Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.713
Filter
1.
Dokl Biol Sci ; 516(1): 50-54, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700814

ABSTRACT

The content of membrane-bound methemoglobin (MtHb) in nucleated erythrocytes was studied in the black scorpionfish Scorpaena porcus (Linnaeus, 1758) in vitro. Spectral characteristics were determined for a whole hemolysate, a hemolysate obtained by stroma precipitation (a clarified hemolysate), and a resuspended stroma. The MtHb proportion in the erythrocyte stroma was found to exceed 80% (6.20 ± 0.59 µM). Clarified hemolysates were nearly free of MtHb (0.5 ± 0.2 µM). Membrane-bound ferric hemoglobin did not affect the erythrocyte resistance to osmotic shock. The osmotic fragility range was determined using a LaSca-TM laser microparticle analyzer (BioMedSystems, Russia) to be 102-136 mOsm/kg, much the same as in other bony fish species. A nitrite load (10 mg/L) significantly increased the MtHb content in the blood. However, the membrane-bound ferric hemoglobin content did not change significantly, amounting to 6.34 ± 1.09 µM (approximately 95%). The finding suggested a functional importance for MtHb present in the plasma membrane of nucleated erythrocytes. Membrane-bound MtHb was assumed to neutralize the external oxidative load and the toxic effect of hydrogen sulfide in bottom water layers, where the species lives.


Subject(s)
Methemoglobin , Perciformes , Animals , Methemoglobin/metabolism , Perciformes/metabolism , Perciformes/blood , Hemoglobins/metabolism , Osmotic Fragility , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/drug effects , Erythrocytes/metabolism , Erythrocytes/drug effects , Erythroblasts/metabolism , Fishes/metabolism , Fishes/blood
2.
Nutrients ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794744

ABSTRACT

Mounting evidence indicates a complex link between circulating saturated fatty acids (SFAs) and cardiovascular disease (CVD) risk factors, but research on erythrocyte membrane SFA associations with metabolic markers remains limited. Our study sought to investigate the correlations between erythrocyte membrane SFAs and key metabolic markers within glycemic and lipid metabolism in a Chinese population of 798 residents aged 41 to 71 from Guangzhou. Using gas chromatography-mass spectrometry, we assessed the erythrocyte membrane saturated fatty acid profile and performed multiple linear regression to evaluate the relationship between different SFA subtypes and metabolic markers. Our findings revealed that the odd-chain SFA group (C15:0 + C17:0) exhibited negative associations with fasting blood glucose (FBG), homeostatic model assessment for insulin resistance (HOMA-IR), and triglycerides (TG). Conversely, the very-long-chain SFA group (C20:0 + C22:0 + C23:0 + C24:0) exhibited positive associations with fasting insulins (FINS), HOMA-IR, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C). Furthermore, there was no evidence supporting an association between the even-chain group (C14:0 + C16:0 + C18:0) and metabolic markers. Our findings suggest that different subtypes of SFAs have diverse effects on glycemic and lipid metabolic markers, with odd-chain SFAs associated with a lower metabolic risk. However, the results concerning the correlations between even-chain SFAs and very-long-chain SFAs with markers of glycemic and lipid metabolism pathways are confusing, highlighting the necessity for further exploration and investigation.


Subject(s)
Biomarkers , Blood Glucose , Erythrocyte Membrane , Fatty Acids , Humans , Middle Aged , Male , Cross-Sectional Studies , Fatty Acids/blood , Female , Aged , Blood Glucose/metabolism , Biomarkers/blood , Erythrocyte Membrane/metabolism , Adult , China , Insulin Resistance , Lipid Metabolism/physiology , Asian People , Triglycerides/blood , Insulin/blood , East Asian People
3.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791153

ABSTRACT

Garlic is known to have diverse effects on mammalian cells, being cytotoxic, especially to cancer cells, but also protect against oxidative stress. Mammalian erythrocyte is a simple cell devoid of intracellular organelles, protein synthesis ability, and most signaling pathways. Therefore, examination of the effects of garlic on erythrocytes allows for revealing primary events in the cellular action of garlic extract. In this study, human erythrocytes or erythrocyte membranes were exposed to garlic extract at various dilutions. Hemoglobin oxidation to methemoglobin, increased binding of hemoglobin to the membrane, and formation of Heinz bodies were observed. Garlic extract depleted acid-soluble thiols, especially glutathione, and induced a prooxidative shift in the cellular glutathione redox potential. The extract increased the osmotic fragility of erythrocytes, induced hemolysis, and inhibited hemolysis in isotonic ammonium chloride, indicative of decreased membrane permeability for Cl- and increased the membrane fluidity. Fluorescent probes indicated an increased level of reactive oxygen species and induction of lipid peroxidation, but these results should be interpreted with care since the extract alone induced oxidation of the probes (dichlorodihydrofluorescein diacetate and BODIPY C11). These results demonstrate that garlic extract induces oxidative changes in the erythrocyte, first of all, thiol and hemoglobin oxidation.


