Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.999
Filter
1.
Dokl Biol Sci ; 516(1): 50-54, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700814

ABSTRACT

The content of membrane-bound methemoglobin (MtHb) in nucleated erythrocytes was studied in the black scorpionfish Scorpaena porcus (Linnaeus, 1758) in vitro. Spectral characteristics were determined for a whole hemolysate, a hemolysate obtained by stroma precipitation (a clarified hemolysate), and a resuspended stroma. The MtHb proportion in the erythrocyte stroma was found to exceed 80% (6.20 ± 0.59 µM). Clarified hemolysates were nearly free of MtHb (0.5 ± 0.2 µM). Membrane-bound ferric hemoglobin did not affect the erythrocyte resistance to osmotic shock. The osmotic fragility range was determined using a LaSca-TM laser microparticle analyzer (BioMedSystems, Russia) to be 102-136 mOsm/kg, much the same as in other bony fish species. A nitrite load (10 mg/L) significantly increased the MtHb content in the blood. However, the membrane-bound ferric hemoglobin content did not change significantly, amounting to 6.34 ± 1.09 µM (approximately 95%). The finding suggested a functional importance for MtHb present in the plasma membrane of nucleated erythrocytes. Membrane-bound MtHb was assumed to neutralize the external oxidative load and the toxic effect of hydrogen sulfide in bottom water layers, where the species lives.


Subject(s)
Methemoglobin , Perciformes , Animals , Methemoglobin/metabolism , Perciformes/metabolism , Perciformes/blood , Hemoglobins/metabolism , Osmotic Fragility , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/drug effects , Erythrocytes/metabolism , Erythrocytes/drug effects , Erythroblasts/metabolism , Fishes/metabolism , Fishes/blood
2.
Nutrients ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794744

ABSTRACT

Mounting evidence indicates a complex link between circulating saturated fatty acids (SFAs) and cardiovascular disease (CVD) risk factors, but research on erythrocyte membrane SFA associations with metabolic markers remains limited. Our study sought to investigate the correlations between erythrocyte membrane SFAs and key metabolic markers within glycemic and lipid metabolism in a Chinese population of 798 residents aged 41 to 71 from Guangzhou. Using gas chromatography-mass spectrometry, we assessed the erythrocyte membrane saturated fatty acid profile and performed multiple linear regression to evaluate the relationship between different SFA subtypes and metabolic markers. Our findings revealed that the odd-chain SFA group (C15:0 + C17:0) exhibited negative associations with fasting blood glucose (FBG), homeostatic model assessment for insulin resistance (HOMA-IR), and triglycerides (TG). Conversely, the very-long-chain SFA group (C20:0 + C22:0 + C23:0 + C24:0) exhibited positive associations with fasting insulins (FINS), HOMA-IR, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C). Furthermore, there was no evidence supporting an association between the even-chain group (C14:0 + C16:0 + C18:0) and metabolic markers. Our findings suggest that different subtypes of SFAs have diverse effects on glycemic and lipid metabolic markers, with odd-chain SFAs associated with a lower metabolic risk. However, the results concerning the correlations between even-chain SFAs and very-long-chain SFAs with markers of glycemic and lipid metabolism pathways are confusing, highlighting the necessity for further exploration and investigation.


Subject(s)
Biomarkers , Blood Glucose , Erythrocyte Membrane , Fatty Acids , Humans , Middle Aged , Male , Cross-Sectional Studies , Fatty Acids/blood , Female , Aged , Blood Glucose/metabolism , Biomarkers/blood , Erythrocyte Membrane/metabolism , Adult , China , Insulin Resistance , Lipid Metabolism/physiology , Asian People , Triglycerides/blood , Insulin/blood , East Asian People
3.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791153

