Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.140
Filter
1.
Front Immunol ; 15: 1386160, 2024.
Article in English | MEDLINE | ID: mdl-38779658

ABSTRACT

The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.


Subject(s)
Epitope Mapping , Epitopes, T-Lymphocyte , HLA-E Antigens , Proteomics , Proteomics/methods , HLA-E Antigens/analysis , Epitopes, T-Lymphocyte/analysis , Epitope Mapping/methods , Epitope Mapping/standards , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Cell Line , Humans , Liquid Chromatography-Mass Spectrometry , Peptides/isolation & purification , Antigen-Presenting Cells/immunology , Artificial Cells/immunology
2.
Anal Chem ; 96(19): 7386-7393, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38698660

ABSTRACT

Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.


Subject(s)
Epitope Mapping , Receptor, ErbB-2 , Trastuzumab , Humans , Epitope Mapping/methods , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/immunology , Trastuzumab/chemistry , Alkylation , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Halogenation , Protein Footprinting/methods , Antigen-Antibody Complex/chemistry
3.
PLoS One ; 19(5): e0300778, 2024.
Article in English | MEDLINE | ID: mdl-38758816

ABSTRACT

Mpox (formerly known as monkeypox) virus and some related poxviruses including smallpox virus pose a significant threat to public health, and effective prevention and treatment strategies are needed. This study utilized a reverse vaccinology approach to retrieve conserved epitopes for monkeypox virus and construct a vaccine that could provide cross-protection against related viruses with similar antigenic properties. The selected virulent proteins of monkeypox virus, MPXVgp165, and Virion core protein P4a, were subjected to epitope mapping for vaccine construction. Two vaccines were constructed using selected T cell epitopes and B cell epitopes with PADRE and human beta-defensins adjuvants conjugated in the vaccine sequence. Both constructs were found to be highly antigenic, non-allergenic, nontoxic, and soluble, suggesting their potential to generate an adequate immune response and be safe for humans. Vaccine construct 1 was selected for molecular dynamic simulation studies. The simulation studies revealed that the TLR8-vaccine complex was more stable than the TLR3-vaccine complex. The lower RMSD and RMSF values of the TLR8 bound vaccine compared to the TLR3 bound vaccine suggested better stability and consistency of hydrogen bonds. The Rg values of the vaccine chain bound to TLR8 indicated overall stability, whereas the vaccine chain bound to TLR3 showed deviations throughout the simulation. These results suggest that the constructed vaccine could be a potential preventive measure against monkeypox and related viruses however, further experimental validation is required to confirm these findings.


Subject(s)
Molecular Dynamics Simulation , Monkeypox virus , Humans , Monkeypox virus/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Computer Simulation , Poxviridae/immunology , Viral Vaccines/immunology , Epitope Mapping , Mpox (monkeypox)/prevention & control , Mpox (monkeypox)/immunology , Animals , Toll-Like Receptor 8/immunology
4.
Appl Microbiol Biotechnol ; 108(1): 350, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809284

