Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.114
Filter
1.
Chem Biol Drug Des ; 103(6): e14564, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845574

ABSTRACT

The leaves of Araucaria cunninghamii are known to be nonedible and toxic. Previous studies have identified biflavones in various Araucaria species. This study aimed to investigate the in vitro cytotoxicity of the isolated compounds from Araucaria cunninghamii after metabolomics and network pharmacological analysis. Methanol extract of Araucaria cunninghamii leaves was subjected to bioassay-guided fractionation. The active fraction was analyzed using LC-HRMS, through strategic database mining, by comparing the data to the Dictionary of Natural Products to identify 12 biflavones, along with abietic acid, beta-sitosterol, and phthalate. Eight compounds were screened for network pharmacology study, where in silico ADME analysis, prediction of gene targets, compound-gene-pathway network and hierarchical network analysis, protein-protein interaction, KEGG pathway, and Gene Ontology analyses were done, that showed PI3KR1, EGFR, GSK3B, and ABCB1 as the common targets for all the compounds that may act in the gastric cancer pathway. Simultaneously, four biflavones were isolated via chromatography and identified through NMR as dimeric apigenin with varying methoxy substitutions. Cytotoxicity study against the AGS cell line for gastric cancer showed that AC1 biflavone (IC50 90.58 µM) exhibits the highest cytotoxicity and monomeric apigenin (IC50 174.5 µM) the lowest. Besides, the biflavones were docked to the previously identified targets to analyze their binding affinities, and all the ligands were found to bind with energy ≤-7 Kcal/mol.


Subject(s)
Data Mining , Metabolomics , Molecular Docking Simulation , Humans , Cell Line, Tumor , Plant Leaves/chemistry , Plant Leaves/metabolism , Network Pharmacology , Biflavonoids/chemistry , Biflavonoids/pharmacology , Biflavonoids/metabolism , Biflavonoids/isolation & purification , Tracheophyta/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Chromatography, Liquid , ATP Binding Cassette Transporter, Subfamily B/metabolism , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Mass Spectrometry
2.
Medicine (Baltimore) ; 103(23): e38277, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847673

ABSTRACT

BACKGROUND: We conducted this meta-analysis based on updated literature and research to compare the efficacy and safety of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) as treatments for patients with non-small cell lung cancer (NSCLC). METHODS: A literature search was conducted using PubMed, Embase, Medline and Web of Science databases to perform a systematic literature search based on random control trials. In these articles, EGFR-TKIs were compared with placebos, chemotherapy, or whole-brain irradiation as treatments for NSCLC. In this research, a meta-analysis of the literature was performed to produce a combined risk ratio (RR) with a 95% confidence interval (CI) for progression-free survival (PFS), overall survival (OS), and adverse events. The data were synthesized with Review Manager 5.3 software, which was used to manage the process. RESULTS: There were 15 random control trials included in the study, involving 4249 patients in total. There was evidence that EGFR-TKIs can significantly prolong OS (RR: 0.87, 95% CI: 0.75-1) and PFS (RR: 0.75, 95% CI: 0.66-0.86) in NSCLC patients. There was an increase in the incidence of adverse events after treatment with EGFR-TKI, including diarrhea (RR: 0.18, 95% CI: 0.10-0.26), infection (RR: 0.09, 95% CI: 0.02-0.16), and rash (RR: 0.37, 95% CI: 0.22-0.51). CONCLUSIONS: It has been shown that EGFR-TKIs prolong OS and PFS in patients with NSCLC. NSCLC patients may benefit from EGFR-TKIs as an important treatment option in order to prolong their survival.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Protein Kinase Inhibitors , Randomized Controlled Trials as Topic , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Progression-Free Survival
3.
Drug Res (Stuttg) ; 74(5): 227-240, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830371

ABSTRACT

PURPOSE: Cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. Globally, about 1 in 6 deaths is due to cancer and the chemotherapeutic drugs available have high toxicity and have reported side effects hence, there is a need for the synthesis of novel drugs in the treatment of cancer. METHODS: The current research work dealt with the synthesis of a series of 3-(3-acetyl-2-oxoquinolin-1-(2H)-yl-2-(substitutedphenyl)thiazolidin-4-one (Va-j) derivatives and evaluation of their in-vitro anticancer activity. All the synthesized compounds were satisfactorily characterized by IR and NMR data. Compounds were further evaluated for their in-vitro anticancer activity against A-549 (lung cancer) cell lines. The in-vitro anticancer activity was based upon the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay method. RESULTS: The synthesized compounds exhibited satisfactory anticancer properties against the A-549 cell line. The compound (VH): showed the highest potency amongst the tested derivatives against the A-549 cell line with IC50 values of 100 µg/ml respectively and was also found to be more potent than Imatinib (150 µg/ml) which was used as a standard drug. Molecular docking studies of the titled compounds (Va-j) were carried out using AutoDock Vina/PyRx software. The synthesized compounds exhibited well-conserved hydrogen bonds with one or more amino acid residues in the active pocket of the EGFRK tyrosine kinase domain (PDB 1m17). CONCLUSION: Among all the synthesized analogues, the binding affinity of the compound (Vh) was found to be higher than other synthesized derivatives and a molecular dynamics simulation study explored the stability of the docked complex system.


