Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Appl Environ Microbiol ; 90(6): e0029924, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38786360

ABSTRACT

Bacteria, fungi, and mammals contain lactonases that can degrade the Gram-negative bacterial quorum sensing (QS) molecules N-acyl homoserine lactones (AHLs). AHLs are critical for bacteria to coordinate gene expression and pathogenicity with population density. However, AHL-degrading lactonases present variable substrate ranges, including degradation of the Pencillium expansum lactone mycotoxin patulin. We selected Erwinia spp. as our model bacteria to further investigate this interaction. We find both native apple microbiome Erwinia spp. and the fruit tree pathogen Erwinia amylovora to be inhibited by patulin. At patulin concentrations that inhibited E. amylovora growth, expression of E. amylovora lactonase encoded by EaaiiA was increased. EaAiiA demonstrated the ability to degrade patulin in vitro, as well, as in vivo where it reduced apple disease and patulin production by P. expansum. Fungal-bacterial co-cultures revealed that the E. amylovora Δeaaiia strain failed to protect apples from P. expansum infections, which contained significant amounts of patulin. Our results suggest that bacterial lactonase production can modulate the pathogenicity of P. expansum in response to the secretion of toxic patulin. IMPORTANCE: Chemical signaling in the microbial world facilitates the regulation of gene expression as a function of cell population density. This is especially true for the Gram-negative bacterial signal N-acyl homoserine lactone (AHL). Lactonases that deactivate AHLs have attracted a lot of attention because of their antibacterial potential. However, the involvement of these enzymes in inhibiting fungal pathogens and the potential role of these enzymes in bacterial-fungal interactions are unknown. Here, we find that a bacterial enzyme involved in the degradation of AHLs is also induced by and degrades the fungal lactone mycotoxin, patulin. This work supports the potential use of bacterial enzymes and/or the producing bacteria in controlling the post-harvest fruit disease caused by the patulin-producing fungus Penicillium expansum.


Subject(s)
Carboxylic Ester Hydrolases , Erwinia amylovora , Malus , Patulin , Patulin/metabolism , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Malus/microbiology , Erwinia amylovora/genetics , Erwinia amylovora/drug effects , Erwinia amylovora/enzymology , Erwinia amylovora/metabolism , Plant Diseases/microbiology , Penicillium/genetics , Penicillium/enzymology , Penicillium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microbial Interactions , Quorum Sensing , Lactones/metabolism , Lactones/pharmacology
2.
Viruses ; 16(4)2024 03 26.
Article in English | MEDLINE | ID: mdl-38675852

ABSTRACT

Fire blight, caused by the bacterium Erwinia amylovora, is a major threat to pear production worldwide. Bacteriophages, viruses that infect bacteria, are a promising alternative to antibiotics for controlling fire blight. In this study, we isolated a novel bacteriophage, RH-42-1, from Xinjiang, China. We characterized its biological properties, including host range, plaque morphology, infection dynamics, stability, and sensitivity to various chemicals. RH-42-1 infected several E. amylovora strains but not all. It produced clear, uniform plaques and exhibited optimal infectivity at a multiplicity of infection (MOI) of 1, reaching a high titer of 9.6 × 109 plaque-forming units (PFU)/mL. The bacteriophage had a short latent period (10 min), a burst size of 207 PFU/cell, and followed a sigmoidal one-step growth curve. It was stable at temperatures up to 60 °C but declined rapidly at higher temperatures. RH-42-1 remained viable within a pH range of 5 to 9 and was sensitive to extreme pH values. The bacteriophage demonstrates sustained activity upon exposure to ultraviolet radiation for 60 min, albeit with a marginal reduction. In our assays, it exhibited a certain level of resistance to 5% chloroform (CHCl3), 5% isopropanol (C3H8O), and 3% hydrogen peroxide (H2O2), which had little effect on its activity, whereas it showed sensitivity to 75% ethanol (C2H5OH). Electron microscopy revealed that RH-42-1 has a tadpole-shaped morphology. Its genome size is 14,942 bp with a GC content of 48.19%. Based on these characteristics, RH-42-1 was identified as a member of the Tectiviridae family, Alphatectivirus genus. This is the first report of a bacteriophage in this genus with activity against E. amylovora.