ABSTRACT

Garlic is known to have diverse effects on mammalian cells, being cytotoxic, especially to cancer cells, but also protect against oxidative stress. Mammalian erythrocyte is a simple cell devoid of intracellular organelles, protein synthesis ability, and most signaling pathways. Therefore, examination of the effects of garlic on erythrocytes allows for revealing primary events in the cellular action of garlic extract. In this study, human erythrocytes or erythrocyte membranes were exposed to garlic extract at various dilutions. Hemoglobin oxidation to methemoglobin, increased binding of hemoglobin to the membrane, and formation of Heinz bodies were observed. Garlic extract depleted acid-soluble thiols, especially glutathione, and induced a prooxidative shift in the cellular glutathione redox potential. The extract increased the osmotic fragility of erythrocytes, induced hemolysis, and inhibited hemolysis in isotonic ammonium chloride, indicative of decreased membrane permeability for Cl- and increased the membrane fluidity. Fluorescent probes indicated an increased level of reactive oxygen species and induction of lipid peroxidation, but these results should be interpreted with care since the extract alone induced oxidation of the probes (dichlorodihydrofluorescein diacetate and BODIPY C11). These results demonstrate that garlic extract induces oxidative changes in the erythrocyte, first of all, thiol and hemoglobin oxidation.


Subject(s)
Erythrocytes , Garlic , Hemolysis , Oxidation-Reduction , Plant Extracts , Garlic/chemistry , Humans , Plant Extracts/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Hemolysis/drug effects , Oxidation-Reduction/drug effects , Lipid Peroxidation/drug effects , Hemoglobins/metabolism , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Osmotic Fragility/drug effects
4.
Psychiatry Res ; 337: 115966, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810536

ABSTRACT

Decreased white matter (WM) integrity and disturbance in fatty acid composition have been reported in individuals at ultra-high risk of psychosis (UHR). The current study is the first to investigate both WM integrity and erythrocyte membrane polyunsaturated fatty acid (PUFA) levels as potential risk biomarkers for persistent UHR status, and global functioning in UHR individuals. Forty UHR individuals were analysed at baseline for erythrocyte membrane PUFA concentrates. Tract-based spatial statistics (TBSS) was used to analyse fractional anisotropy (FA) and diffusivity measures. Measures of global functioning and psychiatric symptoms were evaluated at baseline and at 12-months. Fatty acids and WM indices did not predict functional outcomes at baseline or 12-months. Significant differences were found in FA between UHR remitters and non-remitters (individuals who no longer met UHR criteria versus those who continued to meet criteria at 12-months). Docosahexaenoic acid (DHA) was found to be a significant predictor of UHR status at 12-months, as was the interaction between the sum of ώ-3 and whole brain FA, and the interaction between the right anterior limb of the internal capsule and the sum of ώ-3. The results confirm that certain fatty acids have a unique relationship with WM integrity in UHR individuals.


Subject(s)
Erythrocyte Membrane , Myelin Sheath , Psychotic Disorders , Humans , Psychotic Disorders/metabolism , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , Male , Female , Erythrocyte Membrane/metabolism , Young Adult , Adolescent , Myelin Sheath/metabolism , Myelin Sheath/pathology , Anisotropy , White Matter/diagnostic imaging , White Matter/pathology , White Matter/metabolism , Fatty Acids/metabolism , Adult , Diffusion Tensor Imaging , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Docosahexaenoic Acids/metabolism , Psychiatric Status Rating Scales , Fatty Acids, Unsaturated/metabolism
5.
Br J Haematol ; 204(5): 2025-2039, 2024 May.
Article in English | MEDLINE | ID: mdl-38613149

ABSTRACT

Splenectomised ß-thalassaemia/haemoglobin E (HbE) patients have increased levels of circulating microparticles or medium extra-cellular vesicles (mEVs). The splenectomised mEVs play important roles in thromboembolic complications in patients since they can induce platelet activation and endothelial cell dysfunction. However, a comprehensive understanding of the mechanism of mEV generation in thalassaemia disease has still not been reached. Thalassaemic mEVs are hypothesised to be generated from cellular oxidative stress in red blood cells (RBCs) and platelets. Therefore, a proteomic analysis of mEVs from splenectomised and non-splenectomised ß-thalassaemia/HbE patients was performed by liquid chromatography with tandem mass spectrometry. A total of 171 proteins were identified among mEVs. Interestingly, 72 proteins were uniquely found in splenectomised mEVs including immunoglobulin subunits and cytoskeleton proteins. Immunoglobulin G (IgG)-bearing mEVs in splenectomised patients were significantly increased. Furthermore, complement C1q was detected in both mEVs with IgG binding and mEVs without IgG binding. Interestingly, the percentage of mEVs generated from RBCs with IgG binding was approximately 15-20 times higher than the percentage of RBCs binding with IgG. This suggested that the vesiculation of thalassaemia mEVs could be a mechanism of RBCs to eliminate membrane patches harbouring immune complex and may consequently prevent cells from phagocytosis and lysis.