Subject(s)
Erythrocytes , Garlic , Hemolysis , Oxidation-Reduction , Plant Extracts , Garlic/chemistry , Humans , Plant Extracts/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Hemolysis/drug effects , Oxidation-Reduction/drug effects , Lipid Peroxidation/drug effects , Hemoglobins/metabolism , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Osmotic Fragility/drug effects
4.
Urologiia ; (1): 24-30, 2024 Mar.
Article in Russian | MEDLINE | ID: mdl-38650402

ABSTRACT

AIM: To determine the effect of standard treatment on changes in the structural and functional properties of erythrocytes in obstructive and non-obstructive acute pyelonephritis. MATERIALS AND METHODS: The structural and functional properties of erythrocytes and their intracellular metabolism in 78 patients with a diagnosis of primary non-obstructive and secondary obstructive acute pyelonephritis, randomized by age, gender, and the minimum number of concomitant diseases were investigated. RESULTS AND DISCUSSION: In acute non-obstructive pyelonephritis, changes of the content of proteins in circulating erythrocytes responsible for the structure formation and stabilization of the plasma membrane (-spectrin, anion transport protein, pallidin, protein 4.1), intracellular metabolism (anion transport protein, glutathione-S-transferase), membrane flexibility and shape (actin, tropomyosin) are insignificant, alike from acute obstructive pyelonephritis. In addition, processes of lipid peroxidation inside red blood cells are intensified, and oxidative stress develops with a decrease in the sorption capacity of erythrocytes, as well as the content and ratio of lipid fractions in the plasma membrane, which form the basis of the lipid components and play the main role in the sequencing of protein macromolecules and the normal metabolism of red blood cells. CONCLUSION: In acute obstructive pyelonephritis, changes in the content and ratio of proteins and lipids in the erythrocyte membrane lead to functional rearrangements that are not corrected by standard treatment.


Subject(s)
Erythrocytes , Pyelonephritis , Humans , Pyelonephritis/blood , Pyelonephritis/metabolism , Erythrocytes/metabolism , Female , Male , Acute Disease , Adult , Middle Aged , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/chemistry
5.
Eur Biophys J ; 53(4): 239-247, 2024 May.
Article in English | MEDLINE | ID: mdl-38625405

ABSTRACT

In this study, fluorescence recovery after photobleaching (FRAP) experiments were performed on RBC labeled by lipophilic fluorescent dye CM-DiI to evaluate the role of adenylyl cyclase cascade activation in changes of lateral diffusion of erythrocytes membrane lipids. Stimulation of adrenergic receptors with epinephrine (adrenaline) or metaproterenol led to the significant acceleration of the FRAP recovery, thus indicating an elevated membrane fluidity. The effect of the stimulation of protein kinase A with membrane-permeable analog of cAMP followed the same trend but was less significant. The observed effects are assumed to be driven by increased mobility of phospholipids resulting from the weakened interaction between the intermembrane proteins and RBC cytoskeleton due to activation of adenylyl cyclase signaling cascade.


Subject(s)
Adenylyl Cyclases , Erythrocyte Membrane , Fluorescence Recovery After Photobleaching , Membrane Fluidity , Adenylyl Cyclases/metabolism , Membrane Fluidity/drug effects , Humans , Erythrocyte Membrane/metabolism , Enzyme Activation , Signal Transduction/drug effects , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Epinephrine/pharmacology , Epinephrine/metabolism
6.
Br J Haematol ; 204(5): 2025-2039, 2024 May.
Article in English | MEDLINE | ID: mdl-38613149