Subject(s)
Bacteriophages , Erwinia amylovora , Soil Microbiology , Bacteriophages/isolation & purification , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , China , Erwinia amylovora/virology , Erwinia amylovora/drug effects , Genome, Viral , Host Specificity , Hydrogen-Ion Concentration , Phylogeny , Plant Diseases/microbiology , Pyrus/microbiology , Pyrus/virology
3.
Sci Rep ; 11(1): 19027, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561493

ABSTRACT

In the present study, and for the waste valorization, Moringa oleifera seeds-removed ripened pods (SRRP) were used for papersheet production and for the extraction of bioactive compounds. Fibers were characterized by SEM-EDX patterns, while the phytoconstituents in ethanol extract was analyzed by HPLC. The inhibition percentage of fungal mycelial growth (IFMG) of the treated Melia azedarach wood with M. oleifera SRRP extract at the concentrations of 10,000, 20,000, and 30,000 µg/mL against the growth of Rhizoctonia solani and Fusarium culmorum was calculated and compared with fluconazole (25 µg). The produced papersheet was treated with the ethanol extract (4000, 2000, and 1000 µg/mL) and assayed for its antibacterial activity against Agrobacterium tumefaciens, Erwinia amylovora, and Pectobacterium atrosepticum by measuring the inhibition zones and minimum inhibitory concentrations (MICs). According to chemical analysis of M. oleifera SRRP, benzene:alcohol extractives, holocellulose, lignin, and ash contents were 7.56, 64.94, 25.66 and 1.53%, respectively, while for the produced unbleached pulp, the screen pulp yield and the Kappa number were 39% and 25, respectively. The produced papersheet showed tensile index, tear index, burst index, and double fold number values of 58.8 N m/g, 3.38 mN m2/g, 3.86 kPa m2/g, and 10.66, respectively. SEM examination showed that the average fiber diameter was 16.39 µm, and the mass average of for elemental composition of C and O by EDX were, 44.21%, and 55.79%, respectively. The main phytoconstituents in the extract (mg/100 g extract) by HPLC were vanillic acid (5053.49), benzoic acid (262.98), naringenin (133.02), chlorogenic acid (66.16), and myricetin (56.27). After 14 days of incubation, M. oleifera SRRP extract-wood treated showed good IFMG against R. solani (36.88%) and F. culmorum (51.66%) compared to fluconazole, where it observed 42.96% and 53.70%, respectively. Moderate to significant antibacterial activity was found, where the minimum inhibitory concentration (MIC) values were 500, 650, and 250 µg/mL against the growth of A. tumefaciens, E. amylovora, and P. atrosepticum respectively, which were lower than the positive control used (Tobramycin 10 µg/disc). In conclusion, M. oleifera SRRP showed promising properties as a raw material for pulp and paper production as well as for the extraction of bioactive compounds.


Subject(s)
Chromatography, High Pressure Liquid/methods , Liquid-Liquid Extraction/methods , Moringa oleifera/chemistry , Paper , Plant Extracts/chemistry , Plant Extracts/pharmacology , Agrobacterium tumefaciens/drug effects , Benzoic Acid , Drug Resistance, Microbial , Erwinia amylovora/drug effects , Flavanones , Fusarium/drug effects , Plant Extracts/isolation & purification , Rhizoctonia/drug effects , Seeds , Vanillic Acid
4.
Molecules ; 26(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198776

ABSTRACT

In this paper, peptide conjugates were designed and synthesized by incorporating the antimicrobial undecapeptide BP16 at the C- or N-terminus of the plant defense elicitor peptide flg15, leading to BP358 and BP359, respectively. The evaluation of their in vitro activity against six plant pathogenic bacteria revealed that BP358 displayed MIC values between 1.6 and 12.5 µM, being more active than flg15, BP16, BP359, and an equimolar mixture of BP16 and flg15. Moreover, BP358 was neither hemolytic nor toxic to tobacco leaves. BP358 triggered the overexpression of 6 out of the 11 plant defense-related genes tested. Interestingly, BP358 inhibited Erwinia amylovora infections in pear plants, showing slightly higher efficacy than the mixture of BP16 and flg15, and both treatments were as effective as the antibiotic kasugamycin. Thus, the bifunctional peptide conjugate BP358 is a promising agent to control fire blight and possibly other plant bacterial diseases.


Subject(s)
Erwinia amylovora/growth & development , Pore Forming Cytotoxic Proteins/chemical synthesis , Pyrus/growth & development , Erwinia amylovora/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Pyrus/microbiology
5.
Microbiologyopen ; 10(3): e1202, 2021 06.
Article in English | MEDLINE | ID: mdl-34180603