Subject(s)
Hemoglobin E , Proteomics , beta-Thalassemia , Humans , beta-Thalassemia/blood , beta-Thalassemia/metabolism , Hemoglobin E/metabolism , Proteomics/methods , Female , Male , Adult , Extracellular Vesicles/metabolism , Splenectomy , Immunoglobulin G/blood , Erythrocyte Membrane/metabolism , Proteome/analysis , Adolescent , Erythrocytes/metabolism , Cell-Derived Microparticles/metabolism , Young Adult
6.
Eur Biophys J ; 53(4): 239-247, 2024 May.
Article in English | MEDLINE | ID: mdl-38625405

ABSTRACT

In this study, fluorescence recovery after photobleaching (FRAP) experiments were performed on RBC labeled by lipophilic fluorescent dye CM-DiI to evaluate the role of adenylyl cyclase cascade activation in changes of lateral diffusion of erythrocytes membrane lipids. Stimulation of adrenergic receptors with epinephrine (adrenaline) or metaproterenol led to the significant acceleration of the FRAP recovery, thus indicating an elevated membrane fluidity. The effect of the stimulation of protein kinase A with membrane-permeable analog of cAMP followed the same trend but was less significant. The observed effects are assumed to be driven by increased mobility of phospholipids resulting from the weakened interaction between the intermembrane proteins and RBC cytoskeleton due to activation of adenylyl cyclase signaling cascade.


Subject(s)
Adenylyl Cyclases , Erythrocyte Membrane , Fluorescence Recovery After Photobleaching , Membrane Fluidity , Adenylyl Cyclases/metabolism , Membrane Fluidity/drug effects , Humans , Erythrocyte Membrane/metabolism , Enzyme Activation , Signal Transduction/drug effects , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Epinephrine/pharmacology , Epinephrine/metabolism
7.
J Control Release ; 369: 325-334, 2024 May.
Article in English | MEDLINE | ID: mdl-38565395

ABSTRACT

Challenges for glioma treatment with nanomedicines include physio-anatomical barriers (the blood-brain barrier and blood-brain tumor barrier), low drug loading capacity, and limited circulation time. Here, a red blood cell membrane-coated docetaxel drug nanocrystal (pV-RBCm-NC(DTX)), modified with pHA-VAP (pV) for all-stage targeting of glioma, was designed. The NC(DTX) core exhibited a high drug loading capacity but low in vivo stability, and the RBCm coating significantly enhanced the stability and prolonged in vivo circulation. Moreover, the Y-shaped targeting ligand pV was modified by a mild avidin-biotin interaction, which endowed RBCm-NC(DTX) with superior barrier-crossing ability and therapeutic efficacy. The integration of nanocrystal technology, cell membrane coating, and the avidin-biotin insertion method into this active targeting biomimetic formulation represents a promising drug delivery strategy for glioma.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Docetaxel , Erythrocyte Membrane , Glioma , Nanoparticles , Docetaxel/administration & dosage , Docetaxel/pharmacokinetics , Docetaxel/chemistry , Glioma/drug therapy , Animals , Nanoparticles/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/chemistry , Cell Line, Tumor , Brain Neoplasms/drug therapy , Male , Drug Delivery Systems , Avidin/administration & dosage , Avidin/chemistry , Humans , Biotin/chemistry , Biotin/administration & dosage , Rats, Sprague-Dawley , Blood-Brain Barrier/metabolism , Mice, Inbred BALB C , Mice, Nude
8.
Cryobiology ; 115: 104898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663665