ABSTRACT

Splenectomised ß-thalassaemia/haemoglobin E (HbE) patients have increased levels of circulating microparticles or medium extra-cellular vesicles (mEVs). The splenectomised mEVs play important roles in thromboembolic complications in patients since they can induce platelet activation and endothelial cell dysfunction. However, a comprehensive understanding of the mechanism of mEV generation in thalassaemia disease has still not been reached. Thalassaemic mEVs are hypothesised to be generated from cellular oxidative stress in red blood cells (RBCs) and platelets. Therefore, a proteomic analysis of mEVs from splenectomised and non-splenectomised ß-thalassaemia/HbE patients was performed by liquid chromatography with tandem mass spectrometry. A total of 171 proteins were identified among mEVs. Interestingly, 72 proteins were uniquely found in splenectomised mEVs including immunoglobulin subunits and cytoskeleton proteins. Immunoglobulin G (IgG)-bearing mEVs in splenectomised patients were significantly increased. Furthermore, complement C1q was detected in both mEVs with IgG binding and mEVs without IgG binding. Interestingly, the percentage of mEVs generated from RBCs with IgG binding was approximately 15-20 times higher than the percentage of RBCs binding with IgG. This suggested that the vesiculation of thalassaemia mEVs could be a mechanism of RBCs to eliminate membrane patches harbouring immune complex and may consequently prevent cells from phagocytosis and lysis.


Subject(s)
Hemoglobin E , Proteomics , beta-Thalassemia , Humans , beta-Thalassemia/blood , beta-Thalassemia/metabolism , Hemoglobin E/metabolism , Proteomics/methods , Female , Male , Adult , Extracellular Vesicles/metabolism , Splenectomy , Immunoglobulin G/blood , Erythrocyte Membrane/metabolism , Proteome/analysis , Adolescent , Erythrocytes/metabolism , Cell-Derived Microparticles/metabolism , Young Adult
7.
J Colloid Interface Sci ; 663: 856-868, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447400

ABSTRACT

Mitochondrial dysfunction and metal ion imbalance are recognized as pathological hallmarks of Alzheimer's Disease (AD), leading to deposition of ß-amyloid (Aß) thereby and inducing neurotoxicity, activating apoptosis, eliciting oxidative stress, and ultimately leading to cognitive impairment. In this study, the red blood cell membrane (RBC) was used as a vehicle for encapsulating carbon quantum dots (CQD) and polydopamine (PDA), creating a nanocomposite (PDA-CQD/RBC). This nanocomposite was combined with near-infrared light (NIR) for AD treatment. The RBC offers anti-immunorecognition properties to evade immune clearance, PDA exhibits enzyme-mimicking activity to mitigate oxidative stress damage, and CQD acts as a chelating agent for metal ions (Cu2+), effectively preventing Cu2+-mediated aggregation of Aß. Furthermore, the local heating induced by near-infrared laser irradiation can dismantle the formed Aß fibers and enhance the blood-brain barrier's permeability. Both in vitro and animal experiments have shown that PDA-CQD/RBC, in combination with NIR, mitigates neuroinflammation, and ameliorates behavioral deficits in mice. This approach targets multiple pathological pathways, surpassing the limitations of single-target treatments and enhancing therapeutic efficacy while decelerating disease progression.


Subject(s)
Alzheimer Disease , Indoles , Polymers , Quantum Dots , Mice , Animals , Alzheimer Disease/drug therapy , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/pathology , Amyloid beta-Peptides , Metals , Infrared Rays , Carbon/pharmacology
8.
Maturitas ; 184: 107948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447232

ABSTRACT

OBJECTIVE: Middle-aged women with obesity are at increased risk of iron overload and iron disorder is known to disrupt n-3 polyunsaturated fatty acid homeostasis. We evaluated relationships between pretreatment hemoglobin and n-3 polyunsaturated fatty acid levels, and tested whether pretreatment hemoglobin contributed to inter-individual variability in weight loss with special focus on changes in body weight, iron and n-3 polyunsaturated fatty acid profiles. STUDY DESIGN: 117 middle and older aged women with obesity and more than two metabolic abnormalities were randomized to a 12-week hypocaloric diet without or with fish oil supplementation. Blood iron biomarker and erythrocyte membrane phospholipid profiles were evaluated. MAIN OUTCOME: The absolute change from baseline to week 12 in serum iron and erythrocyte n-3 polyunsaturated fatty acid levels according to pretreatment hemoglobin tertiles and fish oil supplementation. RESULTS: A Pearson correlation analysis showed that pretreatment hemoglobin levels were negatively correlated with linoleic acid (r = -0.231), α-linoleic acid (r = -0.279), and n-3 polyunsaturated fatty acid (r = -0.217) (all p < 0.05). Dietary weight loss markedly enhanced erythrocyte membrane lipids of linoleic acid, α-linoleic acid, and n-6 and n-3 polyunsaturated fatty acid only in those women with the highest pretreatment hemoglobin levels (tertile 3) (all p < 0.05). Fish oil supplementation increased bioavailable iron in women with moderate pretreatment hemoglobin levels (tertile 2) (p < 0.05) and, to a lesser extent, prevented a reduction in circulating iron in those with the lowest hemoglobin levels (tertile 1). CONCLUSION: Dietary weight loss is an effective treatment program to manage obesity-related iron and n-3 polyunsaturated fatty acid disorders, particularly for middle-aged women with obesity and iron overload.