ABSTRACT

Antibiotics are sprayed on apple and pear orchards to control, among other pathogens, the bacterium Erwinia amylovora, the causative agent of fire blight. As with many other pathogens, we observe the emergence of antibiotic-resistant strains of E. amylovora. Consequently, growers are looking for alternative solutions to combat fire blight. To find alternatives to antibiotics against this pathogen, we have previously isolated three bacterial strains with antagonistic and extracellular activity against E. amylovora, both in vitro and in planta, corresponding to three different bacterial genera: Here, we identified the inhibitory mode of action of each of the three isolates against E. amylovora. Isolate Bacillus amyloliquefaciens subsp. plantarum (now B. velezensis) FL50S produces several secondary metabolites including surfactins, iturins, and fengycins. Specifically, we identified oxydifficidin as the most active against E. amylovora S435. Pseudomonas poae FL10F produces an active extracellular compound against E. amylovora S435 that can be attributed to white-line-inducing principle (WLIP), a cyclic lipopeptide belonging to the viscosin subfamily (massetolide E, F, L, or viscosin). Pantoea agglomerans NY60 has a direct cell-to-cell antagonistic effect against E. amylovora S435. By screening mutants of this strain generated by random transposon insertion with decreased antagonist activity against strain S435, we identified several defective transposants. Of particular interest was a mutant in a gene coding for a Major Facilitator Superfamily (MFS) transporter corresponding to a transmembrane protein predicted to be involved in the extracytoplasmic localization of griseoluteic acid, an intermediate in the biosynthesis of the broad-spectrum phenazine antibiotic D-alanylgriseoluteic acid.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus/metabolism , Erwinia amylovora/drug effects , Plant Diseases/microbiology , Alanine/analogs & derivatives , Alanine/metabolism , Alanine/pharmacology , Anti-Bacterial Agents/metabolism , Bacillus/chemistry , Bacillus/genetics , Erwinia amylovora/physiology , Lipopeptides/metabolism , Lipopeptides/pharmacology , Malus/microbiology , Phenazines/metabolism , Phenazines/pharmacology , Pyrus/microbiology
6.
Biol Chem ; 402(4): 513-524, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33938181

ABSTRACT

Increasing antibiotic resistance in Gram-negative bacteria has mandated the development of both novel antibiotics and alternative therapeutic strategies. Evidence of interplay between several gastrointestinal peptides and the gut microbiota led us to investigate potential and broad-spectrum roles for the incretin hormone, human glucose-dependent insulinotropic polypeptide (GIP) against the Enterobacteriaceae bacteria, Escherichia coli and Erwinia amylovora. GIP had a potent disruptive action on drug efflux pumps of the multidrug resistant bacteria E. coli TG1 and E. amylovora 1189 strains. The effect was comparable to bacterial mutants lacking the inner and outer membrane efflux pump factor proteins AcrB and TolC. While GIP was devoid of direct antimicrobial activity, it has a potent membrane depolarizing effect, and at low concentrations, it significantly potentiated the activity of eight antibiotics and bile salt by reducing MICs by 4-8-fold in E. coli TG1 and 4-20-fold in E. amylovora 1189. GIP can thus be regarded as an antimicrobial adjuvant with potential for augmenting the available antibiotic arsenal.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Enterobacteriaceae/drug effects , Erwinia amylovora/drug effects , Escherichia coli/drug effects , Glucagon-Like Peptides/pharmacology , Anti-Bacterial Agents/chemistry , Glucagon-Like Peptides/chemistry , Humans , Microbial Sensitivity Tests
7.
Biomolecules ; 11(4)2021 04 09.
Article in English | MEDLINE | ID: mdl-33918933

ABSTRACT

Fire blight is a major pome fruit trees disease that is caused by the quarantine phytopathogenic Erwinia amylovora, leading to major losses, namely, in pear and apple productions. Nevertheless, no effective sustainable control treatments and measures have yet been disclosed. In that regard, antimicrobial peptides (AMPs) have been proposed as an alternative biomolecule against pathogens but some of those AMPs have yet to be tested against E. amylovora. In this study, the potential of five AMPs (RW-BP100, CA-M, 3.1, D4E1, and Dhvar-5) together with BP100, were assessed to control E. amylovora. Antibiograms, minimal inhibitory, and bactericidal concentrations (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), growth and IC50 were determined and membrane permeabilization capacity was evaluated by flow cytometry analysis and colony-forming units (CFUs) plate counting. For the tested AMPs, the higher inhibitory and bactericidal capacity was observed for RW-BP100 and CA-M (5 and 5-8 µM, respectively for both MIC and MBC), whilst for IC50 RW-BP100 presented higher efficiency (2.8 to 3.5 µM). Growth curves for the first concentrations bellow MIC showed that these AMPs delayed E. amylovora growth. Flow cytometry disclosed faster membrane permeabilization for CA-M. These results highlight the potential of RW-BP100 and CA-M AMPs as sustainable control measures against E. amylovora.


