Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Viruses ; 12(5)2020 05 08.
Article in English | MEDLINE | ID: mdl-32397134

ABSTRACT

The poxvirus, myxoma virus (MYXV) has shown efficacy as an oncolytic virus (OV) in some cancer models. However, MYXV replication within murine cancer models and spontaneous canine sarcomas is short-lived. In mice, successful treatment of tumors requires frequent injections with MYXV. We hypothesize that treatment of cancer with a recombinant MYXV that promotes apoptosis could improve the efficacy of MYXV. The orfC gene of walleye dermal sarcoma virus (WDSV), which induces apoptosis, was recombined into the MYXV genome (MYXVorfC). A marked increase in apoptosis was observed in cells infected with MYXVorfC. To ensure that expression of WDSV orfC by MYXV does not potentiate the pathogenesis of MYXV, we evaluated the effects of MYXVorfC inoculation in the only known host of MYXV, New Zealand white rabbits. Virus dissemination in rabbit tissues was similar for MYXVorfC and MYXV. Virus titers recovered from tissues were lower in MYXVorfC-infected rabbits as compared to MYXV-infected rabbits. Importantly, rabbits infected with MYXVorfC had a delayed onset of clinical signs and a longer median survival time than rabbits infected with MYXV. This study indicates that MYXVorfC is attenuated and suggests that MYXVorfC will be safe to use as an OV therapy in future studies.


Subject(s)
Epsilonretrovirus/metabolism , Myxoma virus/genetics , Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Animals , Apoptosis , Epsilonretrovirus/genetics , Female , Gene Expression , Genetic Vectors/genetics , Genetic Vectors/physiology , Humans , Myxoma virus/physiology , Neoplasms/physiopathology , Oncolytic Viruses/physiology , Rabbits , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
2.
J Virol ; 89(10): 5450-61, 2015 May.
Article in English | MEDLINE | ID: mdl-25741012

ABSTRACT

UNLABELLED: Walleye dermal sarcoma virus (WDSV) infection is associated with the seasonal development and regression of walleye dermal sarcoma. Previous work showed that the retroviral cyclin (RV-cyclin), encoded by WDSV, has separable cyclin box and transcription activation domains. It binds to cyclin-dependent kinase 8 (CDK8) and enhances its kinase activity. CDK8 is evolutionarily conserved and is frequently overexpressed in human cancers. It is normally activated by cyclin C and is required for transcription elongation of the serum response genes (immediate early genes [IEGs]) FOS, EGR1, and cJUN. The IEGs drive cell proliferation, and their expression is brief and highly regulated. Here we show that constitutive expression of RV-cyclin in the HCT116 colon cancer cell line significantly increases the level of IEG expression in response to serum stimulation. Quantitative reverse transcription-PCR (RT-PCR) and nuclear run-on assays provide evidence that RV-cyclin does not alter the initiation of IEG transcription but does enhance the overall rate of transcription elongation and maintains transcription reinitiation. RV-cyclin does not increase activating phosphorylation events in the mitogen-activated protein kinase pathway and does not inhibit decay of IEG mRNAs. At the EGR1 gene locus, RV-cyclin increases and maintains RNA polymerase II (Pol II) occupancy after serum stimulation, in conjunction with increased and extended EGR1 gene expression. The RV-cyclin increases CDK8 occupancy at the EGR1 gene locus before and after serum stimulation. Both of RV-cyclin's functional domains, i.e., the cyclin box and the activation domain, are necessary for the overall enhancement of IEG expression. RV-cyclin presents a novel and ancient mechanism of retrovirus-induced oncogenesis. IMPORTANCE: The data reported here are important to both virology and cancer biology. The novel mechanism pinpoints CDK8 in the development of walleye dermal sarcoma and sheds light on CDK8's role in many human cancers. CDK8 controls expression from highly regulated genes, including the interferon-stimulated genes. Its function is likely the target of many viral interferon-resistance mechanisms. CDK8 also controls cellular responses to metabolic stimuli, stress, and hypoxia, in addition to the serum response. The retroviral cyclin (RV-cyclin) represents a highly selected probe of CDK8 function. RV-cyclin does not control CDK8 specificity but instead enhances CDK8's effects on regulated genes, an important distinction for its use to delineate natural CDK8 targets. The outcomes of this research are applicable to investigations of normal and abnormal CDK8 functions. The mechanisms defined here will contribute directly to the dermal sarcoma model in fish and clarify an important path for oncogenesis and innate resistance to viruses.


