Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.401
Filter
1.
Dokl Biol Sci ; 516(1): 50-54, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700814

ABSTRACT

The content of membrane-bound methemoglobin (MtHb) in nucleated erythrocytes was studied in the black scorpionfish Scorpaena porcus (Linnaeus, 1758) in vitro. Spectral characteristics were determined for a whole hemolysate, a hemolysate obtained by stroma precipitation (a clarified hemolysate), and a resuspended stroma. The MtHb proportion in the erythrocyte stroma was found to exceed 80% (6.20 ± 0.59 µM). Clarified hemolysates were nearly free of MtHb (0.5 ± 0.2 µM). Membrane-bound ferric hemoglobin did not affect the erythrocyte resistance to osmotic shock. The osmotic fragility range was determined using a LaSca-TM laser microparticle analyzer (BioMedSystems, Russia) to be 102-136 mOsm/kg, much the same as in other bony fish species. A nitrite load (10 mg/L) significantly increased the MtHb content in the blood. However, the membrane-bound ferric hemoglobin content did not change significantly, amounting to 6.34 ± 1.09 µM (approximately 95%). The finding suggested a functional importance for MtHb present in the plasma membrane of nucleated erythrocytes. Membrane-bound MtHb was assumed to neutralize the external oxidative load and the toxic effect of hydrogen sulfide in bottom water layers, where the species lives.


Subject(s)
Methemoglobin , Perciformes , Animals , Methemoglobin/metabolism , Perciformes/metabolism , Perciformes/blood , Hemoglobins/metabolism , Osmotic Fragility , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/drug effects , Erythrocytes/metabolism , Erythrocytes/drug effects , Erythroblasts/metabolism , Fishes/metabolism , Fishes/blood
2.
Nat Commun ; 15(1): 3976, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729948

ABSTRACT

Bleeding and thrombosis are known as common complications of polycythemia for a long time. However, the role of coagulation system in erythropoiesis is unclear. Here, we discover that an anticoagulant protein tissue factor pathway inhibitor (TFPI) plays an essential role in erythropoiesis via the control of heme biosynthesis in central macrophages. TFPI levels are elevated in erythroblasts of human erythroblastic islands with JAK2V617F mutation and hypoxia condition. Erythroid lineage-specific knockout TFPI results in impaired erythropoiesis through decreasing ferrochelatase expression and heme biosynthesis in central macrophages. Mechanistically, the TFPI interacts with thrombomodulin to promote the downstream ERK1/2-GATA1 signaling pathway to induce heme biosynthesis in central macrophages. Furthermore, TFPI blockade impairs human erythropoiesis in vitro, and normalizes the erythroid compartment in mice with polycythemia. These results show that erythroblast-derived TFPI plays an important role in the regulation of erythropoiesis and reveal an interplay between erythroblasts and central macrophages.


Subject(s)
Erythroblasts , Erythropoiesis , GATA1 Transcription Factor , Heme , Lipoproteins , Macrophages , Polycythemia , Polycythemia/metabolism , Polycythemia/genetics , Polycythemia/pathology , Erythroblasts/metabolism , Heme/metabolism , Humans , Animals , Lipoproteins/metabolism , Macrophages/metabolism , Mice , GATA1 Transcription Factor/metabolism , GATA1 Transcription Factor/genetics , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Thrombomodulin/metabolism , Thrombomodulin/genetics , Mice, Knockout , Ferrochelatase/metabolism , Ferrochelatase/genetics , Male , MAP Kinase Signaling System , Mice, Inbred C57BL , Female
3.
Sci Rep ; 14(1): 9349, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654058

ABSTRACT

Myelodysplastic syndrome is primarily characterized by dysplasia in the bone marrow (BM), presenting a challenge in consistent morphology interpretation. Accurate diagnosis through traditional slide-based analysis is difficult, necessitating a standardized objective technique. Over the past two decades, imaging flow cytometry (IFC) has proven effective in combining image-based morphometric analyses with high-parameter phenotyping. We have previously demonstrated the effectiveness of combining IFC with a feature-based machine learning algorithm to accurately identify and quantify rare binucleated erythroblasts (BNEs) in dyserythropoietic BM cells. However, a feature-based workflow poses challenges requiring software-specific expertise. Here we employ a Convolutional Neural Network (CNN) algorithm for BNE identification and differentiation from doublets and cells with irregular nuclear morphology in IFC data. We demonstrate that this simplified AI workflow, coupled with a powerful CNN algorithm, achieves comparable BNE quantification accuracy to manual and feature-based analysis with substantial time savings, eliminating workflow complexity. This streamlined approach holds significant clinical value, enhancing IFC accessibility for routine diagnostic purposes.