ABSTRACT

The African swine fever virus (ASFV) has the ability to infect pigs and cause a highly contagious acute fever that can result in a mortality rate as high as 100%. Due to the viral epidemic, the pig industry worldwide has suffered significant financial setbacks. The absence of a proven vaccine for ASFV necessitates the development of a sensitive and reliable serological diagnostic method, enabling laboratories to effectively and expeditiously detect ASFV infection. In this study, four strains of monoclonal antibodies (mAbs) against p72, namely, 5A1, 4C4, 8A9, and 5E10, were generated through recombinant expression of p72, the main capsid protein of ASFV, and immunized mice with it. Epitope localization was performed by truncated overlapping polypeptides. The results indicate that 5A1 and 4C4 recognized the amino acid 20-39 aa, 8A9 and 5E10 are recognized at 263-282 aa, which is consistent with the reported 265-280 aa epitopes. Conserved analysis revealed 20-39 aa is a high conservation of the epitopes in the ASFV genotypes. Moreover, a blocking ELISA assay for detection ASFV antibody based on 4C4 monoclonal antibody was developed and assessed. The receiver-operating characteristic (ROC) was performed to identify the best threshold value using 87 negative and 67 positive samples. The established test exhibited an area under the curve (AUC) of 0.9997, with a 95% confidence interval ranging from 99.87 to 100%. Furthermore, the test achieved a diagnostic sensitivity of 100% (with a 95% confidence interval of 95.72 to 100%) and a specificity of 98.51% (with a 95% confidence interval of 92.02 to 99.92%) when the threshold was set at 41.97%. The inter- and intra-batch coefficient of variation were below 10%, demonstrating the exceptional repeatability of the method. This method can detect the positive standard serum at a dilution as high as 1:512. Subsequently, an exceptional blocking ELISA assay was established with high diagnostic sensitivity and specificity, providing a novel tool for detecting ASFV antibodies. KEY POINTS: • Four strains of ASFV monoclonal antibodies against p72 were prepared and their epitopes were identified. • Blocking ELISA method was established based on monoclonal antibody 4C4 with an identified conservative epitope. • The established blocking ELISA method has a good effect on the detection of ASFV antibody.


Subject(s)
African Swine Fever Virus , African Swine Fever , Antibodies, Monoclonal , Antibodies, Viral , Capsid Proteins , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Animals , Antibodies, Monoclonal/immunology , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine , African Swine Fever/diagnosis , African Swine Fever/immunology , African Swine Fever/virology , Mice , Capsid Proteins/immunology , Capsid Proteins/genetics , Mice, Inbred BALB C , Sensitivity and Specificity , Epitopes/immunology
5.
Open Vet J ; 14(4): 1019-1028, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38808294

ABSTRACT

Background: Canine distemper (CD) is a worldwide spread disease that has been described in 12 families of mammals, especially in the Carnivora order, being better studied in domestic canines where vaccination represents the best means of control. CD is controlled by vaccination, but many cases of the disease still occur in vaccinated animals. Aim: The aim of this work was to study antigen-specific epitopes that can subsidize the development of a new vaccine approach. Methods: Mapping of T cell reactive epitopes for CD virus (CDV) was carried out through enzyme-linked immunospot assays using 119 overlapped synthetic peptides from the viral hemagglutinin protein, grouped in 22 pools forming a matrix to test the immune response of 32 animals. Results: Evaluations using the criteria established to identify reactive pools, demonstrated that 26 animals presented at least one reactive pool, that one pool was not reactive to any animal, and six pools were the most frequent among the reactive peptides. The crisscrossing of the most reactive pools in the matrix revealed nine peptides considered potential candidate epitopes for T cell stimulation against the CDV and those were used to design an in-silico protein, containing also predicted epitopes for B cell stimulation, and further analyzed using immune epitope databases to ensure protein quality and stability. Conclusion: The final in silico optimized protein presents characteristics that qualify it to be used to develop a new prototype epitope-based anti-CDV vaccine.


Subject(s)
Distemper Virus, Canine , Distemper , Epitope Mapping , Viral Vaccines , Distemper Virus, Canine/immunology , Animals , Distemper/prevention & control , Distemper/immunology , Dogs , Viral Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , Enzyme-Linked Immunospot Assay/veterinary
6.
Arch Virol ; 169(6): 131, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819530