Subject(s)
Cyclin-Dependent Kinase 8/metabolism , Cyclins/physiology , Epsilonretrovirus/physiology , Retroviridae Proteins/physiology , Animals , Carcinogenesis , Cyclins/genetics , Early Growth Response Protein 1/genetics , Epsilonretrovirus/genetics , Epsilonretrovirus/pathogenicity , Fish Diseases/genetics , Fish Diseases/virology , Genes, Immediate-Early , Genes, fos , Genes, jun , HCT116 Cells , Host-Pathogen Interactions , Humans , Perches , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retroviridae Infections/genetics , Retroviridae Infections/veterinary , Retroviridae Infections/virology , Retroviridae Proteins/genetics , Transcription Elongation, Genetic , Tumor Virus Infections/genetics , Tumor Virus Infections/veterinary , Tumor Virus Infections/virology
3.
Mol Biol Rep ; 40(2): 1451-61, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23100064

ABSTRACT

Walleye dermal sarcoma virus (WDSV) is etiologically associated with a skin tumor, walleye dermal sarcoma (WDS), which develops in the fall and regresses in the spring. WDSV genome contains, in addition to gag, pol and env, three open reading frames (orfs) designated orf a (rv-cyclin), orf b and orf c. Unintegrated linear WDSV provirus DNA isolated from infected tumor cells was used to construct a full-length WDSV provirus clone pWDSV, while orf a was cloned into pSVK3 to construct the expression vector porfA. Stable co-transfection of a walleye cell line (W12) with pWDSV and pcDNA3 generated fewer and smaller G418-resistant colonies compared to the control. By Northern blot analysis, several small transcripts (2.8, 1.8, 1.2, and 0.8 kb) were detected using a WDSV LTR-specific probe. By RT-PCR and Southern blot analysis, three cDNAs (2.4, 1.6 and 0.8 kb) were identified, including both orf a and orf b messenger. Furthermore stable co-transfection of both a human lung adenocarcinoma cell line (SPC-A-1) and a cervical cancer cell line (HeLa) with pcDNA3 and ether porfA or pWDSV also generated fewer and smaller G418-resistant colonies. We conclude that expression of the full-length WDSV clone or the orf a gene inhibits the host fish and human tumor cell growth, and Orf A protein maybe a potential factor which contributes to the seasonal tumor development and regression. This is the first fish provirus clone that has been expressed in cell culture system, which will provide a new in vitro model for tumor research and oncotherapy study.


Subject(s)
Cyclins/genetics , Epsilonretrovirus/genetics , Fish Diseases/virology , Proviruses/genetics , Skin Neoplasms/veterinary , Tumor Virus Infections/veterinary , Animals , Cell Line, Tumor , Cell Proliferation , Cyclins/metabolism , Epsilonretrovirus/physiology , Female , Gene Expression , Genes, Viral , Genome, Viral , Host-Pathogen Interactions , Humans , Male , Open Reading Frames , RNA, Messenger/genetics , RNA, Viral/genetics , Skin Neoplasms/virology , Tumor Virus Infections/virology , Viral Proteins/genetics , Viral Proteins/metabolism
4.
Virology ; 433(1): 55-63, 2012 Nov 10.
Article in English | MEDLINE | ID: mdl-22868041