Subject(s)
Erythroblasts , Flow Cytometry , Myelodysplastic Syndromes , Neural Networks, Computer , Humans , Erythroblasts/pathology , Erythroblasts/cytology , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/diagnosis , Flow Cytometry/methods , Algorithms , Machine Learning , Male , Female
4.
J Clin Lab Anal ; 38(8): e25037, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619294

ABSTRACT

BACKGROUND: In newborns, elevated nucleated red blood cell (NRBC) levels can be associated with enhanced erythropoietic stress and might be predictive for adverse outcome. Also, the presence of NRBC in peripheral blood might lead to erroneous enumeration results of white blood cells in automated hematology analyzers. We aimed to assess the comparability of the Sysmex XN 1000 to manual slide reviews and correlation of NRBC with inflammation markers. METHODS: Specimens of 3397 children under 1 year were compared by automated and microscopic NRBC enumeration. Additionally, potential correlations between NRBC and age and inflammation markers were examined. RESULTS: Overall, there was good correlation (r = 0.97) between automated (range: 0%-3883%) and microscopic enumeration (range: 0%-3694%) of NRBC with high comparability up to a NRBC value of 200% and an increase in the variation between the two methods with increasing NRBC numbers. When 94 samples with ≤ 200% NRBC and ≥ 30% divergence between methods were separately reanalyzed with respect to overlapping cell populations in their scattergrams, Sysmex would have generated unrecognized incorrect automated results in 47 samples, corresponding to 1.4% of total study samples. NRBC counts were negatively correlated to age, but not to inflammation markers. CONCLUSION: Sysmex XN 1000 is highly precise in the enumeration of NRBC in children under 1 year up to counts of 200% and might replace time-intense manual counting in routine diagnostics. In the setting of neonatal and intensive care diagnostics, microscopic control and supervision of scattergrams are highly recommended for any automated NRBC enumeration processes.


Subject(s)
Erythroblasts , Humans , Infant , Erythroblasts/cytology , Infant, Newborn , Erythrocyte Count/methods , Female , Male , Automation, Laboratory/methods , Microscopy/methods
5.
Adv Sci (Weinh) ; 11(22): e2303471, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38481061

ABSTRACT

The generation of cultured red blood cells (cRBCs) ex vivo represents a potentially unlimited source for RBC transfusion and other cell therapies. Human cRBCs can be generated from the terminal differentiation of proliferating erythroblasts derived from hematopoietic stem/progenitor cells or erythroid precursors in peripheral blood mononuclear cells. Efficient differentiation and maturation into cRBCs highly depend on replenishing human plasma, which exhibits variable potency across donors or batches and complicates the consistent cRBC production required for clinical translation. Hence, the role of human plasma in erythroblast terminal maturation is investigated and uncovered that 1) a newly developed cell culture basal medium mimicking the metabolic profile of human plasma enhances cell growth and increases cRBC yield upon erythroblast terminal differentiation and 2) LDL-carried cholesterol, as a substitute for human plasma, is sufficient to support erythroid survival and terminal differentiation ex vivo. Consequently, a chemically-defined optimized medium (COM) is developed, enabling robust generation of cRBCs from erythroblasts of multiple origins, with improved enucleation efficiency and higher reticulocyte yield, without the need for supplementing human plasma or serum. In addition, the results reveal the crucial role of lipid metabolism during human terminal erythropoiesis.