Subject(s)
Antineoplastic Agents , ErbB Receptors , Lung Neoplasms , Molecular Docking Simulation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor , A549 Cells , Thiazolidines/pharmacology , Thiazolidines/chemistry , Thiazolidines/chemical synthesis , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects
4.
Respir Res ; 25(1): 233, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840238

ABSTRACT

BACKGROUND: There is inconclusive evidence to suggest that the expression of programmed cell death ligand 1 (PD-L1) is a putative predictor of response to EGFR-TKI therapy in advanced EGFR-mutant non-small cell lung cancer (NSCLC). We evaluated the heterogeneity in PD-L1 expression in the primary lung site and metastatic lymph nodes to analyze the association between PD-L1 expression and response for patients treated with EGFR-TKI. METHODS: This study reviewed 184 advanced NSCLC patients with EGFR mutations who received first-generation EGFR-TKI as first-line treatment from 2020 to 2021 at Shanghai Chest Hospital. The patients were divided into the primary lung site group (n = 100) and the metastatic lymph nodes group (n = 84) according to the biopsy site. The patients in each group were divided into TPS < 1%, TPS 1-49%, and TPS ≥ 50% groups according to PD-L1 expression. RESULTS: The median PFS was 7 (95% CI: 5.7-8.3) months, and the median OS was 26 (95% CI: 23.5-28.5) months for all patients. No correlation existed between PFS or OS and PD-L1 expression. The median PFS in the primary lung site group was 11 months (95% CI: 9.6-12.4) in the TPS < 1% group, 8 months (95% CI: 6.6-9.4) in TPS 1-49% group, and 4 months (95% CI: 3.2-4.8) in TPS ≥ 50% group, with statistically significant differences (p = 0.000). The median OS of the TPS < 1% group and TPS ≥ 50% group showed a statistically significant difference (p = 0.008) in the primary lung site group. In contrast, PD-L1 expression in the lymph nodes of EGFR-mutant patients was unrelated to PFS or OS after EGFR-TKI therapy. CONCLUSION: PD-L1 expression from the primary lung site might predict clinical benefit from EGFR-TKI, whereas PD-L1 from metastatic lymph nodes did not. TRIAL REGISTRATION: This retrospective study was approved by the Ethics Committee of Shanghai Chest Hospital (ID: IS23060) and performed following the Helsinki Declaration of 1964 (revised 2008).


Subject(s)
B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Lymphatic Metastasis , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , B7-H1 Antigen/biosynthesis , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Female , Male , Middle Aged , ErbB Receptors/biosynthesis , ErbB Receptors/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Aged , Protein Kinase Inhibitors/therapeutic use , Retrospective Studies , Lymph Nodes/pathology , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Adult , Aged, 80 and over , Treatment Outcome , Predictive Value of Tests , Mutation , Biomarkers, Tumor/genetics , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis
5.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732063

ABSTRACT

Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients treated with EGFR-tyrosine kinase inhibitors (TKIs) inevitably develop resistance through several biological mechanisms. However, little is known on the molecular mechanisms underlying acquired resistance to suboptimal EGFR-TKI doses, due to pharmacodynamics leading to inadequate drug exposure. To evaluate the effects of suboptimal EGFR-TKI exposure on resistance in NSCLC, we obtained HCC827 and PC9 cell lines resistant to suboptimal fixed and intermittent doses of gefitinib and compared them to cells exposed to higher doses of the drug. We analyzed the differences in terms of EGFR signaling activation and the expression of epithelial-mesenchymal transition (EMT) markers, whole transcriptomes byRNA sequencing, and cell motility. We observed that the exposure to low doses of gefitinib more frequently induced a partial EMT associated with an induced migratory ability, and an enhanced transcription of cancer stem cell markers, particularly in the HCC827 gefitinib-resistant cells. Finally, the HCC827 gefitinib-resistant cells showed increased secretion of the EMT inducer transforming growth factor (TGF)-ß1, whose inhibition was able to partially restore gefitinib sensitivity. These data provide evidence that different levels of exposure to EGFR-TKIs in tumor masses might promote different mechanisms of acquired resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Movement , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , ErbB Receptors , Gefitinib , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Gefitinib/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism
6.
Cancer Immunol Immunother ; 73(7): 134, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758372