ABSTRACT

The recently released draft horse genome is incompletely characterised in terms of its repetitive element profile. This paper presents characterisation of the endogenous retrovirus (ERVs) of the horse genome based on a data-mining strategy using murine leukaemia virus proteins as queries. 978 ERV gene sequences were identified. Sequences were identified from the gamma, epsilon and betaretrovirus genera. At least one full length gammaretroviral locus was identified, though the gammaretroviral sequences are very degenerate. Using these data the RNA expression of these ERVs were derived from RNA transcriptome data from a variety of equine tissues. Unlike the well studied human and murine ERVs there do not appear to be particular phylogenetic groups of equine ERVs that are more transcriptionally active. Using this novel approach provided a more technically feasible method to characterise ERV expression than previous studies.


Subject(s)
Endogenous Retroviruses/genetics , Genome , Horses/genetics , Horses/virology , Animals , Betaretrovirus/genetics , Data Mining , Endogenous Retroviruses/classification , Epsilonretrovirus/genetics , Gammaretrovirus/genetics , Mice , Phylogeny , Transcription, Genetic , Transcriptome
5.
J Virol ; 86(10): 5742-51, 2012 May.
Article in English | MEDLINE | ID: mdl-22379099

ABSTRACT

Alterations in the functional levels of cyclin-dependent kinase-8 (CDK8) or its partner, cyclin C, have been clearly associated with cancers, including colon cancer, melanoma, and osteosarcoma. Walleye dermal sarcoma virus encodes a retroviral cyclin (RV-cyclin) that localizes to interchromatin granule clusters and binds CDK8. It also binds to the Aα subunit (PR65) of protein phosphatase 2A (PP2A). Binding to the Aα subunit excludes the regulatory B subunit, but not the catalytic C subunit, in a manner similar to that of T antigens of the small DNA tumor viruses. The expression of the RV-cyclin enhances the activity of immune affinity-purified CDK8 in vitro for RNA polymerase II carboxy-terminal domain (CTD) and histone H3 substrates. PP2A also enhances CDK8 kinase activity in vitro for the CTD but not for histone H3. The PP2A enhancement of CDK8 is independent of RV-cyclin expression and likely plays a role in the normal regulation of CDK8. The manipulation of endogenous PP2A activity by inhibition, amendment, or depletion confirmed its role in CDK8 activation by triggering CDK8 autophosphorylation. Although RV-cyclin and PP2A both enhance CDK8 activity, their actions are uncoupled and additive in kinase reactions. PP2A may be recruited to CDK8 in the Mediator complex by a specific PP2A B subunit or additionally by the RV-cyclin in infected cells, but the RV-cyclin appears to activate CDK8 directly and in a manner independent of its physical association with PP2A.


Subject(s)
Cyclin-Dependent Kinase 8/metabolism , Cyclins/metabolism , Epsilonretrovirus/metabolism , Retroviridae Infections/enzymology , Viral Proteins/metabolism , Cyclin-Dependent Kinase 8/genetics , Cyclins/genetics , Epsilonretrovirus/genetics , Humans , Protein Binding , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Retroviridae Infections/genetics , Retroviridae Infections/virology , Up-Regulation , Viral Proteins/genetics
6.
Mar Biotechnol (NY) ; 13(2): 142-50, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20349325

ABSTRACT

Walleye dermal sarcoma (WDS) is a benign tumor of walleye fish that develops and completely regresses seasonally. The retrovirus associated with this disease, walleye dermal sarcoma virus, encodes three accessory genes, two of which, rv-cyclin (orfA) and orfb, are thought to play a role in tumor development. In this study, we attempted to recapitulate WDS development by expressing rv-cyclin in chimeric and stable transgenic zebrafish. Six stable transgenic lines expressing rv-cyclin from the constitutive CMVtk promoter were generated. Immunohistochemistry and quantitative reverse transcriptase polymerase chain reaction demonstrate that rv-cyclin is widely expressed in different tissues in these fish. These lines were viable and histologically normal for up to 2 years. No increase in tumors or tissue proliferation was observed following N-ethyl N-nitrosourea exposure or following tail wounding and subsequent tissue regeneration compared to controls. These data indicate that rv-cyclin is not independently sufficient for tumor induction in zebrafish.