ABSTRACT

Trehalose is widely acknowledged for its ability to stabilize plasma membranes during dehydration. However, the exact mechanism by which trehalose interacts with lipid bilayers remains presently unclear. In this study, we conducted atomistic molecular dynamic simulations on asymmetric model bilayers that mimic the membrane of human red blood cells at various trehalose and water contents. We considered three different hydration levels mimicking the full hydration to desiccation scenarios. Results indicate that the asymmetric distribution of lipids did not significantly influence the computed structural characteristics at full and low hydration. At dehydration, however, the order parameter obtained from the symmetric bilayer is significantly higher compared to those obtained from asymmetric ones. Analysis of hydrogen bonds revealed that the protective ability of trehalose is well described by the water replacement hypothesis at full and low hydration, while at dehydration other interaction mechanisms associated with trehalose exclusion from the bilayer may involve. In addition, we found that trehalose exclusion is not attributed to sugar saturation but rather to the reduction in hydration levels. It can be concluded that the protective effect of trehalose is not only related to the hydration level of the bilayer, but also closely tied to the asymmetric distribution of lipids within each leaflet.


Subject(s)
Erythrocyte Membrane , Hydrogen Bonding , Lipid Bilayers , Molecular Dynamics Simulation , Trehalose , Trehalose/metabolism , Trehalose/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Humans , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/chemistry , Water/chemistry , Water/metabolism , Erythrocytes/metabolism , Erythrocytes/chemistry , Desiccation
9.
Urologiia ; (1): 24-30, 2024 Mar.
Article in Russian | MEDLINE | ID: mdl-38650402

ABSTRACT

AIM: To determine the effect of standard treatment on changes in the structural and functional properties of erythrocytes in obstructive and non-obstructive acute pyelonephritis. MATERIALS AND METHODS: The structural and functional properties of erythrocytes and their intracellular metabolism in 78 patients with a diagnosis of primary non-obstructive and secondary obstructive acute pyelonephritis, randomized by age, gender, and the minimum number of concomitant diseases were investigated. RESULTS AND DISCUSSION: In acute non-obstructive pyelonephritis, changes of the content of proteins in circulating erythrocytes responsible for the structure formation and stabilization of the plasma membrane (-spectrin, anion transport protein, pallidin, protein 4.1), intracellular metabolism (anion transport protein, glutathione-S-transferase), membrane flexibility and shape (actin, tropomyosin) are insignificant, alike from acute obstructive pyelonephritis. In addition, processes of lipid peroxidation inside red blood cells are intensified, and oxidative stress develops with a decrease in the sorption capacity of erythrocytes, as well as the content and ratio of lipid fractions in the plasma membrane, which form the basis of the lipid components and play the main role in the sequencing of protein macromolecules and the normal metabolism of red blood cells. CONCLUSION: In acute obstructive pyelonephritis, changes in the content and ratio of proteins and lipids in the erythrocyte membrane lead to functional rearrangements that are not corrected by standard treatment.


Subject(s)
Erythrocytes , Pyelonephritis , Humans , Pyelonephritis/blood , Pyelonephritis/metabolism , Erythrocytes/metabolism , Female , Male , Acute Disease , Adult , Middle Aged , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/chemistry
10.
Maturitas ; 184: 107948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447232