ABSTRACT

BACKGROUND: Effective treatment after EGFR-TKI resistance is of great clinical concern. We aimed to investigate the efficacy and safety of anlotinib in combination with an anti-PD-1/PD-L1 antibody in later-line therapy for EGFR-mutant NSCLC patients after TKI treatment failure and to explore the independent predictive factors of therapeutic efficacy. METHODS: A total of 71 patients with confirmed advanced EGFR-mutated NSCLC who progressed after previous standard EGFR-TKI therapy but still failed after multiline treatments were included retrospectively in this study. Most of the patients had previously received at least three lines of treatment. All were treated with anlotinib combined with anti-PD-1 or anti-PD-L1 therapy. The safety of this combined treatment was assessed by the incidence of adverse events. The efficacy of the regimens was evaluated by survival analysis (OS, PFS, ORR, DCR). RESULTS: The median follow-up period was 28.6 months (range: 2.3-54.0 months), and the median number of treatment lines was 4. The overall response rate (ORR) and disease control rate (DCR) were 19.7% and 77.5%, respectively. The median PFS was 5.8 months (95% CI 4.2-7.4 months), and the median OS was 17.1 months (95% CI 12.0-22.3 months). Patients who received immune checkpoint inhibitors plus anlotinib had an encouraging intracranial ORR of 38.5% and a DCR of 80.8%. ECOG performance status < 2 at baseline was independent protective factors of PFS. Metastatic organs and ECOG performance status were independent parameters in predicting OS. Treatment-related adverse events occurred in 66 (93.0%) patients; most of the adverse events were Grade 1-2, and no increase in adverse events was observed compared to monotherapy. CONCLUSION: Anlotinib combined with an anti-PD-1/PD-L1-based regimen exhibited promising efficacy and tolerance in NSCLC patients with EGFR mutations after previous TKI failure. The efficacy of this combined regimen in patients with EGFR mutations should be further evaluated.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Immune Checkpoint Inhibitors , Indoles , Lung Neoplasms , Mutation , Protein Kinase Inhibitors , Quinolines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Male , Female , Retrospective Studies , Indoles/therapeutic use , Indoles/adverse effects , Indoles/administration & dosage , Quinolines/therapeutic use , Quinolines/adverse effects , Quinolines/administration & dosage , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Aged , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , B7-H1 Antigen/antagonists & inhibitors , Aged, 80 and over
7.
Nat Commun ; 15(1): 4195, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760351

ABSTRACT

Osimertinib (Osi) is a widely used epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). However, the emergence of resistance is inevitable, partly due to the gradual evolution of adaptive resistant cells during initial treatment. Here, we find that Osi treatment rapidly triggers adaptive resistance in tumor cells. Metabolomics analysis reveals a significant enhancement of oxidative phosphorylation (OXPHOS) in Osi adaptive-resistant cells. Mechanically, Osi treatment induces an elevation of NCOA4, a key protein of ferritinophagy, which maintains the synthesis of iron-sulfur cluster (ISC) proteins of electron transport chain and OXPHOS. Additionally, active ISC protein synthesis in adaptive-resistant cells significantly increases the sensitivity to copper ions. Combining Osi with elesclomol, a copper ion ionophore, significantly increases the efficacy of Osi, with no additional toxicity. Altogether, this study reveals the mechanisms of NCOA4-mediated ferritinophagy in Osi adaptive resistance and introduces a promising new therapy of combining copper ionophores to improve its initial efficacy.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Ferritins , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Acrylamides/pharmacology , Acrylamides/therapeutic use , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Ferritins/metabolism , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Oxidative Phosphorylation/drug effects , Animals , Mice , Copper/metabolism , Autophagy/drug effects , Mice, Nude , Indoles , Pyrimidines
8.
Support Care Cancer ; 32(6): 354, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750379