Subject(s)
Dietary Supplements , Erythrocyte Membrane , Fatty Acids, Omega-3 , Fish Oils , Hemoglobins , Homeostasis , Iron , Obesity , Weight Loss , Humans , Female , Middle Aged , Fatty Acids, Omega-3/administration & dosage , Obesity/diet therapy , Obesity/complications , Obesity/blood , Obesity/metabolism , Fish Oils/administration & dosage , Iron/blood , Iron/metabolism , Erythrocyte Membrane/metabolism , Hemoglobins/metabolism , Hemoglobins/analysis , Diet, Reducing , Adult , Caloric Restriction , Phospholipids/blood
9.
Biomolecules ; 14(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38397451

ABSTRACT

The protein 4.1R is an essential component of the erythrocyte membrane skeleton, serving as a key structural element and contributing to the regulation of the membrane's physical properties, including mechanical stability and deformability, through its interaction with spectrin-actin. Recent research has uncovered additional roles of 4.1R beyond its function as a linker between the plasma membrane and the membrane skeleton. It has been found to play a crucial role in various biological processes, such as cell fate determination, cell cycle regulation, cell proliferation, and cell motility. Additionally, 4.1R has been implicated in cancer, with numerous studies demonstrating its potential as a diagnostic and prognostic biomarker for tumors. In this review, we provide an updated overview of the gene and protein structure of 4.1R, as well as its cellular functions in both physiological and pathological contexts.


Subject(s)
Cytoskeletal Proteins , Membrane Proteins , Membrane Proteins/metabolism , Cytoskeletal Proteins/metabolism , Spectrin/chemistry , Spectrin/genetics , Spectrin/metabolism , Actins/metabolism , Erythrocyte Membrane/metabolism
10.
Blood Adv ; 8(1): 1-13, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37910801

ABSTRACT

ABSTRACT: The process of protein phosphorylation is involved in numerous cell functions. In particular, phosphotyrosine (pY) has been reported to play a role in red blood cell (RBC) functions, including the cytoskeleton organization. During their storage before transfusion, RBCs suffer from storage lesions that affect their energy metabolism and morphology. This study investigated the relationship between pY and the storage lesions. To do so, RBCs were treated (in the absence of calcium) with a protein tyrosine phosphatase inhibitor (orthovanadate [OV]) to stimulate phosphorylation and with 3 selective kinase inhibitors (KIs). Erythrocyte membrane proteins were studied by western blot analyses and phosphoproteomics (data are available via ProteomeXchange with identifier PXD039914) and cell morphology by digital holographic microscopy. The increase of pY triggered by OV treatment (inducing a global downregulation of pS and pT) disappeared during the storage. Phosphoproteomic analysis identified 609 phosphoproteins containing 1752 phosphosites, of which 41 pY were upregulated and 2 downregulated by OV. After these phosphorylation processes, the shape of RBCs shifted from discocytes to spherocytes, and the addition of KIs partially inhibited this transition. The KIs modulated either pY or pS and pT via diverse mechanisms related to cell shape, thereby affecting RBC morphology. The capacity of RBCs to maintain their function is central in transfusion medicine, and the presented results contribute to a better understanding of RBC biology.


Subject(s)
Blood Preservation , Erythrocytes , Humans , Blood Preservation/methods , Erythrocytes/metabolism , Erythrocyte Membrane/metabolism , Phosphorylation , Protein Tyrosine Phosphatases/metabolism
11.
Free Radic Biol Med ; 210: 237-245, 2024 01.
Article in English | MEDLINE | ID: mdl-38042224