ABSTRACT

OBJECTIVE: Middle-aged women with obesity are at increased risk of iron overload and iron disorder is known to disrupt n-3 polyunsaturated fatty acid homeostasis. We evaluated relationships between pretreatment hemoglobin and n-3 polyunsaturated fatty acid levels, and tested whether pretreatment hemoglobin contributed to inter-individual variability in weight loss with special focus on changes in body weight, iron and n-3 polyunsaturated fatty acid profiles. STUDY DESIGN: 117 middle and older aged women with obesity and more than two metabolic abnormalities were randomized to a 12-week hypocaloric diet without or with fish oil supplementation. Blood iron biomarker and erythrocyte membrane phospholipid profiles were evaluated. MAIN OUTCOME: The absolute change from baseline to week 12 in serum iron and erythrocyte n-3 polyunsaturated fatty acid levels according to pretreatment hemoglobin tertiles and fish oil supplementation. RESULTS: A Pearson correlation analysis showed that pretreatment hemoglobin levels were negatively correlated with linoleic acid (r = -0.231), α-linoleic acid (r = -0.279), and n-3 polyunsaturated fatty acid (r = -0.217) (all p < 0.05). Dietary weight loss markedly enhanced erythrocyte membrane lipids of linoleic acid, α-linoleic acid, and n-6 and n-3 polyunsaturated fatty acid only in those women with the highest pretreatment hemoglobin levels (tertile 3) (all p < 0.05). Fish oil supplementation increased bioavailable iron in women with moderate pretreatment hemoglobin levels (tertile 2) (p < 0.05) and, to a lesser extent, prevented a reduction in circulating iron in those with the lowest hemoglobin levels (tertile 1). CONCLUSION: Dietary weight loss is an effective treatment program to manage obesity-related iron and n-3 polyunsaturated fatty acid disorders, particularly for middle-aged women with obesity and iron overload.


Subject(s)
Dietary Supplements , Erythrocyte Membrane , Fatty Acids, Omega-3 , Fish Oils , Hemoglobins , Homeostasis , Iron , Obesity , Weight Loss , Humans , Female , Middle Aged , Fatty Acids, Omega-3/administration & dosage , Obesity/diet therapy , Obesity/complications , Obesity/blood , Obesity/metabolism , Fish Oils/administration & dosage , Iron/blood , Iron/metabolism , Erythrocyte Membrane/metabolism , Hemoglobins/metabolism , Hemoglobins/analysis , Diet, Reducing , Adult , Caloric Restriction , Phospholipids/blood
11.
J Colloid Interface Sci ; 663: 856-868, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447400

ABSTRACT

Mitochondrial dysfunction and metal ion imbalance are recognized as pathological hallmarks of Alzheimer's Disease (AD), leading to deposition of ß-amyloid (Aß) thereby and inducing neurotoxicity, activating apoptosis, eliciting oxidative stress, and ultimately leading to cognitive impairment. In this study, the red blood cell membrane (RBC) was used as a vehicle for encapsulating carbon quantum dots (CQD) and polydopamine (PDA), creating a nanocomposite (PDA-CQD/RBC). This nanocomposite was combined with near-infrared light (NIR) for AD treatment. The RBC offers anti-immunorecognition properties to evade immune clearance, PDA exhibits enzyme-mimicking activity to mitigate oxidative stress damage, and CQD acts as a chelating agent for metal ions (Cu2+), effectively preventing Cu2+-mediated aggregation of Aß. Furthermore, the local heating induced by near-infrared laser irradiation can dismantle the formed Aß fibers and enhance the blood-brain barrier's permeability. Both in vitro and animal experiments have shown that PDA-CQD/RBC, in combination with NIR, mitigates neuroinflammation, and ameliorates behavioral deficits in mice. This approach targets multiple pathological pathways, surpassing the limitations of single-target treatments and enhancing therapeutic efficacy while decelerating disease progression.


Subject(s)
Alzheimer Disease , Indoles , Polymers , Quantum Dots , Mice , Animals , Alzheimer Disease/drug therapy , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/pathology , Amyloid beta-Peptides , Metals , Infrared Rays , Carbon/pharmacology
12.
Int J Artif Organs ; 47(3): 155-161, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38425132