Subject(s)
Animals, Genetically Modified/metabolism , Epsilonretrovirus/genetics , Fish Diseases/metabolism , Sarcoma/veterinary , Skin Neoplasms/veterinary , Zebrafish/genetics , Animals , Cell Proliferation , Fish Diseases/pathology , Fish Diseases/virology , Gene Expression Regulation, Viral , Gene Transfer Techniques , Genes, Viral , Regeneration/genetics , Sarcoma/metabolism , Sarcoma/pathology , Sarcoma/virology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/virology , Tail/injuries , Tail/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Zebrafish/metabolism
7.
Mar Biotechnol (NY) ; 12(6): 640-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20052603

ABSTRACT

A retrovirus homologue gene of cellular cyclin D1, walleye dermal sarcoma virus rv-cyclin gene (orf A or rv-cyclin), was expressed in the livers of zebrafish under the control of liver fatty acid-binding protein (lfabp) promoter. To prevent possible fatality caused by overexpression of the oncogene, the GAL4/upstream activation sequence (GAL4/UAS) system was used to maintain the transgenic lines. Thus, both GAL4-activator [Tg(lfabp:GAL4)] and UAS-effector [Tg(UAS:rvcyclin)] lines were generated, and the rv-cyclin gene was activated in the liver after crossing these two lines. Since no obvious neoplasia phenotypes were observed in the double-transgenic line, cancer susceptibility of the transgenic fish expressing rv-cyclin was tested by carcinogen treatment. Unexpectedly, transgenic fish expressing rv-cyclin gene (rvcyclin+) were more resistant to the carcinogen than siblings not expressing this gene (rvcyclin-). Lower incidences of multiple and malignant liver tumors were observed in rvcyclin+ than in rvcyclin- fish, and the liver tumors in the rvcyclin+ group appeared later and were less malignant. These results suggest that expression of rv-cyclin protects the fish liver from carcinogen damage and delays onset of malignancy. These findings indicate that transgenic fish models are powerful systems for investigating mechanisms of inhibition and regression of liver tumors.


Subject(s)
Animals, Genetically Modified/genetics , Epsilonretrovirus/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms, Experimental/genetics , Zebrafish/genetics , Adenoma, Liver Cell/genetics , Adenoma, Liver Cell/metabolism , Adenoma, Liver Cell/pathology , Animals , Animals, Genetically Modified/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Genes, Tumor Suppressor , Genes, Viral , Liver/metabolism , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Viral Proteins/genetics , Viral Proteins/metabolism , Zebrafish/metabolism
8.
Dis Aquat Organ ; 79(1): 19-25, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18429438

ABSTRACT

Fish nodaviruses are causative agents of viral nervous necrosis causing high mortality in cultured marine fishes around the world. The first successful isolation of fish nodavirus was made with SSN-1 cells, which are persistently infected with snakehead retrovirus (SnRV). In the present study, a BF-2 cell line persistently infected with SnRV (PI-BF-2) was established to evaluate the influence of SnRV on the production of fish nodavirus. The PI-BF-2 cells were slightly more slender than BF-2 cells, but no difference was observed in propagation rate between both cell lines. No difference was observed in production of SnRV between PI-BF-2 and SSN-1 cell lines. Although both PI-BF-2 and BF-2 cell lines showed no cytopathic effect (CPE) after inoculation of striped jack nervous necrosis virus (SJNNV) and redspotted grouper nervous necrosis virus (RGNNV), these fish nodaviruses could be amplified in BF-2 cells, and moreover, production of fish nodaviruses in the PI-BF-2 cell line was more than 40 times higher than in BF-2 cells. Thus, it was concluded that BF-2 cell permissiveness to fish nodaviruses was enhanced by persistent infection with SnRV. Furthermore, homologous cDNA to genomic RNA of SJNNV was detected from both PI-BF-2 and SSN-1 cell lines persistently infected with SnRV. The amount of nodavirus cDNA in SJNNV-inoculated PI-BF-2 cells was clearly lower than that in SJNNV-inoculated SSN-1 cells.