Subject(s)
Erwinia amylovora/drug effects , Pore Forming Cytotoxic Proteins/toxicity , Cell Membrane/drug effects , Cell Membrane/metabolism , Inhibitory Concentration 50 , Pore Forming Cytotoxic Proteins/chemical synthesis , Pore Forming Cytotoxic Proteins/pharmacology
8.
ACS Appl Mater Interfaces ; 13(2): 2179-2188, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33405501

ABSTRACT

The need to increase agricultural yield has led to an extensive use of antibiotics against plant pathogens, which has resulted in the emergence of resistant strains. Therefore, there is an increasing demand for new methods, preferably with lower chances of developing resistant strains and a lower risk to the environment or public health. Many Gram-negative bacterial pathogens use quorum sensing, a population-density-dependent regulatory mechanism, to monitor the secretion of N-acyl-homoserine lactones (AHLs) and pathogenicity. Therefore, quorum sensing represents an attractive antivirulence target. AHL lactonases hydrolyze AHLs and have potential antibacterial properties; however, their use is limited by thermal instability and durability, or low activity. Here, we demonstrate that an AHL lactonase from the phosphotriesterase-like lactonase family exhibits high activity with the AHL secreted from the plant pathogen Erwinia amylovora and attenuates infection in planta. Using directed enzyme evolution, we were able to increase the enzyme's temperature resistance (T50, the temperature at which 50% of the activity is retained) by 8 °C. Then, by performing enzyme encapsulation in nanospherical capsules composed of tertbutoxycarbonyl-Phe-Phe-OH peptide, the shelf life was extended for more than 5 weeks. Furthermore, the encapsulated and free mutant were able to significantly inhibit up to 70% blossom's infection in the field, achieving the same efficacy as seen with antibiotics commonly used today to treat the plant pathogen. We conclude that specific AHL lactonase can inhibit E. amylovora infection in the field, as it degrades the AHL secreted by this plant pathogen. The combination of directed enzyme evolution and peptide nanostructure encapsulation significantly improved the thermal resistance and shelf life of the enzyme, respectively, increasing its potential in future development as antibacterial treatment.


Subject(s)
Carboxylic Ester Hydrolases/pharmacology , Erwinia amylovora/drug effects , Mycobacterium tuberculosis/enzymology , Nanospheres/chemistry , Plant Diseases/prevention & control , Quorum Sensing/drug effects , Acyl-Butyrolactones/metabolism , Carboxylic Ester Hydrolases/administration & dosage , Carboxylic Ester Hydrolases/genetics , Directed Molecular Evolution/methods , Enzymes, Immobilized/administration & dosage , Enzymes, Immobilized/genetics , Enzymes, Immobilized/pharmacology , Erwinia amylovora/physiology , Models, Molecular , Peptides/chemistry , Plant Diseases/microbiology , Pyrus/microbiology
9.
Nat Prod Res ; 35(12): 2072-2075, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31385540

ABSTRACT

Resinous exudate obtained from the aerial parts of Adesmia boronioides Hook.f. were evaluated to determine anti-phytopathogenic effects. Briefly, resinous exudate was obtained by dipping fresh plant material in dichloromethane; chemical composition was determined by GC-MS; and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated against four phytopathogenic bacteria. Resinous exudate yield was 8.5% (resin/fresh plant), of which esquel-6-en-9-one (14.25%), esquel-7-en-9-one (5.86%), and veratric acid (2.59%) were the effective antibacterial compounds. Tested against Pectobacterium carotovorum subsp. carotovora, Erwinia amylovora, Bacillus subtilis, and Pseudomonas syringae, MICs and MBCs ranged from 16 to 128 µg/mL and 32-256 µg/mL, respectively. These results provide initial evidence that resinous bush A. boronioides is a new and alternative source of substances with agricultural interest.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Fabaceae/chemistry , Plant Exudates/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/pathogenicity , Drug Evaluation, Preclinical , Erwinia amylovora/drug effects , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Pectobacterium carotovorum/drug effects , Plant Components, Aerial/chemistry , Plant Diseases/microbiology , Plant Exudates/chemistry , Pseudomonas syringae/drug effects , Resins, Plant/chemistry , Resins, Plant/pharmacology
10.
Bioorg Med Chem Lett ; 30(17): 127368, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32738986

ABSTRACT

1,2,4-Triazole is a very important scaffold in medicinal chemistry due to the wide spectrum of biological activities and mainly antifungal activity of 1,2,4-triazole derivatives. The main mechanism of antifungal action of the latter is inhibition of 14-alpha-demethylase enzyme (CYP51). The current study presents synthesis and evaluation of eight triazole derivatives for their antimicrobial activity. Docking studies to elucidate the mechanism of action were also performed. The designed compounds were synthesized using classical methods of organic synthesis. The in vivo evaluation of antimicrobial activity was performed by microdilution method. All tested compounds showed good antibacterial activity with MIC and MBC values ranging from 0.0002 to 0.0069 mM. Compound 2 h appeared to be the most active among all tested with MIC at 0.0002-0.0033 mM and MBC at 0.0004-0.0033 mM followed by compounds 2f and 2g. The most sensitive bacterium appeared to be Xanthomonas campestris while Erwinia amylovora was the most resistant. The evaluation of antifungal activity revealed that all compounds showed good antifungal activity with MIC values ranging from 0.02 mM to 0.52 mM and MFC from 0.03 mM to 0.52 mM better than reference drugs ketoconazole (MIC and MFC values at 0.28-1.88 mM and 0.38 mM to 2.82 mM respectively) and bifonazole (MIC and MFC values at 0.32-0.64 mM and 0.64-0.81 mM). The best antifungal activity is displayed by compound 2 h with MIC at 0.02-0.04 mM and MFC at 0.03-0.06 mM while compound 2a showed the lowest activity. The results showed that these compounds could be lead compounds in search for new potent antimicrobial agents. Docking studies confirmed experimental results.


