Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2128, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136153

ABSTRACT

Wild grapevine (Vitis vinifera subsp. sylvestris) is widely recognized as an important source of resistance or tolerance genes for diseases and environmental stresses. Recent studies revealed partial resistance to powdery mildew (Erysiphe necator, PM) in V. sylvestris from Central Asia. Here, we report resistance to PM of V. sylvestris collected from different regions of Croatia and in seedling populations established from in situ V. sylvestris accessions. Ninety-one in situ individuals and 67 V. sylvestris seedlings were evaluated for PM resistance according to OIV 455 descriptor. Three SSR markers (SC47-18, SC8-071-0014, and UDV-124) linked to PM resistance locus Ren1 were used to decipher allelic structure. Nine seedlings showed resistance in in vivo evaluations while leaf disk assays revealed three PM-resistant accessions. One V. vinifera cultivar used as a control for PM evaluations also showed high phenotypic resistance. Based on the presence of one or two resistance alleles that are linked to the Ren1 locus, 32 resistant seedlings and 41 resistant in situ genotypes were identified in the investigated set. Eight seedlings showed consistent phenotypic PM resistance, of which seven carried one or two alleles at the tested markers. This study provides the first evidence of PM resistance present within the eastern Adriatic V. sylvestris germplasm.


Subject(s)
Disease Resistance/genetics , Erysiphe/physiology , Host-Pathogen Interactions , Vitis/immunology , Bosnia and Herzegovina , Croatia , Genetic Variation , Vitis/genetics , Vitis/microbiology
2.
BMC Plant Biol ; 21(1): 528, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34763660

ABSTRACT

BACKGROUND: Vitis vinifera L. is the most cultivated grapevine species worldwide. Erysiphe necator Sch., the causal agent of grape powdery mildew, is one of the main pathogens affecting viticulture. V. vinifera has little or no genetic resistances against E. necator and the grape industry is highly dependent on agrochemicals. Some Caucasian V. vinifera accessions have been reported to be resistant to E. necator and to have no genetic relationships to known sources of resistance to powdery mildew. The main purpose of this work was the study and mapping of the resistance to E. necator in the Caucasian grapes 'Shavtsitska' and 'Tskhvedianis tetra'. RESULTS: The Caucasian varieties 'Shavtsitska' and 'Tskhvedianis tetra' showed a strong partial resistance to E. necator which segregated in two cross populations: the resistant genotypes delayed and limited the pathogen mycelium growth, sporulation intensity and number of conidia generated. A total of 184 seedlings of 'Shavtsitska' x 'Glera' population were genotyped through the Genotyping by Sequencing (GBS) technology and two high-density linkage maps were developed for the cross parents. The QTL analysis revealed a major resistance locus, explaining up to 80.15% of the phenotypic variance, on 'Shavtsitska' linkage group 13, which was associated with a reduced pathogen infection as well as an enhanced plant necrotic response. The genotyping of 105 Caucasian accessions with SSR markers flanking the QTL revealed that the resistant haplotype of 'Shavtsitska' was shared by 'Tskhvedianis tetra' and a total of 25 Caucasian grape varieties, suggesting a widespread presence of this resistance in the surveyed germplasm. The uncovered QTL was mapped in the region where the Ren1 locus of resistance to E. necator, identified in the V. vinifera 'Kishmish vatkana' and related grapes of Central Asia, is located. The genetic analysis conducted revealed that the Caucasian grapes in this study exhibit a resistant haplotype different from that of Central Asian grape accessions. CONCLUSIONS: The QTL isolated in 'Shavtsitska' and present in the Caucasian V. vinifera varieties could be a new candidate gene of resistance to E. necator to use in breeding programmes. It co-localizes with the Ren1 locus but shows a different haplotype from that of grapevines of Central Asia. We therefore consider that the Caucasian resistance locus, named Ren1.2, contains a member of a cluster of R-genes, of which the region is rich, and to be linked with, or possibly allelic, to Ren1.


Subject(s)
Disease Resistance/genetics , Erysiphe/physiology , Genes, Plant , Plant Diseases/genetics , Vitis/genetics , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , Genetic Linkage , Genotyping Techniques , Plant Diseases/microbiology , Quantitative Trait Loci , Vitis/microbiology
3.
Sci Rep ; 11(1): 13924, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230575

ABSTRACT

Powdery mildews are notorious fungal plant pathogens but only limited information exists on their genomes. Here we present the mitochondrial genome of the grape powdery mildew fungus Erysiphe necator and a high-quality mitochondrial gene annotation generated through cloning and Sanger sequencing of full-length cDNA clones. The E. necator mitochondrial genome consists of a circular DNA sequence of 188,577 bp that harbors a core set of 14 protein-coding genes that are typically present in fungal mitochondrial genomes, along with genes encoding the small and large ribosomal subunits, a ribosomal protein S3, and 25 mitochondrial-encoded transfer RNAs (mt-tRNAs). Interestingly, it also exhibits a distinct gene organization with atypical bicistronic-like expression of the nad4L/nad5 and atp6/nad3 gene pairs, and contains a large number of 70 introns, making it one of the richest in introns mitochondrial genomes among fungi. Sixty-four intronic ORFs were also found, most of which encoded homing endonucleases of the LAGLIDADG or GIY-YIG families. Further comparative analysis of five E. necator isolates revealed 203 polymorphic sites, but only five were located within exons of the core mitochondrial genes. These results provide insights into the organization of mitochondrial genomes of powdery mildews and represent valuable resources for population genetic and evolutionary studies.


Subject(s)
Ascomycota/physiology , Erysiphe/physiology , Genome, Mitochondrial , Introns/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Vitis/genetics , Vitis/microbiology , DNA, Complementary/genetics , DNA, Mitochondrial/genetics , Erysiphe/isolation & purification , Genes, Mitochondrial , Genes, Plant , Molecular Sequence Annotation , Open Reading Frames/genetics , Phylogeny , Polymorphism, Genetic
4.
Micron ; 143: 103013, 2021 04.
Article in English | MEDLINE | ID: mdl-33524914

ABSTRACT

The morphology and surface characteristics of the powdery mildew Erysiphe australiana growing on crape myrtle leaves were observed with field emission scanning electron microscopy. The powdery mildew infection caused distortion and withering of the leaves, and nearly all external parts such as flowers, petioles, and branches were covered by the whitish colonies. Hyphal proliferation was prevalent on the adaxial surface of the powdery mildew-infected leaves. Globose ascocarp initials with hyphal aggregations were frequently seen on the leaf surface. Collapsed conidia showed longitudinal striations or ridges on the surface and deep linear wrinkling. Foot-cells were straight and grew at right angles from the vegetative hyphae. The conidiophores had fragmented, cylindrical, non-chained conidia which were produced singly at the apex of the conidiophores. The germ tubes formed intercalary multi-lobed appressoria and the conidia produced filiform protrusions emerging from subterminal positions. This study visualized previously unknown structures of E. australiana such as the ascocarp initials, filiform protrusions on conidia, and multi-lobed appressoria on germ tubes. These observations will facilitate the identification and taxonomy of this fungus and its allied species.


Subject(s)
Erysiphe/physiology , Erysiphe/ultrastructure , Lagerstroemia/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Microscopy, Electron, Scanning , Republic of Korea , Spores, Fungal/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...