Subject(s)
Cell Differentiation , Cholesterol , Erythroblasts , Humans , Erythroblasts/metabolism , Erythroblasts/cytology , Cell Differentiation/physiology , Cells, Cultured , Cholesterol/metabolism , Cell Culture Techniques/methods , Erythrocytes/metabolism , Erythrocytes/cytology , Erythropoiesis/physiology , Culture Media/metabolism
6.
Blood ; 143(19): 1980-1991, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38364109

ABSTRACT

ABSTRACT: The switch from fetal hemoglobin (γ-globin, HBG) to adult hemoglobin (ß-globin, HBB) gene transcription in erythroid cells serves as a paradigm for a complex and clinically relevant developmental gene regulatory program. We previously identified HIC2 as a regulator of the switch by inhibiting the transcription of BCL11A, a key repressor of HBG production. HIC2 is highly expressed in fetal cells, but the mechanism of its regulation is unclear. Here we report that HIC2 developmental expression is controlled by microRNAs (miRNAs), as loss of global miRNA biogenesis through DICER1 depletion leads to upregulation of HIC2 and HBG messenger RNA. We identified the adult-expressed let-7 miRNA family as a direct posttranscriptional regulator of HIC2. Ectopic expression of let-7 in fetal cells lowered HIC2 levels, whereas inhibition of let-7 in adult erythroblasts increased HIC2 production, culminating in decommissioning of a BCL11A erythroid enhancer and reduced BCL11A transcription. HIC2 depletion in let-7-inhibited cells restored BCL11A-mediated repression of HBG. Together, these data establish that fetal hemoglobin silencing in adult erythroid cells is under the control of a miRNA-mediated inhibitory pathway (let-7 ⊣ HIC2 ⊣ BCL11A ⊣ HBG).


Subject(s)
Fetal Hemoglobin , Kruppel-Like Transcription Factors , MicroRNAs , Repressor Proteins , Humans , beta-Globins/genetics , beta-Globins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Erythroblasts/metabolism , Erythroblasts/cytology , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , gamma-Globins/genetics , gamma-Globins/metabolism , Gene Expression Regulation , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Transcription, Genetic
7.
Blood Adv ; 8(7): 1651-1666, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38315834

ABSTRACT

ABSTRACT: Stress erythropoiesis can be influenced by multiple mediators through both intrinsic and extrinsic mechanisms in early erythroid precursors. Single-cell RNA sequencing was conducted on spleen tissue isolated from mice subjected to phenylhydrazine and serial bleeding to explore novel molecular mechanisms of stress erythropoiesis. Our results showed prominent emergence of early erythroblast populations under both modes of anemic stress. Analysis of gene expression revealed distinct phases during the development of emerging erythroid cells. Interestingly, we observed the presence of a "hiatus" subpopulation characterized by relatively low level of transcriptional activities that transitions between early stages of emerging erythroid cells, with moderate protein synthesis activities. Moreover, single-cell analysis conducted on macrophage populations revealed distinct transcriptional programs in Vcam1+ macrophages under stress. Notably, a novel marker, CD81, was identified for labeling central macrophages in erythroblastic islands (EBIs), which is functionally required for EBIs to combat anemic stress. These findings offer fresh insights into the intrinsic and extrinsic pathways of early erythroblasts' response to stress, potentially informing the development of innovative therapeutic approaches for addressing anemic-related conditions.


Subject(s)
Anemia , Spleen , Mice , Animals , Spleen/metabolism , Erythroblasts/metabolism , Anemia/etiology , Anemia/metabolism , Erythropoiesis/physiology , Macrophages/metabolism
9.
Pediatr Cardiol ; 45(3): 513-519, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308060

ABSTRACT

Tissue hypoxia increases erythropoietin production and release of immature erythrocytes that can be measured using nucleated red blood cell counts (nRBC). We hypothesized that hypoxia due to congenital heart disease (CHD) is chronic and is better tolerated than hypoxia due to respiratory disease (RD), which is an acute stress in newborns leading to higher nRBC. This study assesses the utility of nRBC as a marker to differentiate hypoxia due to CHD vs RD in term neonates. This was a single-center, retrospective study of term neonates with cyanosis from 2015 to 2022. Neonates < 37 weeks of gestation, with hypoxic-ischemic encephalopathy, and those with other causes of cyanosis were excluded. The patients were divided into 2 groups: cyanotic CHD and cyanotic RD. Clinical and laboratory data done within 12 h and 24-36 h after birth were collected. Data are represented as median and Interquartile range. Of 189 patients with cyanosis, 80 had CHD and 109 had RD. The absolute nRBC count at ≤ 12 h of age was lower in the CHD (360 cells/mm3) compared to RD group (2340 cells/mm3) despite the CHD group having significantly lower baseline saturations. A value of 1070 cells/mm3 was highly sensitive and specific for differentiating CHD from RD. The positive predictive value for this cut-off value of 1070 cells/mm3 was 0.94 and the negative predictive value was 0.89. The absolute nRBC is a simple screening test and is available worldwide. A nRBC < 1070 cells/mm3 in cyanotic newborns should hasten the search for CHD etiology with the possible need for prostaglandin therapy.