Subject(s)
Anti-Infective Agents/chemical synthesis , Triazoles/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Binding Sites , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Drug Design , Erwinia amylovora/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Fungi/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Nucleoside-Phosphate Kinase/chemistry , Nucleoside-Phosphate Kinase/metabolism , Structure-Activity Relationship , Triazoles/metabolism , Triazoles/pharmacology , Xanthomonas campestris/drug effects
11.
PLoS One ; 15(7): e0235929, 2020.
Article in English | MEDLINE | ID: mdl-32645104

ABSTRACT

Combinations of three or more drugs are routinely used in various medical fields such as clinical oncology and infectious diseases to prevent resistance or to achieve synergistic therapeutic benefits. The very large number of possible high-order drug combinations presents a formidable challenge for discovering synergistic drug combinations. Here, we establish a guided screen to discover synergistic three-drug combinations. Using traditional checkerboard and recently developed diagonal methods, we experimentally measured all pairwise interactions among eight compounds in Erwinia amylovora, the causative agent of fire blight. Showing that synergy measurements of these two methods agree, we predicted synergy/antagonism scores for all possible three-drug combinations by averaging the synergy scores of pairwise interactions. We validated these predictions by experimentally measuring 35 three-drug interactions. Therefore, our guided screen for discovering three-drug synergies is (i) experimental screen of all pairwise interactions using diagonal method, (ii) averaging pairwise scores among components to predict three-drug interaction scores, (iii) experimental testing of top predictions. In our study, this strategy resulted in a five-fold reduction in screen size to find the most synergistic three-drug combinations.


Subject(s)
Anti-Bacterial Agents/chemistry , Drug Synergism , Aminoglycosides/chemistry , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Copper Sulfate/chemistry , Copper Sulfate/pharmacology , Drug Interactions , Erwinia amylovora/drug effects , Erwinia amylovora/growth & development , Gentamicins/chemistry , Microbial Sensitivity Tests
12.
Planta ; 251(1): 20, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31781986

ABSTRACT

MAIN CONCLUSION: Certain apple cultivars accumulate to high levels in their nectar and stigma exudate an acidic chitinase III protein that can protect against pathogens including fire blight disease causing Erwinia amylovora. To prevent microbial infections, flower nectars and stigma exudates contain various antimicrobial compounds. Erwinia amylovora, the causing bacterium of the devastating fire blight apple disease, is the model pathogen that multiplies in flower secretions and infects through the nectaries. Although Erwinia-resistant apples are not available, certain cultivars are tolerant. It was reported that in flower infection assay, the 'Freedom' cultivar was Erwinia tolerant, while the 'Jonagold' cultivar was susceptible. We hypothesized that differences in the nectar protein compositions lead to different susceptibility. Indeed, we found that an acidic chitinase III protein (Machi3-1) selectively accumulates to very high levels in the nectar and the stigma exudate of the 'Freedom' cultivar. We show that three different Machi3-1 alleles exist in apple cultivars and that only the 5B-Machi3-1 allele expresses the Machi3-1 protein in the nectar and the stigma exudate. We demonstrate that the 5B-Machi3-1 allele was introgressed from the Malus floribunda 821 clone into different apple cultivars including the 'Freedom'. Our data suggest that MYB-binding site containing repeats of the 5B-Machi3-1 promoter is responsible for the strong nectar- and stigma exudate-specific expression. As we found that in vitro, the Machi3-1 protein impairs growth and biofilm formation of Erwinia at physiological concentration, we propose that the Machi3-1 protein could partially protect 5B-Machi3-1 allele containing cultivars against Erwinia by inhibiting the multiplication and biofilm formation of the pathogen in the stigma exudate and in the nectar.


Subject(s)
Chitinases/metabolism , Erwinia amylovora/physiology , Flowers/metabolism , Malus/enzymology , Malus/microbiology , Plant Diseases/microbiology , Plant Exudates/metabolism , Plant Nectar/metabolism , Alleles , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Chitinases/chemistry , Disease Resistance , Erwinia amylovora/drug effects , Erwinia amylovora/growth & development , Gene Expression Regulation, Plant/drug effects , Malus/drug effects , Malus/genetics , Organ Specificity , Plant Proteins/chemistry , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nicotiana/genetics
13.
IEEE Trans Nanobioscience ; 18(4): 528-534, 2019 10.
Article in English | MEDLINE | ID: mdl-31478866