ABSTRACT

Nitrite (NO2-) interacts with hemoglobin (Hb) in various ways to regulate blood flow. During hypoxic vasodilation, nitrite is reduced by deoxyHb to yield nitric oxide (NO). While NO, a hydrophobic gas, could freely diffuse across the cell membrane, how the reactant nitrite anion could permeate through the red blood cell (RBC) membrane remains unclear. We hypothesized that Cl-/HCO3- anion exchanger-1 (AE1; band 3) abundantly embedded in the RBC membrane could transport NO2-, as HCO3- and NO2- exhibit similar hydrated radii. Here, we monitored NO/N2O3 generated from NO2- inside human RBCs by DAF-FM fluorophore. NO2-, not NO3-, increased intraerythrocytic DAF-FM fluorescence. To test the involvement of AE1-mediated transport in intraerythrocytic NO/N2O3 production from nitrite, we lowered Cl- or HCO3- in the RBC-incubating buffer by 20 % and indeed observed slower rise of the DAF-FM fluorescence. Anti-extracellular AE1, but not anti-intracellular AE1 antibodies, reduced the rates of NO formation from nitrite. The AE1 blocker DIDS similarly reduced the rates of NO/N2O3 production from nitrite in a dose-dependent fashion, confirming that nitrite entered RBCs through AE1. Nitrite inside the RBCs reacted with both deoxyHb and oxyHb, as evidenced by 6.1 % decrease in deoxyHb, 14.7 % decrease in oxyHb, and 20.7 % increase in methemoglobin (metHb). Lowering Cl- in the milieu equally delayed metHb production from nitrite-oxyHb and nitrite-deoxyHb reactions. Thus, AE1-mediated NO2- transport facilitates NO2--Hb reactions inside the red cells, supporting NOx metabolism in circulation.


Subject(s)
Nitric Oxide , Nitrites , Humans , Nitrites/metabolism , Nitric Oxide/metabolism , Nitrogen Dioxide/metabolism , Hemoglobins/chemistry , Erythrocytes/metabolism , Methemoglobin , Anion Exchange Protein 1, Erythrocyte/metabolism , Erythrocyte Membrane/metabolism
12.
Bioelectromagnetics ; 45(2): 58-69, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013630

ABSTRACT

Band 3 protein and glycophorin C are the two major integral proteins of the lipid membrane of human red blood cells (RBCs). They are attached from below to a network of elastic filamentous spectrin, the third major RBC membrane protein. The binding properties of the attachments to spectrin affect the shape and deformability of RBCs. We addressed band 3 and glycophorin C attachments to spectrin by measuring the strength of two recently discovered radiofrequency dielectric relaxations, ßsp (1.4 MHz) and γ1sp (9 MHz), that are observable as changes in the complex admittance of RBCs in medium. In medium at pH 5.2, and also in media with protic substances (formamide, methylformamide, or urea), the ßsp relaxation became inhibited that is attributable to detachment of glycophorin C from spectrin. In medium at pH 9.2, we observed inhibition of γ1sp relaxation attributable to detachment of band 3 from spectrin, as also was seen in media with aprotic substances difluoropyridine, dimethylsolfoxide, dimethylformamide, acetone, sodium tetrakis(4-fluorophenyl)borate), chlorpromazine, thioridazine and trifluopiperazine. The viscogenic cosolvents (glycerol, ethylene glycol, or i-erythritol) inhibited both the ßsp and γ1sp relaxations and significantly lowered their characteristic frequencies. Our observations indicate that the glycophorin C attachment to spectrin has nucleophilic centers whose saturation disconnects this attachment and inhibits the ßsp relaxation, whereas at band 3-spectrin attachment site, it is the saturation of electrophilic centers that weakens this attachment and inhibits the γ1sp relaxation.


Subject(s)
Glycophorins , Spectrin , Humans , Spectrin/chemistry , Spectrin/metabolism , Spectrin/pharmacology , Glycophorins/metabolism , Glycophorins/pharmacology , Hydrogen Bonding , Dielectric Spectroscopy , Erythrocyte Membrane/metabolism , Erythrocytes , Skeleton/metabolism , Lipids/pharmacology , Hydrogen-Ion Concentration
13.
Int J Biol Macromol ; 255: 128354, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37995795

ABSTRACT

Polyethylenimine (PEI) is a broadly exploited cationic polymer due to its remarkable gene-loading capacity. However, the high cytotoxicity caused by its high surface charge density has been reported in many cell lines, limiting its application significantly. In this study, two different molecular weights of PEI (PEI10k and PEI25k) were crosslinked with red blood cell membranes (RBCm) via disulfide bonds to form PEI derivatives (RMPs) with lower charge density. Furthermore, the targeting molecule folic acid (FA) molecules were further grafted onto the polymers to obtain FA-modified PEI-RBCm copolymers (FA-RMP25k) with tumor cell targeting and glutathione response. In vitro experiments showed that the FA-RMP25k/DNA complex had satisfactory uptake efficiency in both HeLa and 293T cells, and did not cause significant cytotoxicity. Furthermore, the uptake and transfection efficiency of the FA-RMP25k/DNA complex was significantly higher than that of the PEI25k/DNA complex, indicating that FA grafting can increase transfection efficiency by 15 %. These results suggest that FA-RMP25k may be a promising non-viral gene vector with potential applications in gene therapy.