ABSTRACT

Several similarities have been found between shear stress-induced erythrocyte damage and physiological aging of erythrocytes in terms of elevated mechanical fragility, increased erythrocyte aggregation, and decreased membrane surface charge. Accordingly, we hypothesized that blood pump circulation, which generates shear stress, would accelerate erythrocyte aging, manifesting as oxidation. Therefore, the purpose of this study was to investigate the effect of blood pump circulation on erythrocyte oxidation. Fresh porcine blood was acquired from a slaughterhouse and anticoagulated with sodium citrate. About 500 mL of anticoagulated whole blood was circulated for 180 min in an in vitro test circuit comprising a BP-80 blood pump with a pump speed and a pump pressure head of 100-120 mmHg. A blood sample was taken at the start of the circulation and 180 min afterward. The hemolysis level and oxidation amount of the erythrocyte membrane were analyzed and compared between samples. Hemolysis increased with the prolongation of shear exposure inside the pump circuit. After 180 min of blood pumping in circuit, the oxidation level of the erythrocyte membrane showed an increase of 0.1 nmol/mg protein. Moreover, the membrane oxidation levels of sheared erythrocytes were greater than those of control erythrocytes. These results suggest that blood pump circulation accelerates erythrocyte aging and give us a greater understanding of the effects of blood pump perfusion.


Subject(s)
Erythrocyte Membrane , Hemolysis , Swine , Animals , Hemolysis/physiology , Erythrocytes , Stress, Mechanical
13.
Int J Pharm ; 655: 124007, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38493844

ABSTRACT

Gold core mesoporous silica shell (AuMSS) nanorods are multifunctional nanomedicines that can act simultaneously as photothermal, drug delivery, and bioimaging agents. Nevertheless, it is reported that once administrated, nanoparticles can be coated with blood proteins, forming a protein corona, that directly impacts on nanomedicines' circulation time, biodistribution, and therapeutic performance. Therefore, it become crucial to develop novel alternatives to improve nanoparticles' half-life in the bloodstream. In this work, Polyethylenimine (PEI) and Red blood cells (RBC)-derived membranes were combined for the first time to functionalize AuMSS nanorods and simultaneously load acridine orange (AO). The obtained results revealed that the RBC-derived membranes promoted the neutralization of the AuMSS' surface charge and consequently improved the colloidal stability and biocompatibility of the nanocarriers. Indeed, the in vitro data revealed that PEI/RBC-derived membranes' functionalization also improved the nanoparticles' cellular internalization and was capable of mitigating the hemolytic effects of AuMSS and AuMSS/PEI nanorods. In turn, the combinatorial chemo-photothermal therapy mediated by AuMSS/PEI/RBC_AO nanorods was able to completely eliminate HeLa cells, contrasting with the less efficient standalone therapies. Such data reinforce the potential of AuMSS nanomaterials to act simultaneously as photothermal and chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Nanotubes , Neoplasms , Humans , HeLa Cells , Photothermal Therapy , Erythrocyte Membrane , Silicon Dioxide , Gold , Tissue Distribution , Phototherapy , Doxorubicin/pharmacology , Neoplasms/drug therapy
14.
Int J Nanomedicine ; 19: 1487-1508, 2024.
Article in English | MEDLINE | ID: mdl-38380147

ABSTRACT

Background: Radiation stimulates the secretion of tumor stroma and induces resistance, recurrence, and metastasis of stromal-vascular tumors during radiotherapy. The proliferation and activation of tumor-associated fibroblasts (TAFs) are important reasons for the production of tumor stroma. Telmisartan (Tel) can inhibit the proliferation and activation of TAFs (resting TAFs), which may promote radiosensitization. However, Tel has a poor water solubility. Methods: In this study, self-assembled telmisartan nanoparticles (Tel NPs) were prepared by aqueous solvent diffusion method to solve the insoluble problem of Tel and achieve high drug loading of Tel. Then, erythrocyte membrane (ECM) obtained by hypotonic lysis was coated on the surface of Tel NPs (ECM/Tel) for the achievement of in vivo long circulation and tumor targeting. Immunofluorescence staining, western blot and other biological techniques were used to investigate the effect of ECM/Tel on TAFs activation inhibition (resting effect) and mechanisms involved. The multicellular spheroids (MCSs) model and mouse breast cancer cells (4T1) were constructed to investigate the effect of ECM/Tel on reducing stroma secretion, alleviating hypoxia, and the corresponding promoting radiosensitization effect in vitro. A mouse orthotopic 4T1 breast cancer model was constructed to investigate the radiosensitizing effect of ECM/Tel on inhibiting breast cancer growth and lung metastasis of breast cancer. Results: ECM/Tel showed good physiological stability and tumor-targeting ability. ECM/Tel could rest TAFs and reduce stroma secretion, alleviate hypoxia, and enhance penetration in tumor microenvironment. In addition, ECM/Tel arrested the cell cycle of 4T1 cells to the radiosensitive G2/M phase. In mouse orthotopic 4T1 breast cancer model, ECM/Tel played a superior role in radiosensitization and significantly inhibited lung metastasis of breast cancer. Conclusion: ECM/Tel showed synergistical radiosensitization effect on both the tumor microenvironment and tumor cells, which is a promising radiosensitizer in the radiotherapy of stroma-vascular tumors.