ABSTRACT

INTRODUCTION: Cutaneous adverse reactions to epidermal growth factor receptor inhibitors (EGFRi) are some of the most common side effects that patients experience. However, cutaneous adverse reactions that cause dyspigmentation in patients have been rarely reported. Erythema dyschromicum perstans (EDP) is a rare pigmentary condition that causes ashy-grey hyperpigmented macules and patches, with a few cases reported from EGFRi in the literature. The disfiguration caused by this condition may negatively impact patients' quality of life. Our study aimed to describe the clinical characteristics of EDP induced by EGFRi to better recognize and manage the condition. METHODS: We conducted a multicenter retrospective review at three academic institutions to identify patients with EDP induced by EGFRi from 2017 to 2023 and included sixteen patients in our study. RESULTS: The median age of patients was 66 years old, with 63% female and 37% male (Table 1). The majority of our patients were Asian (88%). All patients had non-small cell lung cancer and most patients received osimertinib. Median time to EDP was 6 months. The most common areas of distribution were the head/neck region, lower extremities, and upper extremities. Various topical ointments were trialed; however, approximately less than half had improvement in their disease and most patients had persistent EDP with no resolution. All patients desired treatment except one with EDP on the tongue, and there was no cancer treatment discontinuation or interruption due to EDP. Table 1 Patient demographics and clinical characteristics of 16 patients with EDP induced by EGFRi Case no Demographics: age, race, and sex Fitzpatrick skin type Cancer type EGFR therapy Concomitant photosensitive drug(s) Time to EDP (months) Clinical features Distribution Symptoms Treatments and clinical course EDP status from most recent follow up 1 47 y/o Asian male III Stage IV NSCLC Erlotinib None Unknown Brown-blue-gray hyperpigmented patches Bilateral shins Left thigh Xerosis Pruritus Triamcinolone 0.1% ointment for 4 months, improvement of blue discoloration Tacrolimus 0.1% BID for 9 months, improvement but no resolution Ongoing 2 62 y/o Asian female IV Stage IV NSCLC Osimertinib None 4 Gray-brown hyperpigmented patches Bilateral arms Back Forehead Neck Right shin None Tacrolimus 0.1% ointment for 1 year with minor improvement Ongoing 3 69 y/o Asian female IV Stage IV NSCLC Osimertinib None 4 Gray-brown macules and patches Chest Face Forehead Bilateral legs None Tacrolimus 0.1% ointment for 10 months, no improvement Ongoing 4 79 y/o White male II Stage IV NSCLC Osimertinib None 15 Mottled grey-blue hyperpigmented patches and plaques with mild scaling Bilateral arms Back Forehead Neck None Photoprotection, no improvement Ongoing 5 69 y/o Asian female III Stage IV NSCLC Osimertinib Ibuprofen 4 Blue-grey hyperpigmented macules and patches Abdomen Bilateral arms None Tacrolimus 0.1% ointment for 7 months, no improvement Ongoing 6 65 y/o Asian male III Stage IV NSCLC Osimertinib None 20 Hyperpigmented blue gray macules and patches Helix Bilateral shins None Photoprotection, no improvement Ongoing 7 66 y/o Asian female IV Stage IV NSCLC Erlotinib TMP-SMX 6 Ashy grey-brown thin plaques Back Forehead None 2.5% hydrocortisone ointment for 8 months, resolved Resolved 8 82 y/o Asian male III Stage III NSCLC Erlotinib Simvastatin 20 Ash-grey hyperpigmented patches Dorsal feet Forehead Scalp None Photoprotection Ongoing 9 57 y/o Asian female III Stage II NSCLC Erlotinib None 1 Bue-grey discoloration Tongue None No intervention Ongoing 10 51 y/o Asian female III Stage IV NSCLC Osimertinib None 9 Blue-grey hyperpigmented macules and patches Bilateral arms Axillae Groin Neck Trunk None 2.5% hydrocortisone ointment, triamcinolone 0.1% ointment, photoprotection with mild improvement Ongoing 11 67 y/o Asian male III Stage IV NSCLC Osimertinib None 7 Gray-blue macules and patches with mild background erythema and scaling Bilateral arms Ears Face Bilateral shins None Triamcinolone 0.1% ointment, protection for 6 months with mild improvement Ongoing 12 75 y/o Asian female IV Stage III NSCLC Osimertinib TMP-SMX 3 Gray-blue hyperpigmented patches Bilateral arms Abdomen Back Face Bilateral shins Pruritus Triamcinolone 0.1% and betamethasone 0.01% with relief of pruritus, lesions unchanged Triluma cream 6 months, mild improvement Ongoing 13 42 y/o Asian male IV Stage IV NSCLC Afatinib TMP-SMX 24 Grey-brown hyperpigmented patches Back Face None Hydroquinone 4% cream for 2 years with mild improvement Ongoing 14 74 y/o White female III Stage II NSCLC Osimertinib Atorvastatin 4 Grey-brown hyperpigmented patches Bilateral legs Trunk None Photoprotection Ongoing 15 64 y/o Asian female IV Stage IV NSCLC Osimertinib None 3 Gray-brown hyperpigmentation Abdomen Bilateral arms Back Bilateral legs Pruritus Triamcinolone 0.1% cream; No change, minimal concern to patient Ongoing 16 52 y/o Asian female IV Stage IV NSCLC Osimertinib None 42 Gray hyperpigmented patches with digitate shape Abdomen Bilateral flanks None Triamcinolone 0.1% cream Ongoing NSCLC, non-small cell lung cancer, TMP-SMX, Trimethoprim/Sulfamethoxazole CONCLUSIONS: We highlight the largest case series describing EDP from EGFR inhibitors, which mostly affected Asian patients with lung malignancy and on EGFR tyrosine kinase inhibitors. Clinicians should be able to recognize this condition in their patients and assess how it is affecting their quality of life, and refer to dermatology to help with management.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Humans , Male , Female , Aged , Retrospective Studies , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Middle Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Erythema/chemically induced , Erythema/etiology , Acrylamides/adverse effects , Acrylamides/administration & dosage , Drug Eruptions/etiology , Aged, 80 and over , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Quality of Life
9.
Med Oncol ; 41(6): 156, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750377

ABSTRACT

This study explores the therapeutic potential of phytochemicals derived from Morus alba for colorectal cancer (CRC) treatment. Colorectal cancer is a global health concern with increasing mortality rates, necessitating innovative strategies for prevention and therapy. Employing in silico analysis, molecular docking techniques (MDT), and molecular dynamics simulations (MDS), the study investigates the interactions between Morus alba-derived phytochemicals and key proteins (AKT1, Src, STAT3, EGFR) implicated in CRC progression. ADME/T analysis screens 78 phytochemicals for drug-like and pharmacokinetic properties. The study integrates Lipinski's Rule of Five and comprehensive bioactivity assessments, providing a nuanced understanding of Morus alba phytoconstituent's potential as CRC therapeutic agents. Notably, 14 phytochemicals out of 78 emerge as potential candidates, demonstrating oral bioavailability and favorable bioactivity scores. Autodock 1.5.7 is employed for energy minimization followed by molecular docking with the highest binding energy observed to be - 11.7 kcal/mol exhibited by Kuwanon A against AKT1. Molecular dynamics simulations and trajectory path analysis were conducted between Kuwanon A and AKT1 at the Pleckstrin homology (PH) domain region (TRP80), revealing minimal deviations. In comparison to the standard drug Capivasertib, the phytochemical Kuwanon A emerges as a standout candidate based on computational analysis. This suggests its potential as an alternative to mitigate the limitations associated with the standard drug. The research aims to provide insights for future experimental validations and to stimulate the development of Kuwanon A as a novel, effective therapeutic agent for managing colorectal cancer.