Subject(s)
Gene Transfer Techniques , Polyethyleneimine , Humans , Cell Membrane/metabolism , DNA/chemistry , Genetic Therapy/methods , Glutathione/genetics , HeLa Cells , Polyethyleneimine/chemistry , Polymers/chemistry , Transfection , Folic Acid/chemistry , Erythrocyte Membrane/metabolism
14.
Ann Hematol ; 103(2): 385-393, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37996759

ABSTRACT

Red blood cell (RBC) membrane disorders represent a significant category of hereditary hemolytic anemia; however, information from Southeast Asia is limited. We established a national registry aiming to characterize RBC membrane disorders and their molecular features in Thailand. A total of 100 patients (99 kindreds) diagnosed with RBC membrane disorders between 2011 and 2020 from seven university hospitals were enrolled. The most prevalent disorders observed were hereditary elliptocytosis (HE; n=33), hereditary pyropoikilocytosis (HPP; n=28), hereditary spherocytosis (HS; n=19), Southeast Asian ovalocytosis (SAO; n=10 of 9 kindreds), and two cases of homozygous SAO. The remaining cases were grouped as unclassified membrane disorder. Seventy-six patients (76%) were molecularly confirmed by PCR, direct DNA sequencing, or hi-throughput sequencing. The primary causative gene for HE and HPP was SPTB, accounting for 28 out of 29 studied alleles for HE and 56 of 56 studied alleles for HPP. In the case of HS, dominant sporadic mutations in the ANK1 gene (n=4) and SPTB gene (n=3) were identified as the underlying cause. Notably, the four most common variants causing HE and HPP were SPTB Providence (c.6055 T>C), SPTB Buffalo (c.6074 T>G), SPTB Chiang Mai (c.6224 A>G), and SPTB c.6171__82delins TGCCCAGCT. These recurrent SPTB mutations accounted for 79 out of 84 mutated SPTB alleles (94%). In summary, HE and hereditary HPP associated with recurrent SPTB mutations are the predominant types of RBC membrane disorders observed in Thailand. These findings have significant implications for the clinical management and future research of RBC membrane disorders in the region.


Subject(s)
Elliptocytosis, Hereditary , Spherocytosis, Hereditary , Humans , Elliptocytosis, Hereditary/epidemiology , Elliptocytosis, Hereditary/genetics , Elliptocytosis, Hereditary/diagnosis , Erythrocyte Membrane/genetics , Erythrocyte Membrane/metabolism , Mutation , Spherocytosis, Hereditary/epidemiology , Spherocytosis, Hereditary/genetics , Spherocytosis, Hereditary/diagnosis , Thailand/epidemiology , Multicenter Studies as Topic , Registries
15.
Eur J Clin Invest ; 54(3): e14121, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929812

ABSTRACT

AIMS: Improving the composition of circulating fatty acids (FA) leads to a reduction in cardiovascular diseases (CVD) in high-risk individuals. The membrane fluidity of red blood cells (RBC), which reflects circulating FA status, may be a valid biomarker of cardiovascular (CV) risk in type 2 diabetes (T2D). METHODS: Red blood cell membrane fluidity, quantified as general polarization (GP), was assessed in 234 subjects with T2D, 86 with prior major CVD. Based on GP distribution, a cut-off of .445 was used to divide the study cohort into two groups: the first with higher GP, called GEL, and the second, defined as lower GP (LGP). Lipidomic analysis was performed to evaluate FA composition of RBC membranes. RESULTS: Although with comparable CV risk factors, the LGP group had a greater percentage of patients with major CVD than the GEL group (40% vs 24%, respectively, p < .05). Moreover, in a logistic regression analysis, a lower GP value was independently associated with the presence of macrovascular complications. Lipidomic analysis showed a clear shift of LGP membranes towards a pro-inflammatory condition due to higher content of arachidonic acid and increased omega 6/omega 3 index. CONCLUSIONS: Increased membrane fluidity is associated with a higher CV risk in subjects with T2D. If confirmed in prospective studies, membrane fluidity could be a new biomarker for residual CV risk assessment in T2D.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Erythrocyte Membrane/metabolism , Membrane Fluidity , Prospective Studies , Risk Factors , Erythrocytes/metabolism , Fatty Acids/metabolism , Heart Disease Risk Factors , Biomarkers/metabolism
16.
Article in English | MEDLINE | ID: mdl-38147804