ABSTRACT

Phytopathogenic bacteria affect a wide variety of crops, causing significant economic losses. Natural biocides are the alternative to chemical methods of phytopathogens control. The goal of the present study is the evaluation of the biocidal activity of the following: 1) the extract of orange wax (EOW); 2) zinc ferrite nanoparticles (ZF-NPs); 3) the EOW adsorbed on the ZF-NPs; and 4) the EOW/ZF-NPs washed with 40% ethanol. For the biocidal activity, three phytopathogenic bacteria were used, namely, Xanthomonas axonopodis pv. Vesicatoria (Xav) Erwinia amylovora (Ew), and Pseudomonas syringae pv. Phaseolicola (Psph). For the ZF-NPs, an inhibitory effect higher than 50% ( ) was observed for Xav respect to the antibiotic used as positive control. On the other hand, the ZF-NPs did not show inhibitory effects on both Ew and Psph. In addition, the EOW in dimethyl sulfoxide (DMSO) at 100% caused growth inhibition on Xav, bacteriostatic activity on Ew, and had not biological activity on Psph. To the best of our knowledge, the control of Xav by zinc ferrites and orange wax, and the bacteriostatic effect produced by orange wax extract on Ew have not been reported elsewhere. Orange wax and zinc ferrite nanoparticles show potential in control of phytopathogenic bacteria. However, the bactericidal effect depends on the bacterium, the concentration of treatments, and the method of preparation.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Citrus sinensis , Ferric Compounds/administration & dosage , Nanoparticles/administration & dosage , Plant Extracts/administration & dosage , Zinc/administration & dosage , Erwinia amylovora/drug effects , Erwinia amylovora/growth & development , Pseudomonas syringae/drug effects , Pseudomonas syringae/growth & development , Xanthomonas axonopodis/drug effects , Xanthomonas axonopodis/growth & development
14.
Photochem Photobiol Sci ; 18(7): 1700-1708, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31214675

ABSTRACT

The ever growing world-population poses challenges concerning the need for more food free of pesticide residues. The most common means to control plant pathogens is through the application of pesticides, which raises concerns over safety for humans and the environment. Recently, Photodynamic Inactivation (PDI) of microorganisms using natural photosensitizers has shown itself to be a powerful tool to combat bacteria and fungi. This study investigates the efficacy of PDI against the Gram(+) bacterial plant pathogen Rhodococcus fascians and Gram(-) Xanthomonas axonopodis and Erwinia amylovora using two chlorin e6 derivatives as photosensitizers: anionic sodium magnesium chlorophyllin (Chl, approved as food additive E140) in combination with cell wall permeabilizing agents (Na2EDTA or Polyaspartic acid sodium salt (PA)) and B17-0024, a mixture of chlorin e6 derivatives with cationic moieties at physiological pH. Both photosensitizers show excellent efficacy against R. fascians, whereby B17-0024 is phototoxic at a one order of magnitude lower concentration than Chl (10 µM B17-0024: relative inactivation (r.i.) >7.5 × 106, 100 µM Chl: r.i. 2.2 × 106, illumination with 26.6 J cm-2, 395 nm). The phototreatment of Gram(-) bacteria with Chl requires the obligatory use of cell wall permeabilizing agents like Na2EDTA (X. axonopodis) or PA (E. amylovora) to induce significant killing (more than 7 log units at 100 µM). On the other hand, B17-0024 proves to be a highly effective photosensitizer inducing bacterial inactivation at very low concentrations (10 µM for R. fascians and X. axonopodis, 100 µM for E. amylovora) without additives. In summary, PDI using both the natural photosensitizer Chl in combination with cell wall permeabilizing agents is effective and environmentally friendly. As an alternative, B17-0024 is highly photoactive against all model strains tested - even without cell wall permeabilizing agents. The photodynamic approach based on chlorin e6 derivatives should add to the growers' toolbox as a preferred alternative for the control of phytopathogens.


Subject(s)
Crops, Agricultural/microbiology , Erwinia amylovora/radiation effects , Light , Rhodococcus/radiation effects , Xanthomonas axonopodis/radiation effects , Cell Wall/drug effects , Cell Wall/metabolism , Chlorophyllides , Erwinia amylovora/drug effects , Peptides/chemistry , Peptides/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology , Reactive Oxygen Species/metabolism , Rhodococcus/drug effects , Xanthomonas axonopodis/drug effects
15.
Can J Microbiol ; 65(7): 496-509, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30901526