Subject(s)
Erythroblasts , Heart Defects, Congenital , Infant, Newborn , Humans , Retrospective Studies , Erythrocyte Count , Cyanosis/diagnosis , Cyanosis/etiology , Hypoxia , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnosis
10.
Res Vet Sci ; 169: 105164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38324973

ABSTRACT

Mediterranean area represents the main habitat of Testudo hermanni. Clinical signs of disease of these tortoises are non-specific, making the hematology results crucial in revealing underlying pathological conditions. However, accurate automated identification of blood cell populations is hampered by the presence of nucleated erythrocytes (NRBC) and thrombocytes (Thr), necessitating manual methods such as counting chambers. The aim of the study was to assess the performance of the novel automated hematology analyzer Sysmex XN-1000 V, which includes a a specific channel (WNR) for counting NRBC, in accurately identify and quantify the different blood cell populations of Testudo hermanni. Additionally, its agreement with manual counts was evaluated. Fifty heparinized blood samples were initially counted using the Neubauer improved chamber and then analysed twice with Sysmex XN-1000 V. Thirteen out of 50 samples were instrumentally counted again after 48 h to assess the inter-assay precision. All WNR scattergrams were re-analysed using an ad hoc gate panel to differentiate two populations: NRBCs (weak fluorescence signal) and WBC + Thr (high fluorescence signal). Sysmex XN-1000 V demonstrated optimal intra- and inter-assay precision for NRBCs (CV 0.98% ± 1.96; 1.31% ± 2.98) and moderate precision for WBC + Thr (CV 9.24% ± 16.61; 12.69% ± 10.35). No proportional nor constant errors were observed between the methods for both the populations. The instrumental NRBC counts were consistently slightly lower, while WBC + Thr counts were slightly higher compared to manual counts. These findings suggest that Sysmex XN-1000 V can be used for analyzing cell populations in heparinized blood of Testudo hermanni. However, specific instrumental reference intervals are suggested.


Subject(s)
Hematology , Turtles , Animals , Leukocytes , Erythroblasts , Cell Count/veterinary , Reproducibility of Results , Leukocyte Count/veterinary , Blood Cell Count/veterinary
11.
Blood Adv ; 8(6): 1449-1463, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38290102

ABSTRACT

ABSTRACT: During development, erythroid cells are produced through at least 2 distinct hematopoietic waves (primitive and definitive), generating erythroblasts with different functional characteristics. Human induced pluripotent stem cells (iPSCs) can be used as a model platform to study the development of red blood cells (RBCs) with many of the differentiation protocols after the primitive wave of hematopoiesis. Recent advances have established that definitive hematopoietic progenitors can be generated from iPSCs, creating a unique situation for comparing primitive and definitive erythrocytes derived from cell sources of identical genetic background. We generated iPSCs from healthy fetal liver (FL) cells and produced isogenic primitive or definitive RBCs which were compared directly to the FL-derived RBCs. Functional assays confirmed differences between the 2 programs, with primitive RBCs showing a reduced proliferation potential, larger cell size, lack of Duffy RBC antigen expression, and higher expression of embryonic globins. Transcriptome profiling by scRNA-seq demonstrated high similarity between FL- and iPSC-derived definitive RBCs along with very different gene expression and regulatory network patterns for primitive RBCs. In addition, iPSC lines harboring a known pathogenic mutation in the erythroid master regulator KLF1 demonstrated phenotypic changes specific to definitive RBCs. Our studies provide new insights into differences between primitive and definitive erythropoiesis and highlight the importance of ontology when using iPSCs to model genetic hematologic diseases. Beyond disease modeling, the similarity between FL- and iPSC-derived definitive RBCs expands potential applications of definitive RBCs for diagnostic and transfusion products.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Erythropoiesis/genetics , Erythrocytes , Cell Differentiation/genetics , Erythroblasts/metabolism
12.
Int J Hematol ; 119(2): 210-214, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38127226