ABSTRACT

The levels of blood eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are very variable and, in general, low in most of the world population. In this study, the effects of age, sex, COVID-19, and dietary habits on the lipid profile of the erythrocyte membranes were assessed in a sub-cohort of healthy population (N = 203) from a large cohort of individuals from the Basque Country, Spain, (AKRIBEA). Sex did not have an effect on RBC lipid profile. COVID-19 infected participants showed higher levels of DGLA. Oldest participants showed higher oleic acid, EPA and DHA levels. Arachidonic acid in RBC correlated positively with the intake of sunflower oil, butter, eggs, processed and red meat, whereas DHA and EPA correlated positively with oily and lean fish. Basque Country population showed lipid profiles similar to other high fish consuming countries, such as Italy and Japan. Baseline levels of the whole lipidomic profile of the RBC including SFA, MUFA and PUFA should be examined to obtain a better description of the health and nutritional status.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Animals , Humans , Fatty Acids , Spain , Erythrocyte Membrane/metabolism , Eicosapentaenoic Acid , Docosahexaenoic Acids , Europe , Feeding Behavior , COVID-19/epidemiology
17.
ACS Appl Mater Interfaces ; 15(50): 58067-58078, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38056905

ABSTRACT

Recently, cell membrane camouflaged nanoparticles (NPs) endowed with natural cellular functions have been extensively studied in various biomedical fields. However, there are few reports about such biomimetic NPs used to codeliver chemodrug and genes for synergistic cancer treatment up to now. Herein, we first prepare chemodrug-gene nanoparticles (Mito-Her2 NPs) by the electrostatic interaction coself-assembly of mitoxantrone hydrochloride (Mito) and human epidermal growth factor receptor-2 antisense oligonucleotide (Her2 ASO). Then, Mito-Her2 NPs are coated by a hybrid membrane (RSHM), consisting of the red blood cell membrane (RBCM) and the SKOV3 ovarian cancer cell membrane (SCM), to produce biomimetic chemodrug-gene nanoparticles (Mito-Her2@RSHM NPs) for combination therapy of ovarian cancer. Mito-Her2@RSHM NPs integrate the advantages of RBCM (e.g., good immune evasion capability and long circulation lifetime in the blood) and SCM (e.g., highly specific cognate recognition) together and improve the anticancer efficacy of Mito-Her2 NPs. The results show that Mito-Her2@RSHM NPs can be devoured by SKOV3 ovarian cancer cells and effectively degraded to release Her2 ASOs and Mito simultaneously. Her2 ASOs can inhibit the expression of endogenous Her2 genes and recover cancer cells' sensitivity to Mito, which ultimately led to a high apoptosis rate of 75.7% in vitro. Mito-Her2@RSHM NPs also show a high tumor suppression rate of 83.33 ± 4.16% in vivo without significant damage to normal tissues. In summary, Mito-Her2@RSHM NPs would be expected as a versatile and safe nanodrug delivery platform with high efficiency for chemo-gene combined cancer treatment.


Subject(s)
Nanoparticles , Ovarian Neoplasms , Humans , Female , Cell Line, Tumor , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Erythrocyte Membrane/metabolism , Apoptosis , Mitomycin , Nanoparticles/therapeutic use
18.
ACS Macro Lett ; 12(11): 1583-1588, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37937586

ABSTRACT

Hydrogen sulfide (H2S) is an important gaseous signaling molecule with unique pleiotropic pharmacological effects, but may be limited for clinical translation due to the lack of a reliable delivery form that delivers exogenous H2S to cells at action site with precisely controlled dosage. Herein, we report the design of a poly(thiourethane) (PTU) self-immolative polymer terminally caged with an acrylate moiety to trigger release of H2S in response to cysteine (Cys) and homocysteine (Hcy), the most used and independent indicators of neurodegenerative diseases. The synthesized PTU polymer was then coated with the red-blood-cell (RBC) membrane in the presence of solubilizing agent to self-assemble into nanoparticles with enhanced stability and cytocompatibility. The Hcy/Cys mediated addition/cyclization chemistry actuated the biomimetic polymeric nanoparticles to disintegrate into carbonyl sulfide (COS), and finally convert into H2S via the ubiquitous carbonic anhydrase (CA). H2S released in a controlled manner exhibited a strong antioxidant ability to resist Alzheimer's disease (AD)-related oxidative stress factors in BV-2 cells, a neurodegenerative disease model in vitro. Thus, this work may provide an effective strategy to construct H2S donors that can degrade in response to a specific pathological microenvironment for the treatment of neurodegenerative diseases.