ABSTRACT

Noroviruses (NoVs) are the chief cause of acute viral gastroenteritis worldwide. By employing the major capsid protein VP1 of a GII.6 NoV strain as an immunogen, we generated two monoclonal antibodies (mAbs) with wide-spectrum binding activities against NoV genogroup II (GII) VP1 proteins. One mAb (10G7) could bind to native and denatured GII-specific VP1 proteins. The other mAb (10F2) could bind to all tested native GII VP1 proteins, but not to denatured GII.3, GII.4, GII.7, or GII.17 VP1 proteins. Using GII.6/GII.4 fusion proteins, the mAb 10F2 binding region was confirmed to be located in the C-terminal P1 domain. An enzyme-linked immunosorbent assay based on peptides covering the P domain did not detect any binding. Using a panel of VP1 proteins with swapped regions, deletions, and mutations, the mAb 10F2 binding region was determined to be located between residues 496 and 513. However, the residue(s) responsible for its varied binding affinity for different denatured GII VP1 proteins remain to be identified. In summary, two NoV GII-specific cross-reactive mAbs were generated, and their binding regions were determined. Our results might facilitate the detection and immunogenic study of NoVs.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Capsid Proteins , Epitopes , Norovirus , Norovirus/genetics , Norovirus/immunology , Antibodies, Monoclonal/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Epitopes/immunology , Epitopes/genetics , Antibodies, Viral/immunology , Animals , Antigens, Viral/immunology , Antigens, Viral/genetics , Mice , Humans , Caliciviridae Infections/virology , Caliciviridae Infections/immunology , Mice, Inbred BALB C , Epitope Mapping , Cross Reactions
7.
Commun Biol ; 7(1): 652, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806676

ABSTRACT

Epitope binning, an approach for grouping antibodies based on epitope similarities, is a critical step in antibody drug discovery. However, conventional methods are complex, involving individual antibody production. Here, we established Epitope Binning-seq, an epitope binning platform for simultaneously analyzing multiple antibodies. In this system, epitope similarity between the query antibodies (qAbs) displayed on antigen-expressing cells and a fluorescently labeled reference antibody (rAb) targeting a desired epitope is analyzed by flow cytometry. The qAbs with epitope similar to the rAb can be identified by next-generation sequencing analysis of fluorescence-negative cells. Sensitivity and reliability of this system are confirmed using rAbs, pertuzumab and trastuzumab, which target human epidermal growth factor receptor 2. Epitope Binning-seq enables simultaneous epitope evaluation of 14 qAbs at various abundances in libraries, grouping them into respective epitope bins. This versatile platform is applicable to diverse antibodies and antigens, potentially expediting the identification of clinically useful antibodies.


Subject(s)
Epitopes , Humans , Epitopes/immunology , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Animals , Receptor, ErbB-2/immunology , Receptor, ErbB-2/genetics , Flow Cytometry/methods , Trastuzumab/immunology , Epitope Mapping/methods , Antibodies/immunology , Antibodies/genetics , Antibodies, Monoclonal, Humanized/immunology
8.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731888

ABSTRACT

The interaction of heparin with antithrombin (AT) involves a specific sequence corresponding to the pentasaccharide GlcNAc/NS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S (AGA*IA). Recent studies have revealed that two AGA*IA-containing hexasaccharides, which differ in the sulfation degree of the iduronic acid unit, exhibit similar binding to AT, albeit with different affinities. However, the lack of experimental data concerning the molecular contacts between these ligands and the amino acids within the protein-binding site prevents a detailed description of the complexes. Differential epitope mapping (DEEP)-STD NMR, in combination with MD simulations, enables the experimental observation and comparison of two heparin pentasaccharides interacting with AT, revealing slightly different bound orientations and distinct affinities of both glycans for AT. We demonstrate the effectiveness of the differential solvent DEEP-STD NMR approach in determining the presence of polar residues in the recognition sites of glycosaminoglycan-binding proteins.


Subject(s)
Antithrombins , Heparin , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Oligosaccharides , Protein Binding , Heparin/chemistry , Heparin/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Antithrombins/chemistry , Antithrombins/metabolism , Magnetic Resonance Spectroscopy/methods , Binding Sites , Solvents/chemistry , Epitope Mapping/methods , Humans
9.
Front Immunol ; 15: 1329013, 2024.
Article in English | MEDLINE | ID: mdl-38665908