Subject(s)
Colorectal Neoplasms , Molecular Docking Simulation , Molecular Dynamics Simulation , Morus , Phytochemicals , Morus/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/pharmacokinetics , Humans , Proto-Oncogene Proteins c-akt/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , STAT3 Transcription Factor/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/chemistry , src-Family Kinases/metabolism
10.
Front Immunol ; 15: 1399975, 2024.
Article in English | MEDLINE | ID: mdl-38774882

ABSTRACT

Recently, targeted therapy and immunotherapy have emerged as effective treatment options for non-small cell lung cancer (NSCLC). This progress has been facilitated by the rapid development of diagnostic and therapeutic technologies and the continuous research and development of new drugs, leading to a new era in precision medicine for NSCLC. This is a breakthrough for patients with common mutations in the human epidermal growth factor receptor (EGFR) gene in NSCLC. Consequently, the use of targeted drugs has significantly improved survival. Nevertheless, certain rare genetic mutations are referred to as EGFR exon 20 insertion (ex20ins) mutations, which differ in structure from conventional EGFR gene mutations, namely, exon 19 deletion mutations (19-Del) and exon 21 point mutations. Owing to their distinct structural characteristics, patients harboring these EGFR ex20ins mutations are unresponsive to traditional tyrosine kinase inhibitor (TKI) therapy. This particular group of patients did not fall within the scope of their applicability. However, the activating A763_Y764insFQEA mutation elicits a more pronounced response than mutations in the near and far regions of the C-helix immediately following it and should, therefore, be treated differently. Currently, there is a lack of effective treatments for EGFR ex20ins mutations NSCLC. The efficacy of chemotherapy has been relatively favorable, whereas the effectiveness of immunotherapy remains ambiguous owing to inadequate clinical data. In addition, the efficacy of the first- and second-generation targeted drugs remains limited. However, third-generation and novel targeted drugs have proven to be effective. Although novel EGFR-TKIs are expected to treat EGFR ex20ins mutations in patients with NSCLC, they face many challenges. The main focus of this review is on emerging therapies that target NSCLC with EGFR ex20ins and highlight major ongoing clinical trials while also providing an overview of the associated challenges and research advancements in this area.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Exons , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Exons/genetics , Protein Kinase Inhibitors/therapeutic use , Immunotherapy/methods , Mutagenesis, Insertional , Molecular Targeted Therapy , Mutation , Animals
11.
Theranostics ; 14(7): 2816-2834, 2024.
Article in English | MEDLINE | ID: mdl-38773974

ABSTRACT

Purpose: Small molecule drugs such as tyrosine kinase inhibitors (TKIs) targeting tumoral molecular dependencies have become standard of care for numerous cancer types. Notably, epidermal growth factor receptor (EGFR) TKIs (e.g., erlotinib, afatinib, osimertinib) are the current first-line treatment for non-small cell lung cancer (NSCLC) due to their improved therapeutic outcomes for EGFR mutated and overexpressing disease over traditional platinum-based chemotherapy. However, many NSCLC tumors develop resistance to EGFR TKI therapy causing disease progression. Currently, the relationship between in situ drug target availability (DTA), local protein expression and therapeutic response cannot be accurately assessed using existing analytical tools despite being crucial to understanding the mechanism of therapeutic efficacy. Procedure: We have previously reported development of our fluorescence imaging platform termed TRIPODD (Therapeutic Response Imaging through Proteomic and Optical Drug Distribution) that is capable of simultaneous quantification of single-cell DTA and protein expression with preserved spatial context within a tumor. TRIPODD combines two complementary fluorescence imaging techniques: intracellular paired agent imaging (iPAI) to measure DTA and cyclic immunofluorescence (cyCIF), which utilizes oligonucleotide conjugated antibodies (Ab-oligos) for spatial proteomic expression profiling on tissue samples. Herein, TRIPODD was modified and optimized to provide a downstream analysis of therapeutic response through single-cell DTA and proteomic response imaging. Results: We successfully performed sequential imaging of iPAI and cyCIF resulting in high dimensional imaging and biomarker assessment to quantify single-cell DTA and local protein expression on erlotinib treated NSCLC models. Pharmacodynamic and pharmacokinetic studies of the erlotinib iPAI probes revealed that administration of 2.5 mg/kg each of the targeted and untargeted probe 4 h prior to tumor collection enabled calculation of DTA values with high Pearson correlation to EGFR, the erlotinib molecular target, expression in the tumors. Analysis of single-cell biomarker expression revealed that a single erlotinib dose was insufficient to enact a measurable decrease in the EGFR signaling cascade protein expression, where only the DTA metric detected the presence of bound erlotinib. Conclusion: We demonstrated the capability of TRIPODD to evaluate therapeutic response imaging to erlotinib treatment as it relates to signaling inhibition, DTA, proliferation, and apoptosis with preserved spatial context.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Optical Imaging , Single-Cell Analysis , Humans , Optical Imaging/methods , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/metabolism , Single-Cell Analysis/methods , Lung Neoplasms/drug therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Animals , Cell Line, Tumor , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Female
12.
Life Sci ; 348: 122681, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697281