ABSTRACT

Congenital dyserythropoietic anemia type II (CDA II) refers to a group of extremely rare heterozygous disorders characterized by ineffective erythropoiesis and morphological abnormalities of erythrocytes and bone marrow erythroblasts. Six types of CDA with differing heterogenous genetic mutations have been identified to date. Due to the genetic and clinical heterogeneity of CDA, accurate diagnosis can be very challenging, especially with the clinical overlap observed between CDA and other dyserythropoietic diseases. A 1-month-old infant girl, born to a non-consanguineous family, presented with severe normocytic anemia that required transfusions every 2 to 3 weeks since birth, as well as jaundice. Whole exome sequencing revealed a novel compound heterozygosity in the SEC23B gene, thus establishing the diagnosis of CDA II. Analysis by multiple bioinformatics tools predicted that the mutant proteins were deleterious. Here, we report a novel variation in SEC23B that extends the mutation spectrum of SEC23B in the diagnosis of CDA II.


Subject(s)
Anemia, Dyserythropoietic, Congenital , Infant , Infant, Newborn , Female , Humans , Anemia, Dyserythropoietic, Congenital/diagnosis , Anemia, Dyserythropoietic, Congenital/genetics , Mutation , Heterozygote , Erythroblasts/metabolism , Vesicular Transport Proteins/genetics
13.
Nat Commun ; 14(1): 7542, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985773

ABSTRACT

Circulating cell-free DNA (cfDNA) fragments are a biological analyte with extensive utility in diagnostic medicine. Understanding the source of cfDNA and mechanisms of release is crucial for designing and interpreting cfDNA-based liquid biopsy assays. Using cell type-specific methylation markers as well as genome-wide methylation analysis, we determine that megakaryocytes, the precursors of anuclear platelets, are major contributors to cfDNA (~26%), while erythroblasts contribute 1-4% of cfDNA in healthy individuals. Surprisingly, we discover that platelets contain genomic DNA fragments originating in megakaryocytes, contrary to the general understanding that platelets lack genomic DNA. Megakaryocyte-derived cfDNA is increased in pathologies involving increased platelet production (Essential Thrombocythemia, Idiopathic Thrombocytopenic Purpura) and decreased upon reduced platelet production due to chemotherapy-induced bone marrow suppression. Similarly, erythroblast cfDNA is reflective of erythrocyte production and is elevated in patients with thalassemia. Megakaryocyte- and erythroblast-specific DNA methylation patterns can thus serve as biomarkers for pathologies involving increased or decreased thrombopoiesis and erythropoiesis, which can aid in determining the etiology of aberrant levels of erythrocytes and platelets.


Subject(s)
Cell-Free Nucleic Acids , Megakaryocytes , Humans , Thrombopoiesis , Erythropoiesis/genetics , Cell-Free Nucleic Acids/genetics , Blood Platelets , Erythroblasts , DNA
14.
Front Cell Infect Microbiol ; 13: 1264607, 2023.
Article in English | MEDLINE | ID: mdl-38029254

ABSTRACT

Introduction: Sepsis is a vitally serious disease leading to high mortality. Nucleated red blood cells (NRBCs) are present in some noninfectious diseases, but the relationship between NRBCs and sepsis in children remains unknown. The purpose of this study was to compare the clinical characteristics and outcomes of sepsis with positive NRBCs and negative NRBCs in children, and to further explore whether the count of NRBCs has a relationship with the severity of sepsis. Methods: We enrolled children with sepsis who were admitted to the Children's Hospital of Chongqing Medical University between January 2020 and December 2022. The children's clinical data, laboratory data and outcomes were recorded and analyzed. Results: One hundred and fifteen children met the inclusion criteria in our study. Compared to negative NRBCs patients, the C-reactive protein, alanine transaminase, urea nitrogen values, mortality rate and length of hospitalization were found to be significantly increased, while platelet counts, and hemoglobin were significantly decreased in sepsis patients with positive NRBC (P < 0.05). Receiver operating characteristic (ROC) curves analysis showed that the optimal cutoff value of the NRBC count in the diagnosis of severe sepsis was 3, with a sensitivity of 87.5% and specificity of 94.9%. The area under the ROC curve was 0.877 (95% CI: 0.798-0.957). Discussion: These findings demonstrated that NRBC count has the potential to be a biomarker for the diagnosis of sepsis in children, especially an NRBC count greater than 3, which may predict the severity and poor prognosis in children suffering from sepsis.