ABSTRACT

Introduction: Subgroups of autoantibodies directed against voltage-gated potassium channel (Kv) complex components have been associated with immunotherapy-responsive clinical syndromes. The high prevalence and the role of autoantibodies directly binding Kv remain, however, controversial. Our objective was to determine Kv autoantibody binding requirements and to clarify their contribution to the observed immune response. Methods: Binding epitopes were studied in sera (n = 36) and cerebrospinal fluid (CSF) (n = 12) from a patient cohort positive for Kv1.2 but negative for 32 common neurological autoantigens and controls (sera n = 18 and CSF n = 5) by phospho and deep mutational scans. Autoantibody specificity and contribution to the observed immune response were resolved on recombinant cells, cerebellum slices, and nerve fibers. Results: 83% of the patients (30/36) within the studied cohort shared one out of the two major binding epitopes with Kv1.2-3 reactivity. Eleven percent (4/36) of the serum samples showed no binding. Fingerprinting resolved close to identical sequence requirements for both shared epitopes. Kv autoantibody response is directed against juxtaparanodal regions in peripheral nerves and the axon initial segment in central nervous system neurons and exclusively mediated by the shared epitopes. Discussion: Systematic mapping revealed two shared autoimmune responses, with one dominant Kv1.2-3 autoantibody epitope being unexpectedly prevalent. The conservation of the molecular binding requirements among these patients indicates a uniform autoantibody repertoire with monospecific reactivity. The enhanced sensitivity of the epitope-based (10/12) compared with that of the cell-based detection (7/12) highlights its use for detection. The determined immunodominant epitope is also the primary immune response visible in tissue, suggesting a diagnostic significance and a specific value for routine screening.


Subject(s)
Autoantibodies , Autoimmunity , Immunodominant Epitopes , Kv1.2 Potassium Channel , Humans , Autoantibodies/immunology , Autoantibodies/blood , Kv1.2 Potassium Channel/immunology , Immunodominant Epitopes/immunology , Female , Male , Middle Aged , Adult , Autoantigens/immunology , Epitope Mapping , Animals
10.
Vet Microbiol ; 293: 110098, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677126

ABSTRACT

The infection of canine coronavirus (CCoV) causes a highly contagious disease in dogs with acute gastroenteritis. The efficient serological diagnostics is critical for controlling the disease caused by CCoV. Nucleocapsid (N) protein of CCoV is an important target for developing serological approaches. However, little is known about the antigenic sites in the N protein of CCoV. In this study, we generated a monoclonal antibody (mAb) against the N protein of CCoV, designated as 13E8, through the fusion of the sp2/0 cells with the spleen cells from a mouse immunized with the purified recombinant GST-N protein. Epitope mapping revealed that mAb 13E8 recognized a novel linear B cell epitope in N protein at 294-314aa (named as EP-13E8) by using a serial of truncated N protein through Western blot and ELISA. Sequence analysis showed that the sequence of EP-13E8 was highly conserved (100 %) among different CCoV strains analyzed, but exhibited a low similarity (31.8-63.6 %) with the responding sequence in other coronaviruses of the same genus such as FCoV, PEDV and HCoV except for TGEV (95.5 % identity). Structural assay suggested that the epitope of EP-13E8 were located in the close proximity on the surface of the N protein. Overall, the mAb 13E8 against N protein generated and its epitope EP-13E8 identified here paid the way for further developing epitope-based serological diagnostics for CCoV.


Subject(s)
Antibodies, Monoclonal , Coronavirus, Canine , Epitope Mapping , Epitopes, B-Lymphocyte , Nucleocapsid Proteins , Animals , Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Dogs , Mice , Nucleocapsid Proteins/immunology , Coronavirus, Canine/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Mice, Inbred BALB C , Coronavirus Nucleocapsid Proteins/immunology , Dog Diseases/virology , Dog Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/diagnosis , Amino Acid Sequence
11.
Int J Biol Macromol ; 268(Pt 1): 131695, 2024 May.
Article in English | MEDLINE | ID: mdl-38642684