ABSTRACT

AIMS: While significant upregulation of GRP78 has been documented in lung cancer patients, its association with resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains underexamined. Our study aimed to elucidate the functional importance of GRP78 in acquired resistance to EGFR-TKIs in non-small cell lung cancer (NSCLC) and to evaluate its potential as a therapeutic target. MAIN METHODS: Immunoblot analysis or flow cytometry was employed to assess several markers for endoplasmic reticulum (ER) stress and apoptosis. Ru(II) complex I and HA15, two known GRP78 inhibitors, were used to evaluate the functional role of GRP78. A Xenograft assay was performed to evaluate the in vivo anti-cancer effects of the GRP78 inhibitors. KEY FINDINGS: We validated a significant increase in GRP78 protein levels in HCC827-GR, H1993-GR, and H1993-ER cells. The EGFR-TKI-resistant cells overexpressing GRP78 exhibited significantly higher cell proliferation rates than did their parental counterparts. Notably, GRP78 inhibition resulted in a more profound anti-proliferative and apoptotic response via heightened ER stress and subsequent reactive oxygen species (ROS) production in EGFR-TKI-resistant cell lines compared with their parental cells. In xenograft models implanted with HCC827-GR, both Ru(II) complex I and HA15 significantly suppressed tumor growth and reduced tumor weight. Additionally, we confirmed that GRP78 plays a critical role in the proliferation of H1975, an EGFR-TKI-resistant T790M-mutant cell line, relative to other NSCLC cell lines. SIGNIFICANCE: Our findings strongly support targeting of GRP78 as a promising therapeutic strategy for NSCLC patients with acquired resistance to EGFR-TKIs.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Endoplasmic Reticulum Chaperone BiP , ErbB Receptors , Heat-Shock Proteins , Lung Neoplasms , Mice, Nude , Protein Kinase Inhibitors , Xenograft Model Antitumor Assays , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Animals , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Mice , Heat-Shock Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/drug effects , Mice, Inbred BALB C , Female , Reactive Oxygen Species/metabolism
13.
Biol Pharm Bull ; 47(5): 895-903, 2024.
Article in English | MEDLINE | ID: mdl-38692865

ABSTRACT

Epidermal growth factor (EGF)-EGF receptor (EGFR) signaling studies paved the way for a basic understanding of growth factor and oncogene signaling pathways and the development of tyrosine kinase inhibitors (TKIs). Due to resistance mutations and the activation of alternative pathways when cancer cells escape TKIs, highly diverse cell populations form in recurrent tumors through mechanisms that have not yet been fully elucidated. In this review, we summarize recent advances in EGFR basic research on signaling networks and intracellular trafficking that may clarify the novel mechanisms of inhibitor resistance, discuss recent clinical developments in EGFR-targeted cancer therapy, and offer novel strategies for cancer drug development.


Subject(s)
Antineoplastic Agents , ErbB Receptors , Neoplasms , Protein Kinase Inhibitors , Signal Transduction , Humans , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction/drug effects , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals , Drug Resistance, Neoplasm , Molecular Targeted Therapy/methods
14.
MAbs ; 16(1): 2324485, 2024.
Article in English | MEDLINE | ID: mdl-38700511

ABSTRACT

Model-informed drug discovery advocates the use of mathematical modeling and simulation for improved efficacy in drug discovery. In the case of monoclonal antibodies (mAbs) against cell membrane antigens, this requires quantitative insight into the target tissue concentration levels. Protein mass spectrometry data are often available but the values are expressed in relative, rather than in molar concentration units that are easier to incorporate into pharmacokinetic models. Here, we present an empirical correlation that converts the parts per million (ppm) concentrations in the PaxDb database to their molar equivalents that are more suitable for pharmacokinetic modeling. We evaluate the insight afforded to target tissue distribution by analyzing the likely tumor-targeting accuracy of mAbs recognizing either epidermal growth factor receptor or its homolog HER2. Surprisingly, the predicted tissue concentrations of both these targets exceed the Kd values of their respective therapeutic mAbs. Physiologically based pharmacokinetic (PBPK) modeling indicates that in these conditions only about 0.05% of the dosed mAb is likely to reach the solid tumor target cells. The rest of the dose is eliminated in healthy tissues via both nonspecific and target-mediated processes. The presented approach allows evaluation of the interplay between the target expression level in different tissues that determines the overall pharmacokinetic properties of the drug and the fraction that reaches the cells of interest. This methodology can help to evaluate the efficacy and safety properties of novel drugs, especially if the off-target cell degradation has cytotoxic outcomes, as in the case of antibody-drug conjugates.