Subject(s)
Epsilonretrovirus/physiology , Nodaviridae/growth & development , Perciformes/virology , Animals , Cell Line , Epsilonretrovirus/genetics , Epsilonretrovirus/growth & development , Genes, pol/genetics , Nodaviridae/genetics , Time Factors
9.
J Virol ; 82(3): 1622-5, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18045933

ABSTRACT

Viruslike particles which displayed a peculiar wheellike appearance that distinguished them from A-, B- or C-type particles had previously been described in the early mouse embryo. The maximum expression of these so-called epsilon particles was observed in two-cell-stage embryos, followed by their rapid decline at later stages of development and no particles detected at the zygote one-cell stage. Here, we show that these particles are in fact produced by a newly discovered murine endogenous retrovirus (ERV) belonging to the widespread family of mammalian ERV-L elements and named MuERV-L. Using antibodies that we raised against the Gag protein of these elements, Western blot analysis and in toto immunofluorescence studies of the embryos at various stages disclosed the same developmental expression profile as that observed for epsilon particles. Using expression vectors for cloned, full-length, entirely coding MuERV-L copies and cell transfection, direct identification of the epsilon particles was finally achieved by high-resolution electron microscopy.


Subject(s)
Embryo, Mammalian/virology , Endogenous Retroviruses/classification , Endogenous Retroviruses/genetics , Epsilonretrovirus/classification , Epsilonretrovirus/genetics , Virosomes/isolation & purification , Animals , Blotting, Western , Endogenous Retroviruses/isolation & purification , Epsilonretrovirus/isolation & purification , Mice , Viral Proteins/immunology , Virosomes/immunology
10.
J Virol ; 80(24): 12041-8, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17035330

ABSTRACT

Walleye dermal sarcoma virus (WDSV) is a complex retrovirus associated with dermal sarcomas in walleye fish. A WDSV accessory gene encodes a cyclin homolog or retroviral cyclin (rv-cyclin). WDSV rv-cyclin was found to be associated with transcription complexes and to affect transcription in a cell-type and promoter-dependent manner. It inhibited the WDSV promoter in walleye fibroblasts and activated transcription from GAL4 promoters when fused to the GAL4 DNA binding domain, and an activation domain (AD) has been localized to 30 amino acids in the carboxyl region. rv-cyclin can block the pulldown of transcription coactivators by the AD of VP16, and the isolated rv-cyclin AD interferes specifically with the interaction between the carboxyl halves of the VP16 AD, VP16C, and TATA-binding protein-associated factor 9 (TAF9). The carboxyl region and isolated AD can bind TAF9 directly in assays of protein-protein interaction in vitro. Furthermore, rv-cyclin and the isolated rv-cyclin AD interfere specifically with the function of VP16C in transcription assays. A previously identified motif within the VP16C sequence mediates TAF9 binding, and this motif is present in the activation domains of a variety of TAF9-binding transcriptional activators. A similar motif is present in the rv-cyclin AD, and point mutations within this motif affect rv-cyclin function and protein-protein interactions. The results support a model of transcription regulation by direct interaction with TAF9.


Subject(s)
Cyclins/metabolism , Epsilonretrovirus/genetics , TATA-Binding Protein Associated Factors/metabolism , Transcription, Genetic/genetics , Viral Proteins/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Cyclins/genetics , DNA Primers , Glutathione Transferase , Luciferases , Molecular Sequence Data , Mutagenesis, Site-Directed , Promoter Regions, Genetic/genetics , Protein Structure, Tertiary , Sequence Analysis, DNA
11.
Virology ; 342(2): 240-51, 2005 Nov 25.
Article in English | MEDLINE | ID: mdl-16150476