ABSTRACT

Due to the absence of effective vaccine and treatment, African swine fever virus (ASFV) control is entirely dependent on accurate and early diagnosis, along with culling of infected pigs. The B646L/p72 is the major capsid protein of ASFV and is an important target for developing a diagnostic assays and vaccines. Herein, we generated a monoclonal antibody (mAb) (designated as 2F11) against the trimeric p72 protein, and a blocking ELISA (bELISA) was established for the detection of both genotype I and II ASFV antibodies. To evaluate the performance of the diagnostic test, a total of 506 porcine serum samples were tested. The average value of percent of inhibition (PI) of 133 negative pig serum was 8.4 % with standard deviation (SD) 6.5 %. Accordingly, the cut-off value of the newly established method was set at 28 % (mean + 3SD). Similarly, a receiver operating characteristic (ROC) was applied to determine the cut off value and the p72-bELISA exhibited a sensitivity of 100 % and a specificity of 99.33 % when the detection threshold was set at 28 %. The bELISA was also able to specifically recognize anti-ASFV sera without cross-reacting with other positive serums for other major swine pathogens. Moreover, by designing a series of overlapped p72 truncated proteins, the linear B cell epitope recognized by 2F11 mAb was defined to be 283NSHNIQ288. Amino acid sequence comparison revealed that the amino acid sequence 283NSHNIQ288 is highly conserved between different ASFV isolates. Our findings indicate that the newly established mAb based blocking ELISA may have a great potential in improving the detection of ASFV antibodies and provides solid foundation for further studies.


Subject(s)
African Swine Fever Virus , Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte , Animals , African Swine Fever Virus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Swine , Epitopes, B-Lymphocyte/immunology , Capsid Proteins/immunology , African Swine Fever/immunology , African Swine Fever/diagnosis , African Swine Fever/virology , Amino Acid Sequence , Epitope Mapping
12.
Blood Adv ; 8(11): 2880-2889, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38593222

ABSTRACT

ABSTRACT: Inhibitor development is the most severe complication of hemophilia A (HA) care and is associated with increased morbidity and mortality. This study aimed to use a novel immunoglobulin G epitope mapping method to explore the factor VIII (FVIII)-specific epitope profile in the SIPPET cohort population and to develop an epitope mapping-based inhibitor prediction model. The population consisted of 122 previously untreated patients with severe HA who were followed up for 50 days of exposure to FVIII or 3 years, whichever occurred first. Sampling was performed before FVIII treatment and at the end of the follow-up. The outcome was inhibitor development. The FVIII epitope repertoire was assessed by means of a novel random peptide phage-display assay. A least absolute shrinkage and selection operator (LASSO) regression model and a random forest model were fitted on posttreatment sample data and validated in pretreatment sample data. The predictive performance of these models was assessed by the C-statistic and a calibration plot. We identified 27 775 peptides putatively directed against FVIII, which were used as input for the statistical models. The C-statistic of the LASSO and random forest models were good at 0.78 (95% confidence interval [CI], 0.69-0.86) and 0.80 (95% CI, 0.72-0.89). Model calibration of both models was moderately good. Two statistical models, developed on data from a novel random peptide phage display assay, were used to predict inhibitor development before exposure to exogenous FVIII. These models can be used to set up diagnostic tests that predict the risk of inhibitor development before starting treatment with FVIII.


Subject(s)
Factor VIII , Hemophilia A , Peptide Library , Humans , Factor VIII/immunology , Epitope Mapping , Male , Cohort Studies , Epitopes/immunology
13.
Biomolecules ; 14(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38672470

ABSTRACT

Investigations on binding strength differences of non-covalent protein complex components were performed by mass spectrometry. T4 fibritin foldon (T4Ff) is a well-studied miniprotein, which together with its biotinylated version served as model system to represent a compactly folded protein to which an Intrinsically Disordered Region (IDR) was attached. The apparent enthalpies of the gas phase dissociation reactions of the homo-trimeric foldon F-F-F and of the homo-trimeric triply biotinylated foldon bF-bF-bF have been determined to be rather similar (3.32 kJ/mol and 3.85 kJ/mol) but quite distinct from those of the singly and doubly biotinylated hetero-trimers F-F-bF and F-bF-bF (1.86 kJ/mol and 1.08 kJ/mol). Molecular dynamics simulations suggest that the ground states of the (biotinylated) T4Ff trimers are highly symmetric and well comparable to each other, indicating that the energy levels of all four (biotinylated) T4Ff trimer ground states are nearly indistinguishable. The experimentally determined differences and/or similarities in enthalpies of the complex dissociation reactions are explained by entropic spring effects, which are noticeable in the T4Ff hetero-trimers but not in the T4Ff homo-trimers. A lowering of the transition state energy levels of the T4Ff hetero-trimers seems likely because the biotin moieties, mimicking intrinsically disordered regions (IDRs), induced asymmetries in the transition states of the biotinylated T4Ff hetero-trimers. This transition state energy level lowering effect is absent in the T4Ff homo-trimer, as well as in the triply biotinylated T4Ff homo-trimer. In the latter, the IDR-associated entropic spring effects on complex stability cancel each other out. ITEM-FIVE enabled semi-quantitative determination of energy differences of complex dissociation reactions, whose differences were modulated by IDRs attached to compactly folded proteins.