Subject(s)
Antibodies, Monoclonal , Mass Spectrometry , Humans , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/immunology , Mass Spectrometry/methods , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , ErbB Receptors/immunology , ErbB Receptors/antagonists & inhibitors , Tissue Distribution , Neoplasms/drug therapy , Neoplasms/immunology
15.
Front Biosci (Landmark Ed) ; 29(5): 184, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38812320

ABSTRACT

This review article explores the intricate correlation between growth factors and bone metastases, which play a crucial role in the development of several types of malignancies, namely breast, prostate, lung, and renal cancers. The focal point of our discussion is on crucial receptors for growth factors, including Epidermal Growth Factor Receptor (EGFR), Transforming Growth Factor-ß (TGFß), Vascular Endothelial Growth Factor Receptor (VEGFR), and Fibroblast Growth Factor Receptor (FGFR). These receptors, which are essential for cellular activities including growth, differentiation, and survival, have important involvement in the spread of cancer and the interactions between tumors and the bone environment. We discuss the underlying mechanisms of bone metastases, with a specific emphasis on the interaction between growth factor receptors and the bone microenvironment. EGFR signaling specifically enhances the process of osteoclast development and the formation of osteolytic lesions, especially in breast and lung malignancies. TGFß receptors have a role in both osteolytic and osteoblastic metastases by releasing TGFß, which attracts cancer cells and promotes bone remodeling. This is a crucial element in the spread of prostate cancer to the bones. The functions of FGFR and VEGFR in the processes of bone formation and tumor angiogenesis, respectively, highlight the complex and diverse nature of these interactions. The review emphasizes the possibility of targeted therapeutics targeting these receptors to interrupt the cycle of tumor development and bone degradation. Therapeutic approaches include focusing on the VEGF/VEGFR, EGF/EGFR, FGF/FGFR, and TGFß/TGFßR pathways. These include a variety of compounds, such as small molecule inhibitors and monoclonal antibodies, which have shown potential to interfere with tumor-induced alterations in bone. The text discusses clinical trials and preclinical models, offering insights into the effectiveness and constraints of various treatments. Ultimately, this study provides a succinct but thorough summary of the present knowledge and treatment strategies focused on growth factor receptors in bone metastases. This highlights the significance of comprehending the signaling of growth factor receptors in the microenvironment where tumors spread to the bones, as well as the possibility of using targeted therapies to enhance the results for cancer patients with bone metastases. The advancement of treating bone metastases hinges on the development of treatments that specifically target the intricate relationships between malignancies and bone.


Subject(s)
Bone Neoplasms , Humans , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Receptors, Growth Factor/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Animals , Receptors, Vascular Endothelial Growth Factor/metabolism , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
16.
Acta Cir Bras ; 39: e391624, 2024.
Article in English | MEDLINE | ID: mdl-38808816

ABSTRACT

PURPOSE: To evaluate the chemotherapeutic activity of temozolomide counter to mammary carcinoma. METHODS: In-vitro anticancer activity has been conducted on MCF7 cells, and mammary carcinoma has been induced in Wistar rats by introduction of 7, 12-Dimethylbenz(a)anthracene (DMBA), which was sustained for 24 weeks. Histopathology, immunohistochemistry, cell proliferation study and apoptosis assay via TUNEL method was conducted to evaluate an antineoplastic activity of temozolomide in rat breast tissue. RESULTS: IC50 value of temozolomide in MCF7 cell has been obtained as 103 µM, which demonstrated an initiation of apoptosis. The temozolomide treatment facilitated cell cycle arrest in G2/M and S phase dose dependently. The treatment with temozolomide suggested decrease of the hyperplastic abrasions and renovation of the typical histological features of mammary tissue. Moreover, temozolomide therapy caused the downregulation of epidermal growth factor receptor, extracellular signal-regulated kinase, and metalloproteinase-1 expression and upstream of p53 and caspase-3 proliferation to indicate an initiation of apoptotic events. CONCLUSIONS: The occurrence of mammary carcinoma has been significantly decreased by activation of apoptotic pathway and abrogation of cellular propagation that allowable for developing a suitable mechanistic pathway of temozolomide in order to facilitate chemotherapeutic approach.


Subject(s)
Antineoplastic Agents, Alkylating , Apoptosis , ErbB Receptors , Rats, Wistar , Temozolomide , Temozolomide/pharmacology , Temozolomide/therapeutic use , Animals , Apoptosis/drug effects , Female , ErbB Receptors/drug effects , ErbB Receptors/antagonists & inhibitors , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Matrix Metalloproteinase 1/drug effects , Matrix Metalloproteinase 1/metabolism , Cell Proliferation/drug effects , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Humans , MCF-7 Cells , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/drug effects , Immunohistochemistry , Reproducibility of Results , Rats , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology
17.
Lung Cancer ; 192: 107820, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763104