Subject(s)
Erythroblasts , Sepsis , Humans , Child , Biomarkers , C-Reactive Protein , Hospitalization , Sepsis/diagnosis
15.
Cell Commun Signal ; 21(1): 332, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37986081

ABSTRACT

Anemia is the most common manifestation in myelodysplastic syndrome (MDS) patients, but the cause of ineffective hematopoiesis is not fully understood. Enucleation is an important event in the maturation process of erythroblasts. According to a series of morphological phenotypes of the pathological development of MDS erythroblasts, we speculate that there may be enucleation disorders. To verify this hypothesis, we cultured MDS bone marrow CD34+ cells in vitro and induced erythroblast development. The results showed that erythroblast enucleation in MDS was significantly lower than that in the normal group, and the rate of enucleation was positively correlated with hemoglobin concentration. Risk stratification of MDS was performed to further analyze the differences in enucleation among the normal group, low-middle risk group and high-risk group. The results showed that the enucleation rate of the high risk group was higher than that of the low-middle risk group but still lower than that of the normal group. Moreover, the expression of pERK and pAKT in MDS erythroblasts in the high risk group was higher than that in the normal group, while the expression of pERK and pAKT in the low-middle risk group was lower than that in the normal group. Furthermore, the enucleation of MDS was positively correlated with the phosphorylation degree of ERK and AKT. In conclusion, this study reveals that the enucleation of erythroblasts is one of the possible causes of anemia in MDS. Video Abstract.


Subject(s)
Anemia , Myelodysplastic Syndromes , Humans , Erythroblasts/metabolism , Erythroblasts/pathology , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/metabolism , Anemia/complications , Anemia/metabolism , Anemia/pathology , Risk Factors , Bone Marrow Cells/pathology
16.
Toxicol Lett ; 387: 28-34, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37739093

ABSTRACT

Epidemiological and experimental studies have demonstrated the association of spontaneous abortion or embryonic atrophy with heavy metals, including some well-known anemia inducers, such as cadmium (Cd). However, the direct adverse effect of Cd on embryos without inducing maternal anemia remains unclear. In this study, we treated mice with a low dose of Cd before and after mating to minimize Cd-induced maternal anemia. Although most embryos developed normally, embryonic atrophy was still observed in a small percentage of embryos from Cd-exposed pregnant mice. Compared to the embryos from the control pregnant mice, a complete blockage of erythroid differentiation was observed in the atrophic embryos but no obvious alteration of erythroid differentiation in the non-atrophic embryos, respectively. Moreover, our results suggested delayed enucleation of erythroblasts in these non-atrophic embryos. Mechanically, the inhibited iron transport from the placenta to the fetus together with the increased iron export in the fetal livers might contribute to embryonic atrophy and delayed enucleation of erythroblasts upon Cd exposure. Our data may provide new insights into the embryonic toxicity of low-dose Cd.


Subject(s)
Anemia , Cadmium , Pregnancy , Female , Mice , Animals , Cadmium/toxicity , Erythropoiesis , Erythroblasts , Iron , Atrophy
18.
Front Immunol ; 14: 1202943, 2023.
Article in English | MEDLINE | ID: mdl-37545522

ABSTRACT

Recent studies have demonstrated that a particular group of nucleated cells that exhibit erythroid markers (TER119 in mice and CD235a in humans) possess the ability to suppress the immune system and promote tumor growth. These cells are known as CD45+ erythroid progenitor cells (EPCs). According to our study, it appears that a subset of these CD45+ EPCs originate from B lymphocytes. Under conditions of hypoxia, mouse B lymphoma cells are capable of converting to erythroblast-like cells, which display phenotypes of CD45+TER119+ cells, including immunosuppressive effects on CD8 T cells. Furthermore, non-neoplastic B cells have similar differentiation abilities and exert the same immunosuppressive effect under anemia or tumor conditions in mice. Similar B cells exist in neonatal mice, which provides an explanation for the potential origin of immunosuppressive erythroid cells in newborns. Additionally, CD19+CD235a+ double-positive cells can be identified in the peripheral blood of patients with chronic lymphocytic leukemia. These findings indicate that some CD45+ EPCs are transdifferentiated from a selective population of CD19+ B lymphocytes in response to environmental stresses, highlighting the plasticity of B lymphocytes. We anticipate a potential therapeutic implication, in that targeting a specific set of B cells instead of erythroid cells should be expected to restore adaptive immunity and delay cancer progression.