Subject(s)
Epitope Mapping , Molecular Dynamics Simulation , Epitope Mapping/methods , Protein Folding , Thermodynamics , Biotinylation , Protein Multimerization , Mass Spectrometry
14.
J Immunol Methods ; 528: 113654, 2024 May.
Article in English | MEDLINE | ID: mdl-38432292

ABSTRACT

Epitope mapping provides critical insight into antibody-antigen interactions. Epitope mapping of autoantibodies from patients with autoimmune diseases can help elucidate disease immunogenesis and guide the development of antigen-specific therapies. Similarly, epitope mapping of commercial antibodies targeting known autoantigens enables the use of those antibodies to test specific hypotheses. Anti-Neutrophil Cytoplasmic Autoantibody (ANCA) vasculitis results from the formation of autoantibodies to multiple autoantigens, including myeloperoxidase (MPO), proteinase-3 (PR3), plasminogen (PLG), and peroxidasin (PXDN). To perform high-resolution epitope mapping of commercial antibodies to these autoantigens, we developed a novel yeast surface display library based on a series of >5000 overlapping peptides derived from their protein sequences. Using both FACS and magnetic bead isolation of reactive yeast, we screened 19 commercially available antibodies to the ANCA autoantigens. This approach to epitope mapping resulted in highly specific, fine epitope mapping, down to single amino acid resolution in many cases. Our study also identified cross-reactivity between some commercial antibodies to MPO and PXDN, which suggests that patients with apparent autoantibodies to both proteins may be the result of cross-reactivity. Together, our data validate yeast surface display using maximally overlapping peptides as an excellent approach to linear epitope mapping.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic , Saccharomyces cerevisiae , Humans , Epitope Mapping , Autoantibodies , Myeloblastin , Autoantigens , Peroxidase , Peptides
15.
Int J Biol Macromol ; 265(Pt 1): 130944, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493809

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes huge economic losses to the global pig industry. Nonstructural protein 7α (NSP7α) of PRRSV is highly conserved among different lineages of PRRSV and could be a potential target for the development of detection methods. In this study, NSP7α was expressed in prokaryote (Escherichia coli) and purified. An NSP7α-ab-ELISA detection method was established, the NSP7α-ab-ELISA has 93.1 % coincidence rate with IDEXX PRRS X3 ab test kit. NSP7α antibody was detected in pig serum by ELISA 14 days following PRRSV infection. Three monoclonal antibodies (4H9, 3F2, and C10) against NSP7α prepared by a hybridoma technique were used for epitope mapping by indirect immunofluorescence. The 4H9, 3F2, and C10 antibodies all recognized the C-terminal 72-149 amino acid region of NSP7α. 4H9 reacted with amino acids 135-143, but 3F2 and C10 did not react with any truncated polypeptide. In addition, by using the monoclonal antibodies, NSP7α was localized solely in the cytoplasm, while the N protein was distributed in the cytoplasm and nucleus. The collective findings of the antigenicity and epitope of NSP7α will be helpful for understanding the antigenicity of NSP7α and developing PRRSV diagnostic methods.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Epitope Mapping , Antibodies, Viral , Antibodies, Monoclonal , Escherichia coli
16.
Monoclon Antib Immunodiagn Immunother ; 43(2): 44-52, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38507671