Subject(s)
Lung Neoplasms , Vascular Neoplasms , Mice , Animals , Telmisartan/pharmacology , Telmisartan/therapeutic use , Erythrocyte Membrane , Lung Neoplasms/drug therapy , Radiation Tolerance , Hypoxia , Cell Line, Tumor , Tumor Microenvironment
15.
Biomolecules ; 14(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38397451

ABSTRACT

The protein 4.1R is an essential component of the erythrocyte membrane skeleton, serving as a key structural element and contributing to the regulation of the membrane's physical properties, including mechanical stability and deformability, through its interaction with spectrin-actin. Recent research has uncovered additional roles of 4.1R beyond its function as a linker between the plasma membrane and the membrane skeleton. It has been found to play a crucial role in various biological processes, such as cell fate determination, cell cycle regulation, cell proliferation, and cell motility. Additionally, 4.1R has been implicated in cancer, with numerous studies demonstrating its potential as a diagnostic and prognostic biomarker for tumors. In this review, we provide an updated overview of the gene and protein structure of 4.1R, as well as its cellular functions in both physiological and pathological contexts.


Subject(s)
Cytoskeletal Proteins , Membrane Proteins , Membrane Proteins/metabolism , Cytoskeletal Proteins/metabolism , Spectrin/chemistry , Spectrin/genetics , Spectrin/metabolism , Actins/metabolism , Erythrocyte Membrane/metabolism
16.
Sci Rep ; 14(1): 4261, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383751

ABSTRACT

This study introduces YOLOv8n-vegetable, a model designed to address challenges related to imprecise detection of vegetable diseases in greenhouse plant environment using existing network models. The model incorporates several improvements and optimizations to enhance its effectiveness. Firstly, a novel C2fGhost module replaces partial C2f. with GhostConv based on Ghost lightweight convolution, reducing the model's parameters and improving detection performance. Second, the Occlusion Perception Attention Module (OAM) is integrated into the Neck section to better preserve feature information after fusion, enhancing vegetable disease detection in greenhouse settings. To address challenges associated with detecting small-sized objects and the depletion of semantic knowledge due to varying scales, an additional layer for detecting small-sized objects is included. This layer improves the amalgamation of extensive and basic semantic knowledge, thereby enhancing overall detection accuracy. Finally, the HIoU boundary loss function is introduced, leading to improved convergence speed and regression accuracy. These improvement strategies were validated through experiments using a self-built vegetable disease detection dataset in a greenhouse environment. Multiple experimental comparisons have demonstrated the model's effectiveness, achieving the objectives of improving detection speed while maintaining accuracy and real-time detection capability. According to experimental findings, the enhanced model exhibited a 6.46% rise in mean average precision (mAP) over the original model on the self-built vegetable disease detection dataset under greenhouse conditions. Additionally, the parameter quantity and model size decreased by 0.16G and 0.21 MB, respectively. The proposed model demonstrates significant advancements over the original algorithm and exhibits strong competitiveness when compared with other advanced object detection models. The lightweight and fast detection of vegetable diseases offered by the proposed model presents promising applications in vegetable disease detection tasks.