ABSTRACT

INTRODUCTION: Dysregulated MET is an established oncogenic driver in non-small cell lung cancer (NSCLC). MET signaling may also suppress anticancer immune responses. Concomitant MET inhibition with capmatinib (a MET inhibitor) synergistically enhanced the efficacy of immunotherapies in murine cancer models, regardless of tumor dependency to MET signaling. Here, we report results of a multicenter, open-label, phase 2 study of capmatinib plus nivolumab (a PD-1 inhibitor) in patients with EGFR wild-type advanced NSCLC, previously treated with platinum-based chemotherapy. METHODS: Patients were allocated into high-MET or low-MET groups according to MET expression determined by immunohistochemistry, MET gene copy number as assessed by fluorescence in-situ hybridization, and presence of MET exon 14 skipping mutation, then received capmatinib 400 mg, oral, twice daily in combination with nivolumab 3 mg/kg intravenously every 2 weeks. The primary endpoint was investigator-assessed 6-month progression-free survival (PFS) rate per RECIST v1.1. RESULTS: The primary endpoint was met in both the high-MET (N = 16) and low-MET (N = 30) groups. In the high-MET and low-MET groups, respectively, the estimated mean 6-month PFS rate (95 % credible interval) by Bayesian analysis was 68.9 % (48.5-85.7) and 50.9 % (35.6-66.4). The Kaplan-Meier median PFS (95 % CI) was 6.2 months (3.5-19.2) and 4.2 months (1.8-7.4). The overall response rate (95 % CI) was 25.0 % (7.3-52.4) and 16.7 % (5.6-34.7). Most frequent treatment-related adverse events (≥30 % any grade, N = 46) were nausea (52.2 %), peripheral edema (34.8 %), and increased blood creatinine (30.4 %). CONCLUSIONS: Capmatinib plus nivolumab showed clinical activity and manageable safety in pretreated patients with advanced EGFR wild-type NSCLC, independent of MET status. TRIAL REGISTRATION: ClinicalTrials.gov NCT02323126.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Nivolumab , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Nivolumab/administration & dosage , Nivolumab/therapeutic use , Female , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Benzamides/therapeutic use , Benzamides/administration & dosage , Adult , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Aged, 80 and over , Acrylamides/therapeutic use , Acrylamides/administration & dosage , Imidazoles , Triazines
18.
Front Biosci (Landmark Ed) ; 29(5): 174, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38812296

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a major cause of mortality and morbidity. A study proved that brexpiprazole, as a novel dopamine receptor partial agonist, can also prevent CRC cell proliferation. Therefore, clarifying the molecular mechanism of brexpiprazole is vital to developing a novel therapeutic strategy for CRC. METHODS: The effect of brexpiprazole on human colorectal cancer cell proliferation was measured with Cell Counting Kit-8 (CCK-8) kits. Cell migration capability was measured using wound healing and transwell. Cell apoptosis was evaluated with a flow cytometer. Western blots and immunohistochemical staining were used to evaluate protein expression. The effects observed in vitro were also confirmed in xenograft models. RESULTS: Brexpiprazole remarkably inhibited the proliferation, suppressed the migration ability, and induced apoptosis of colorectal cancer cells. Mechanism study showed that brexpiprazole exerted these effects by inhibiting the EGFR pathway. Brexpiprazole enhanced HCT116 cells' sensitivity to cetuximab, and a combination of brexpiprazole and cetuximab inhibited xenograft tumor growth in vivo. CONCLUSIONS: Our finding suggested that brexpiprazole inhibits proliferation, promotes apoptosis, and enhances CRC cells' sensitivity to cetuximab by regulating the EGFR pathway and it might be an efficacious treatment strategy for CRC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Cetuximab , Colorectal Neoplasms , ErbB Receptors , Mice, Nude , Quinolones , Thiophenes , Xenograft Model Antitumor Assays , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Thiophenes/pharmacology , Thiophenes/therapeutic use , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Apoptosis/drug effects , Cetuximab/pharmacology , Quinolones/pharmacology , Cell Movement/drug effects , Cell Line, Tumor , Mice , HCT116 Cells , Mice, Inbred BALB C , Disease Progression
19.
Respir Res ; 25(1): 215, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764025

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS: We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS: Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS: BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.


Subject(s)
Autophagy , Betulinic Acid , Carcinoma, Non-Small-Cell Lung , Drug Synergism , ErbB Receptors , Lung Neoplasms , Pentacyclic Triterpenes , Protein Kinase Inhibitors , Animals , Humans , Mice , A549 Cells , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Gefitinib/pharmacology , Indoles , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Pyrimidines , Signal Transduction/drug effects , Triterpenes/pharmacology , Xenograft Model Antitumor Assays/methods
20.
J Med Chem ; 67(10): 7995-8019, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38739112

ABSTRACT

Based on the close relationship between programmed death protein ligand 1 (PD-L1) and epidermal growth factor receptor (EGFR) in glioblastoma (GBM), we designed and synthesized a series of small molecules as potential dual inhibitors of EGFR and PD-L1. Among them, compound EP26 exhibited the highest inhibitory activity against EGFR (IC50 = 37.5 nM) and PD-1/PD-L1 interaction (IC50 = 1.77 µM). In addition, EP26 displayed superior in vitro antiproliferative activities and in vitro immunomodulatory effects by promoting U87MG cell death in a U87MG/Jurkat cell coculture model. Furthermore, EP26 possessed favorable pharmacokinetic properties (F = 22%) and inhibited tumor growth (TGI = 92.0%) in a GBM mouse model more effectively than Gefitinib (77.2%) and NP19 (82.8%). Moreover, EP26 increased CD4+ cells and CD8+ cells in tumor microenvironment. Collectively, these results suggest that EP26 represents the first small-molecule-based PD-L1/EGFR dual inhibitor deserving further investigation as an immunomodulating agent for cancer treatment.


Subject(s)
Antineoplastic Agents , B7-H1 Antigen , ErbB Receptors , Glioblastoma , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/chemical synthesis , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacokinetics , Immunotherapy/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...