using an organotypic culture system of mouse embryonic submandibular glands. We dissected the physical factors arranged by characteristic actin structures in developing epithelial buds and identified the spatial distribution of forces that is essential for buckling mechanism to promote the branching process. Moreover, the crucial genes required for the distribution of epithelial progenitor cells were regulated by YAP and TAZ through a mechanotransduction process in epithelial organs. These findings are important for our understanding of the physical processes involved in the development of epithelial organs and provide a theoretical background for developing new approaches for organ regeneration.


Subject(s)
Actin Cytoskeleton/genetics , Actomyosin/genetics , Morphogenesis/genetics , Muscle Contraction/genetics , Actin Cytoskeleton/ultrastructure , Actins/genetics , Actins/ultrastructure , Actomyosin/ultrastructure , Acyltransferases/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Epithelial Cells/metabolism , Epithelium/growth & development , Epithelium/metabolism , Humans , Mechanotransduction, Cellular/genetics , Mice , Regeneration/genetics , Submandibular Gland/metabolism , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...