Subject(s)
Anemia , Erythroblasts , Humans , Infant, Newborn , Animals , Mice , Erythroblasts/pathology , Erythroid Precursor Cells , Cell Differentiation , B-Lymphocytes/pathology
19.
Sci Rep ; 13(1): 12864, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553354

ABSTRACT

Transcriptional changes in compensatory erythropoiesis in sickle cell anemia (SCA) and their disease modulation are unclear. We detected 1226 differentially expressed genes in hemoglobin SS reticulocytes compared to non-anemic hemoglobin AA controls. Assessing developmental expression changes in hemoglobin AA erythroblasts for these genes suggests heightened terminal differentiation in early erythroblasts in SCA that diminishes toward the polychromatic to orthochromatic stage transition. Comparison of reticulocyte gene expression changes in SCA with that in Chuvash erythrocytosis, a non-anemic disorder of increased erythropoiesis due to constitutive activation of hypoxia inducible factors, identified 453 SCA-specific changes attributable to compensatory erythropoiesis. Peripheral blood mononuclear cells (PBMCs) in SCA contain elevated proportions of erythroid progenitors due to heightened erythropoiesis. Deconvolution analysis in PBMCs from 131 SCA patients detected 54 genes whose erythroid expression correlated with erythropoiesis efficiency, which were enriched with SCA-specific changes (OR = 2.9, P = 0.00063) and annotation keyword "ubiquitin-dependent protein catabolic process", "protein ubiquitination", and "protein polyubiquitination" (OR = 4.2, P = 7.5 × 10-5). An erythroid expression quantitative trait locus of one of these genes, LNX2 encoding an E3 ubiquitin ligase, associated with severe pain episodes in 774 SCA patients (OR = 1.7, P = 3.9 × 10-5). Thus, erythroid gene transcription responds to unique conditions within SCA erythroblasts and these changes potentially correspond to vaso-occlusive manifestations.


Subject(s)
Anemia, Sickle Cell , Reticulocytes , Humans , Reticulocytes/metabolism , Leukocytes, Mononuclear/metabolism , Erythroblasts/metabolism , Erythropoiesis/genetics , Gene Expression
20.
Int J Lab Hematol ; 45(6): 860-868, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37575073

ABSTRACT

INTRODUCTION: To compare the morphological classification ability of peripheral-blood leukocytes of the automatic cell morphology analyzers MC-100i and DI-60. METHODS: (1) MC-100i and DI-60 were used to analyze leukocytes in 432 venous blood samples collected from three tertiary hospitals across China. The preclassification results were compared with the results reported by senior morphological experts (postclassification results) to evaluate the accuracy, sensitivity, specificity, and consistency of leukocyte preclassification for both instruments. (2) In 200 of the 432 blood samples, morphological experts conducted manual microscopic examination for various types of leukocytes. The correlation between the MC-100i and DI-60 leukocyte postclassification results and the expert microscopist results were analyzed. RESULTS: (1) MC-100i preclassified leukocytes and nucleated red blood cells (RBCs). Compared with the postclassification results, the total leukocyte preclassification accuracy of MC-100i was 97.16%, while that of DI-60 was 87.24%. The sensitivity of MC-100i to abnormal cells (including blasts, promyelocytes, neutrophilic myelocytes, neutrophilic metamyelocytes, reactive lymphocytes, abnormal promyelocytes, plasma cells, abnormal lymphocytes and nucleated RBCs) was 90.24%, which was significantly higher than the 50.72% sensitivity of DI-60. (2) Comparing the postclassification results with manual microscopy, except for reactive lymphocytes and basophils, the MC-100i and DI-60 results had good correlations with various leukocyte types and nucleated RBCs (r > 0.85), and MC-100i was better than DI-60 in the recognition of basophils. CONCLUSION: Both MC-100i and DI-60 have good detection ability for five normal types of leukocytes in peripheral blood. MC-100i has significantly better detection sensitivity for abnormal cells in peripheral blood than DI-60.


Subject(s)
Erythroblasts , Leukocytes , Humans , Leukocyte Count , Basophils , Plasma Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...