Subject(s)
Algorithms , Vegetables , Dendritic Spines , Erythrocyte Membrane , Knowledge
17.
Nanotechnology ; 35(24)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38408368

ABSTRACT

The crossing of the blood-brain barrier (BBB) for conventional anticancer drugs is still a big challenge in treating glioma. The biomimetic nanoparticle delivery system has attracted increasing attention and has a promising future for crossing the BBB. Herein, we construct a multifunctional biomimetic nanoplatform using the erythrocyte membrane (EM) with the tumor-penetrating peptide iRGD (CRGDK/RGPD/EC) as a delivery, and the inner core loaded with the chemotherapeutic drug temozolomide (TMZ). The resulting biomimetic nanoparticle has perfect biocompatibility and stealth ability, which will provide more chances to escape the reticuloendothelial system (RES) entrapment, and increase the opportunity to enter the tumor site. Moreover, the decorated iRGD has been extensively used to actively targeting and deliver therapeutic agents across the BBB into glioma tissue. We show that this biomimetic delivery of TMZ with a diameter of 22 nm efficiently slowed the growth of glioblastoma multiforme (GBM) and increased the survival rate of the 30 d from 0% to 100%.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/pathology , Erythrocyte Membrane , Biomimetics , Cell Line, Tumor , Brain Neoplasms/drug therapy
18.
Anal Bioanal Chem ; 416(8): 1777-1785, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280017

ABSTRACT

With increasing public awareness of PFAS, and their presence in biological and environmental media across the globe, comes a matching increase in the number of PFAS monitoring studies. As more matrices and sample cohorts are examined, there are more opportunities for matrix interferents to appear as PFAS where there are none (i.e., "seeing ghosts"), impacting subsequent reports. Addressing these ghosts is vital for the research community, as proper analytical measurements are necessary for decision-makers to understand the presence, levels, and potential risks associated with PFAS and protect human and environmental health. To date, PFAS interference has been identified in several matrices (e.g., food, shellfish, blood, tissue); however, additional unidentified interferents are likely to be observed as PFAS research continues to expand. Therefore, the aim of this commentary is several fold: (1) to create and support a publicly available dataset of all currently known PFAS analytical interferents, (2) to allow for the expansion of that dataset as more sources of interference are identified, and (3) to advise the wider scientific community on how to both identify and eliminate current or new analytical interference in PFAS analyses.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Seafood/analysis , Shellfish/analysis , Erythrocyte Membrane
19.
Sci Rep ; 14(1): 1847, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253562

ABSTRACT

Genetic tagging from scats is one of the minimally invasive sampling (MIS) monitoring approaches commonly used to guide management decisions and evaluate conservation efforts. Microsatellite markers have traditionally been used but are prone to genotyping errors. Here, we present a novel method for individual identification in the Threatened ghost bat Macroderma gigas using custom-designed Single Nucleotide Polymorphism (SNP) arrays on the MassARRAY system. We identified 611 informative SNPs from DArTseq data from which three SNP panels (44-50 SNPs per panel) were designed. We applied SNP genotyping and molecular sexing to 209 M. gigas scats collected from seven caves in the Pilbara, Western Australia, employing a two-step genotyping protocol and identifying unique genotypes using a custom-made R package, ScatMatch. Following data cleaning, the average amplification rate was 0.90 ± 0.01 and SNP genotyping errors were low (allelic dropout 0.003 ± 0.000) allowing clustering of scats based on one or fewer allelic mismatches. We identified 19 unique bats (9 confirmed/likely males and 10 confirmed/likely females) from a maternity and multiple transitory roosts, with two male bats detected using roosts, 9 km and 47 m apart. The accuracy of our SNP panels enabled a high level of confidence in the identification of individual bats. Targeted SNP genotyping is a valuable tool for monitoring and tracking of non-model species through a minimally invasive sampling approach.


Subject(s)
Chiroptera , Humans , Pregnancy , Female , Male , Animals , Chiroptera/genetics , Alleles , Cluster Analysis , Culture , Erythrocyte Membrane
20.
Blood ; 143(3): 192-193, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236613
SELECTION OF CITATIONS
SEARCH DETAIL
...