ABSTRACT

A cell-surface ectonucleotidase CD39 mediates the conversion of extracellular adenosine triphosphate into immunosuppressive adenosine with another ectonucleotidase CD73. The elevated adenosine in the tumor microenvironment attenuates antitumor immunity, which promotes tumor cell immunologic escape and progression. Anti-CD39 monoclonal antibodies (mAbs), which suppress the enzymatic activity, can be applied to antitumor therapy. Therefore, an understanding of the relationship between the inhibitory activity and epitope of mAbs is important. We previously established an anti-mouse CD39 (anti-mCD39) mAb, C39Mab-1 using the Cell-Based Immunization and Screening method. In this study, we determined the critical epitope of C39Mab-1 using flow cytometry. We performed the PA tag (12 amino acids [aa])-substituted analysis (named PA scanning) and RIEDL tag (5 aa)-substituted analysis (named RIEDL scanning) to determine the critical epitope of C39Mab-1 using flow cytometry. By the combination of PA scanning and RIEDL scanning, we identified the conformational epitope, spanning three segments of 275-279, 282-291, and 306-323 aa of mCD39. These analyses would contribute to the identification of the conformational epitope of membrane proteins.


Subject(s)
Adenosine , Antibodies, Monoclonal , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Epitope Mapping , Epitopes , Immunosuppressive Agents , Animals , Mice
17.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141011, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38499233

ABSTRACT

Understanding protein-protein interactions is crucial for drug design and investigating biological processes. Various techniques, such as CryoEM, X-ray spectroscopy, linear epitope mapping, and mass spectrometry-based methods, can be employed to map binding regions on proteins. Commonly used mass spectrometry-based techniques are cross-linking and hydrogen­deuterium exchange (HDX). Another approach, hydroxyl radical protein footprinting (HRPF), identifies binding residues on proteins but faces challenges due to high initial costs and complex setups. This study introduces a generally applicable method using Fenton chemistry for epitope mapping in a standard mass spectrometry laboratory. It emphasizes the importance of controls, particularly the inclusion of a negative antibody control, not widely utilized in HRPF epitope mapping. Quantification by TMT labelling is introduced to reduce false positives, enabling direct comparison between sample conditions and biological triplicates. Additionally, six technical replicates were incorporated to enhance the depth of analysis. Observations on the receptor-binding domain (RBD) of SARS-CoV-2 Spike Protein, Alpha and Delta variants, revealed both binding and opening regions. Significantly changed peptides upon mixing with a negative control antibody suggested structural alterations or nonspecific binding induced by the antibody alone. Integration of negative control antibody experiments and high overlap between biological triplicates led to the exclusion of 40% of significantly changed regions. The final identified binding region correlated with existing literature on neutralizing antibodies against RBD. The presented method offers a straightforward implementation for HRPF analysis in a generic mass spectrometry-based laboratory. Enhanced data reliability was achieved through increased technical and biological replicates alongside negative antibody controls.


Subject(s)
Epitope Mapping , Hydroxyl Radical , Protein Footprinting , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Epitope Mapping/methods , Protein Footprinting/methods , SARS-CoV-2/immunology , SARS-CoV-2/chemistry , Hydroxyl Radical/chemistry , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Protein Binding , COVID-19/virology , COVID-19/immunology , Binding Sites , Antibodies, Viral/immunology , Antibodies, Viral/chemistry , Mass Spectrometry/methods , Protein Domains
18.
Biomolecules ; 14(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38540792

ABSTRACT

Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated.


Subject(s)
Encephalitis Virus, Japanese , Hydrogen , Animals , Mice , Epitope Mapping/methods , Encephalitis Virus, Japanese/metabolism , Deuterium/chemistry , Antibodies, Viral , Epitopes/chemistry , Antibodies, Neutralizing , Mass Spectrometry/methods , Antibodies, Monoclonal
19.
Mol Cell Proteomics ; 23(3): 100734, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342408