ABSTRACT

Erwinia amylovora and Pseudomonas syringae are bacterial phytopathogens responsible for considerable yield losses in commercial pome fruit production. The pathogens, if left untreated, can compromise tree health and economically impact entire commercial fruit productions. Historically, the choice of effective control methods has been limited. The use of antibiotics was proposed as an effective control method. The identification of these pathogens and screening for the presence of antibiotic resistance is paramount in the adoption and implementation of disease control methods. Molecular tests have been developed and accepted for identification and characterization of these disease-causing organisms. We improved existing molecular tests by developing methods that are equal or superior in robustness for identifying E. amylovora or P. syringae while being faster to execute. In addition, the real-time PCR-based detection method for E. amylovora provided complementary information on the susceptibility or resistance to streptomycin of individual isolates. Finally, we describe a methodology and results that compare the aggressiveness of the different bacterial isolates on four apple cultivars. We show that bacterial isolates exhibit different behaviors when brought into contact with various apple varieties and that the hierarchical clustering of symptom severity indicates a population structure, suggesting a genetic basis for host cultivar specificity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Erwinia amylovora/isolation & purification , Pseudomonas syringae/isolation & purification , Streptomycin/pharmacology , Erwinia amylovora/drug effects , Malus/microbiology , Microbial Sensitivity Tests , Molecular Typing , Plant Diseases/microbiology , Pseudomonas syringae/drug effects , Real-Time Polymerase Chain Reaction
16.
J Bacteriol ; 201(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30745372

ABSTRACT

Erwinia amylovora is the causal agent of fire blight of apple and pear trees. Several bacteria have been shown to produce antibiotics that antagonize E. amylovora, including pantocins, herbicolins, dapdiamides, and the vinylglycines, 4-formylaminooxyvinylglycine (FVG) and 4-aminoethoxyvinylglycine (AVG). Pantoea ananatis BRT175 was previously shown to exhibit antibiotic activity against E. amylovora via the production of Pantoea natural product 1 (PNP-1), later shown to be FVG; however, exposure of E. amylovora to FVG results in spontaneously resistant mutants. To identify the mechanism of resistance, we used genome variant analysis on spontaneous FVG-resistant mutants of E. amylovora and identified null mutations in the l-asparagine permease gene ansP Heterologous expression of ansP in normally resistant Escherichia coli was sufficient to impart FVG susceptibility, suggesting that FVG is imported through this permease. Because FVG and AVG are structurally similar, we hypothesized that resistance to AVG would also be conferred through inactivation of ansP; however, ansP mutants were not resistant to AVG. We found that spontaneously resistant Ea321 mutants also arise in the presence of AVG, with whole-genome variant analysis revealing that resistance was due to inactivation of the arginine ABC transporter permease subunit gene artQ Heterologous expression of the predicted lysE-like transporter encoded within the Pantoea ananatis BRT175 FVG biosynthetic cluster, which is likely responsible for antibiotic export, was sufficient to confer resistance to both FVG and AVG. This work highlights the important roles of amino acid transporters in antibiotic import into bacteria and the potential utility of antimicrobial amino acid analogs as antibiotics.IMPORTANCE The related antibiotics formylaminooxyvinylglycine (FVG) and aminoethoxyvinylglycine (AVG) have been shown to have activity against the fire blight pathogen Erwinia amylovora; however, E. amylovora can develop spontaneous resistance to these antibiotics. By comparing the genomes of mutants to those of the wild type, we found that inactivation of the l-asparagine transporter conferred resistance to FVG, while inactivation of the l-arginine transporter conferred resistance to AVG. We also show that the transporter encoded by the FVG biosynthetic cluster can confer resistance to both FVG and AVG. Our work indicates the important role that amino acid transporters play in the import of antibiotics and highlights the possible utility in designer antibiotics that enter the bacterial cell through amino acid transporters.


Subject(s)
Amino Acid Transport Systems/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Erwinia amylovora/drug effects , Erwinia amylovora/enzymology , Glycine/analogs & derivatives , DNA Mutational Analysis , Drug Resistance, Bacterial , Glycine/pharmacology , Mutation
17.
PLoS One ; 13(7): e0200481, 2018.
Article in English | MEDLINE | ID: mdl-29990341

ABSTRACT

The oxyvinylglycine 4-formylaminooxyvinylglycine (FVG) arrests the germination of weedy grasses and inhibits the growth of the bacterial plant pathogen Erwinia amylovora. Both biological and analytical methods have previously been used to detect the presence of FVG in crude and extracted culture filtrates of several Pseudomonas fluorescens strains. Although a combination of these techniques is adequate to detect FVG, none is amenable to high-throughput analysis. Likewise, filtrates often contain complex metabolite mixtures that prevent the detection of FVG using established chromatographic techniques. Here, we report the development of a new method that directly detects FVG in crude filtrates using laser ablation electrospray ionization-mass spectrometry (LAESI-MS). This approach overcomes limitations with our existing methodology and allows for the rapid analysis of complex crude culture filtrates. To validate the utility of the LAESI-MS method, we examined crude filtrates from Pantoea ananatis BRT175 and found that this strain also produces FVG. These findings are consistent with the antimicrobial activity of P. ananatis BRT175 and indicate that the spectrum of bacteria that produce FVG stretches beyond rhizosphere-associated Pseudomonas fluorescens.