ABSTRACT

Walleye dermal sarcoma virus (WDSV) is a complex retrovirus associated with seasonal dermal sarcomas. Developing tumors have low levels of accessory gene transcripts, A1 and B, and regressing tumors have high levels of full-length and spliced transcripts. Transcript A1 encodes a retroviral cyclin (rv-cyclin) with limited homology to host cyclins. The rv-cyclin is physically linked to components of the transcriptional co-activator complex, Mediator, and regulates transcription. In walleye fibroblasts, it inhibits the WDSV promoter independently of cis-acting DNA sequences. The rv-cyclin activates transcription from GAL4 promoters when fused to the GAL4 DNA binding domain. A 30 a.a. activation domain in the carboxy region can be inactivated by single point mutations, and these mutations diminish the ability of the rv-cyclin to inhibit the WDSV promoter. When fused to glutathione S-transferase, the rv-cyclin, its carboxy region, and the activation domain pull down components of transcription complexes from nuclear extracts, and pull down is lost by mutation of the activation domain.


Subject(s)
Epsilonretrovirus/genetics , Promoter Regions, Genetic/physiology , Retroviridae Proteins/genetics , Amino Acid Sequence , Down-Regulation , Epsilonretrovirus/chemistry , Molecular Sequence Data , Protein Structure, Tertiary/genetics , Retroviridae Proteins/metabolism , Sequence Alignment , Transcription Factors/metabolism , Transcriptional Activation
13.
J Virol ; 78(14): 7590-601, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15220434

ABSTRACT

Walleye dermal sarcoma virus (WDSV) is a complex retrovirus found associated with tumors that appear and regress on a seasonal basis. There are quantitative and qualitative differences in the amount of virus expression between developing and regressing tumors. To understand the role of host cell factors in WDSV expression, DNase I footprint analysis, electrophoretic mobility shift assays (EMSA), and reporter gene assays were employed. DNase I footprint analysis of the U3 region of the WDSV long terminal repeat with nuclear extract prepared from a walleye cell line revealed protection of an Oct1, AP1, Whn, and two E4BP4 sites. Additionally, three regions that contained no putative transcription factor binding sites were protected. EMSA confirmed the specific binding of the protected sites and revealed three additional sites, NF1, AP3, and LVa, not protected in DNase I footprint analysis. Site-directed mutagenesis of the individual sites, in the context of a luciferase reporter plasmid, revealed that the NF1, Oct1, AP1, E4BP4#2, AP3, and LVa sites contributed to transcription activation driven by the WDSV U3 region. Mutation of Novel#2 resulted in an increase in luciferase activity, suggesting the Novel#2 site may function to bind a negative regulator of transcription. Anti-Jun and anti-Fos antiserum specifically inhibited protein-DNA complex formation, indicating the presence of c-Jun and c-Fos in the walleye cell nuclear extracts and their participation in binding to the AP1 site. Interestingly, degenerative 15-bp repeats found in the U3 region are differentially protected in DNase I footprint analysis by the walleye cell line nuclear extract and regressing-tumor nuclear extract. EMSA utilizing the 15-bp repeat probe revealed that there are similarities of binding with W12 cell and developing-tumor nuclear extracts and that the binding differs from that observed with regressing-tumor nuclear extract.


Subject(s)
Enhancer Elements, Genetic , Epsilonretrovirus/genetics , Perciformes/virology , Promoter Regions, Genetic/genetics , Animals , Base Sequence , Cell Line , DNA Footprinting , Electrophoresis/methods , Fish Diseases/virology , Gene Deletion , Gene Expression Regulation, Viral , Genes, Reporter , Molecular Sequence Data , Mutagenesis, Site-Directed , Retroviridae Infections/veterinary , Retroviridae Infections/virology , Terminal Repeat Sequences , Tumor Virus Infections/veterinary , Tumor Virus Infections/virology
15.
J Virol ; 76(16): 8031-9, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12134008