ABSTRACT

Antigen-antibody interactions play a key role in the immune response post vaccination and the mechanism of action of antibody-based biopharmaceuticals. 4CMenB is a multicomponent vaccine against Neisseria meningitidis serogroup B in which factor H binding protein (fHbp) is one of the key antigens. In this study, we use hydrogen/deuterium exchange mass spectrometry (HDX-MS) to identify epitopes in fHbp recognized by polyclonal antibodies (pAb) from two human donors (HDs) vaccinated with 4CMenB. Our HDX-MS data reveal several epitopes recognized by the complex mixture of human pAb. Furthermore, we show that the pAb from the two HDs recognize the same epitope regions. Epitope mapping of total pAb and purified fHbp-specific pAb from the same HD reveals that the two antibody samples recognize the same main epitopes, showing that HDX-MS based epitope mapping can, in this case at least, be performed directly using total IgG pAb samples that have not undergone Ab-selective purification. Two monoclonal antibodies (mAb) were previously produced from B-cell repertoire sequences from one of the HDs and used for epitope mapping of fHbp with HDX-MS. The epitopes identified for the pAb from the same HD in this study, overlap with the epitopes recognized by the two individual mAbs. Overall, HDX-MS epitope mapping appears highly suitable for simultaneous identification of epitopes recognized by pAb from human donors and to thus both guide vaccine development and study basic human immunity to pathogens, including viruses.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis , Humans , Epitope Mapping/methods , Neisseria meningitidis/metabolism , Deuterium/metabolism , Bacterial Proteins/metabolism , Meningococcal Infections/prevention & control , Carrier Proteins , Deuterium Exchange Measurement , Complement Factor H , Antigens, Bacterial , Epitopes , Antibodies, Monoclonal/metabolism , Hydrogen Deuterium Exchange-Mass Spectrometry
20.
J Virol ; 98(3): e0190823, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38345383

ABSTRACT

Influenza D virus (IDV) is one of the causative agents of bovine respiratory disease complex, which is the most common and economically burdensome disease affecting the cattle industry, and the need for an IDV vaccine has been proposed to enhance disease control. IDVs are classified into five genetic lineages based on the coding sequences of the hemagglutinin-esterase-fusion (HEF) protein, an envelope glycoprotein, which is the main target of protective antibodies against IDV infection. Herein, we prepared a panel of monoclonal antibodies (mAbs) against the HEF protein of viruses of various lineages to investigate the antigenic characteristics of IDVs and found that the mAbs could be largely separated into three groups. The first, second, and third groups demonstrated lineage-specific reactivity, cross-reactivity to viruses of multiple but not all lineages, and cross-reactivity to viruses of all lineages, respectively. Analyzing the escape mutant viruses from virus-neutralizing mAbs revealed that the receptor-binding region of the HEF molecule harbors virus-neutralizing epitopes that are conserved across multiple lineage viruses. In contrast, the apex region of the molecule possessed epitopes unique to each lineage virus. Furthermore, reverse genetics-generated recombinant viruses with point mutations revealed that amino acids within positions 210-214 of the HEF protein determined the antigenic specificity of each lineage virus. Taken together, this study reveals considerable antigenic variation among IDV lineages, although they are presumed to form a single serotype in terms of HEF antigenicity. Characterization of the antigenic epitope structure of HEF may contribute to selecting and creating effective vaccine viruses against IDV.IMPORTANCEInfluenza D viruses (IDVs) are suggested to create cross-reactive single serotypes in hemagglutinin-esterase-fusion (HEF) antigenicity, as indicated by serological analyses among distinct HEF lineage viruses. This is supported by the high identities of HEF gene sequences among strains, unlike the hemagglutinin (HA) genes of the influenza A virus that exhibit HA subtypes. Herein, we analyzed HEF antigenicity using a monoclonal antibody panel prepared from several virus lineages and found the existence of lineage-conserved and lineage-specific epitopes in HEF molecules. These findings confirm the HEF commonality and divergence among IDVs and provide useful information for constructing a vaccine containing a recombinant IDV virus with an engineered HEF gene, thereby leading to broad immunogenicity.


Subject(s)
Deltainfluenzavirus , Influenza Vaccines , Animals , Cattle , Antibodies, Viral , Deltainfluenzavirus/physiology , Epitope Mapping , Epitopes , Esterases , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinins , Influenza Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...