Subject(s)
Glycine/analogs & derivatives , Pantoea/chemistry , Plant Weeds/drug effects , Pseudomonas fluorescens/chemistry , Anti-Bacterial Agents/pharmacology , Chromatography, Thin Layer , Erwinia amylovora/drug effects , Genotype , Glycine/analysis , Laser Therapy , Mutation , Rhizosphere , Spectrometry, Mass, Electrospray Ionization
18.
Mol Plant Microbe Interact ; 31(8): 823-832, 2018 08.
Article in English | MEDLINE | ID: mdl-29474798

ABSTRACT

Extensive use of the antibiotic streptomycin to control fire blight disease of apples and pears, caused by the enterobacterial plant pathogen Erwinia amylovora, leads to the development of streptomycin-resistant strains in the United States and elsewhere. Kasugamycin (Ksg) has been permitted to be used as an alternative or replacement to control this serious bacterial disease. In this study, we investigated the role of two major peptide ATP-binding cassette transporter systems in E. amylovora, the dipeptide permease (Dpp) and oligopeptide permease (Opp), in conferring sensitivity to Ksg and blasticidin S (BcS). Minimum inhibitory concentration and spot dilution assays showed that the dpp deletion mutants exhibited slightly enhanced resistance to Ksg in rich medium, whereas the opp mutant exhibited slightly enhanced resistance to Ksg in minimal medium and BcS in rich medium. Deletion of both dpp and opp conferred a higher level of resistance to Ksg in both rich and minimal media, whereas deletion of opp alone was sufficient to confer high level of resistance to BcS in minimal medium. In addition, bioinformatic analysis combined with reverse transcription-quantitative polymerase chain reaction showed that the Rcs phosphorelay system negatively regulates opp expression and the rcsB mutant was more sensitive to both Ksg and BcS in minimal medium as compared with the wild type. An electrophoresis motility shift assay further confirmed the direct binding of the RcsA/RcsB proteins to the promoter region of the opp operon. However, neither the Dpp nor the Opp permeases contributed to disease progress on immature pears, hypersensitive response on tobacco leaves, or exopolysaccharide amylovoran production. These results suggested that Ksg and BcS employ the Dpp and Opp permeases to enter E. amylovora cells and the Dpp and Opp permeases act synergistically for illicit transport of antibiotics.


Subject(s)
Aminoglycosides/pharmacology , Erwinia amylovora/drug effects , Erwinia amylovora/genetics , Membrane Transport Proteins/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Erwinia amylovora/enzymology , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Genome, Bacterial , Mutation , Nucleosides/pharmacology
19.
Mol Plant Pathol ; 19(1): 169-179, 2018 01.
Article in English | MEDLINE | ID: mdl-27862834

ABSTRACT

Fire blight is a devastating plant disease caused by the bacterium Erwinia amylovora, and its control is frequently based on the use of copper-based compounds whose mechanisms of action are not well known. Consequently, in this article, we investigate the response of E. amylovora to copper shock by a whole-genome microarray approach. Transcriptional analyses showed that, in the presence of copper, 23 genes were increased in expression; these genes were classified mainly into the transport and stress functional categories. Among them, the copA gene was strongly induced and regulated in a finely tuned manner by copper. Mutation of copA, soxS, arcB, yjcE, ygcF, yhhQ, galF and EAM_3469 genes revealed that tolerance to copper in E. amylovora can be achieved by complex physiological mechanisms, including: (i) the control of copper homeostasis through, at least, the extrusion of Cu(I) by a P-type ATPase efflux pump CopA; and (ii) the overcoming of copper toxicity caused by oxidative stress by the expression of several reactive oxygen species (ROS)-related genes, including the two major transcriptional factors SoxS and ArcB. Furthermore, complementation analyses demonstrated the important role of copA for copper tolerance in E. amylovora, not only in vitro, but also in inoculated pear shoots.


Subject(s)
Copper/toxicity , Erwinia amylovora/genetics , Genes, Bacterial , Transcription, Genetic/drug effects , Adaptation, Physiological/drug effects , Erwinia amylovora/drug effects , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Genetic Association Studies , Microbial Sensitivity Tests , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Transcriptome/genetics
20.
Mol Plant Pathol ; 19(1): 158-168, 2018 01.
Article in English | MEDLINE | ID: mdl-27862864

ABSTRACT

Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host.


Subject(s)
Erwinia amylovora/pathogenicity , Malus/metabolism , Malus/microbiology , Volatile Organic Compounds/metabolism , Cyclopentanes/pharmacology , Endophytes/growth & development , Erwinia amylovora/drug effects , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant/drug effects , Malus/genetics , Malus/growth & development , Models, Biological , Oxylipins/pharmacology , Plant Diseases/microbiology , Principal Component Analysis , Salicylic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...