ABSTRACT

Walleye dermal sarcoma virus (WDSV) encodes an accessory protein, OrfA, with sequence homology to cyclins (retrovirus cyclin). In cells transfected with an expression construct, OrfA was localized to the nucleus and was concentrated in interchromatin granule clusters (IGCs), sites where splicing factors are concentrated. Other proteins identified in IGCs include transcription factors, the large subunit of RNA polymerase II (Pol II), and cyclin-dependent kinase 8 (cdk8). cdk8 is the kinase partner of cyclin C and a component of the mediator complex, associated with the Pol II holoenzyme. cdk8 and cyclin C can regulate transcription via phosphorylation of cyclin H and the carboxy-terminal domain of Pol II. OrfA in transfected HeLa cells was found to colocalize and copurify with hyperphosphorylated forms of Pol II (Pol IIO) in IGCs, and OrfA was coimmunoprecipitated from lysates of transfected cells with an antibody against Pol IIO. Likewise, Pol IIO could be coprecipitated with an antibody against OrfA. A survey with antibodies against several different cdks resulted in coimmunoprecipitation of OrfA with anti-cdk8, and antiserum against OrfA was able to coprecipitate cdk8 from lysates of cells that express OrfA. Coprecipitation of OrfA with anti-cyclin C demonstrated that it was included in complexes with OrfA and cdk8. OrfA has sequence and structural similarities to cyclin C, and, functionally, OrfA appears to have the capacity to both enhance and inhibit the activity of promoters in a cell-specific manner, similar to functions of the mediator complex. These data suggest that WDSV OrfA functions through its interactions with these large, transcription complexes. Further investigations will clarify the role of the retrovirus cyclin in control of virus expression and transformation.


Subject(s)
Cyclin-Dependent Kinases , Cyclins/genetics , Cyclins/metabolism , Epsilonretrovirus/genetics , Epsilonretrovirus/metabolism , RNA Polymerase II/metabolism , 3T3 Cells , Animals , Cyclin-Dependent Kinase 8 , Cyclins/chemistry , Cyclins/isolation & purification , Genes, Viral , HeLa Cells , Holoenzymes/metabolism , Humans , Mice , Mutation , Phosphorylation , Precipitin Tests , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Secondary , RNA Polymerase II/isolation & purification , RNA Splicing , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors , Transfection
16.
J Virol ; 76(9): 4341-9, 2002 May.
Article in English | MEDLINE | ID: mdl-11932400

ABSTRACT

Three fish retroviruses infecting walleyes constitute the recently recognized genus called epsilonretrovirus. The founding member of this group, walleye dermal sarcoma virus (WDSV), induces benign skin tumors in the infected fish and replicates near 4 degrees C. While the viral genomic sequence is known, biochemical characterization of the virus has been limited to the identification of the mature structural and envelope proteins present in virions. We undertook this study to determine the cleavage sites in the WDSV Pro and Pol proteins and to characterize the viral protease (PR) in vitro. A recombinant PR was expressed in and purified from Escherichia coli as a larger fusion with additional nucleocapsid and reverse transcriptase residues flanking the PR domain. Autocleavage produced a functional, mature PR. Autocleavage as well as cleavage of peptides and of Gag protein by the mature PR occurred at a pH optimum of 7.0, higher than that of other retroviral proteases. Analysis of the cleavage sites identified a glutamine residue in the P2 position of all WDSV sites, both in Gag and in Pol. Amino acid sequence alignments of Gag-Pro-Pol from WDSV, walleye epidermal hyperplasia virus type 1, and walleye epidermal hyperplasia virus type 2 showed the P2 glutamine to be conserved in all cleavage sites in these three viruses. Such conservation is unprecedented in other retroviruses.


Subject(s)
Endopeptidases/genetics , Endopeptidases/isolation & purification , Epsilonretrovirus/enzymology , Epsilonretrovirus/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Endopeptidases/metabolism , Molecular Sequence Data , Polyproteins/metabolism , Protein Precursors/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...