Subject(s)
Hydrogen Sulfide , Neurodegenerative Diseases , Humans , Cysteine , Hydrogen Sulfide/chemistry , Erythrocyte Membrane/metabolism , Polymers
19.
Sci Rep ; 13(1): 12883, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558717

ABSTRACT

The aim of the study is to investigate the differences in the interaction of three structurally diverse anthocyanidins, namely peonidin, petunidin, and delphinidin, as well as their glucosides with model biological membranes, human albumin, and plasmid DNA in order to look into their structure-activity relationships. Fluorimetric studies, as well as ATR-FTIR analyses, were jointly used in order to determine the changes observed in both the hydrophilic and hydrophobic layers of cell-mimic membranes (MM) which reflected the membrane lipid composition of tumour cells and red blood cell membranes (RBCM). Our results showed that anthocyanins and anthocyanidins can cause an increase in the packing order of the polar heads of lipids, as well as interact with their deeper layers by reducing the fluidity of lipid chains. The results presented here indicate that all compounds tested here possessed the ability to bind to human serum albumin (HSA) and the presence of a glucose molecule within the structures formed by anthocyanidin reduces their ability to bind to proteins. Using fluorescence correlation spectroscopy, it was demonstrated that the compounds tested here were capable of forming stable complexes with plasmid DNA and, particularly, strong DNA conformational changes were observed in the presence of petunidin and corresponding glucoside, as well as delphinidin. The results we obtained can be useful in comprehending the anthocyanins therapeutic action as molecular antioxidants and provide a valuable insight into their mechanism of action.


Subject(s)
Anthocyanins , Glucosides , Humans , Anthocyanins/metabolism , Glucosides/pharmacology , Glucosides/chemistry , Erythrocyte Membrane/metabolism , Serum Albumin, Human , DNA , Plasmids/genetics
20.
mSphere ; 8(5): e0013123, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37606582

ABSTRACT

Malaria parasites modify their host erythrocyte in multiple ways, leading to changes in the deformability, adhesiveness, and permeability of the host erythrocyte. Most of these changes are mediated by proteins exported from the parasite to the host erythrocyte, where these proteins interact with the host cell cytoskeleton or form complexes in the plasma membrane of the infected erythrocyte. In addition, malaria parasites induce the formation of membranous compartments-the parasitophorous vacuole, the tubovesicular network (TVN), the Maurer's clefts and small vesicles-within the infected erythrocyte, a cell that is normally devoid of internal membranes. After infection, changes also occur in the composition and asymmetry of the erythrocyte plasma membrane. Although many aspects of the mechanism of export of parasite proteins have become clear, the mechanism by which these membranous compartments are formed and expanded is almost entirely unknown. To determine whether parasite-derived phospholipids play a part in these processes, we applied a metabolic labeling technique that allows phosphatidylcholine to be labeled with a fluorophore. As the host erythrocyte cannot synthesize phospholipids, within infected erythrocytes, only parasite-derived phosphatidylcholine will be labeled with this technique. The results revealed that phosphatidylcholine produced by the parasite is distributed throughout the infected erythrocyte, including the TVN and the erythrocyte plasma membrane, but not Maurer's clefts. Interestingly, labeled phospholipids were also detected in the erythrocyte plasma membrane very soon after invasion of the parasites, indicating that the parasite may add phospholipids to the host erythrocyte during invasion. IMPORTANCE Here, we describe a previously unappreciated way in which the malaria parasite interacts with the host erythrocyte, namely, by the transfer of parasite phospholipids to the erythrocyte plasma membrane. This likely has important consequences for the survival of the parasite in the host cell and the host organism. We show that parasite-derived phospholipids are transferred from the parasite to the host erythrocyte plasma membrane and that other internal membranes that are produced after the parasite has invaded the cell are produced, at least in part, using parasite-derived phospholipids. The one exception to this is the Maurer's cleft, a membranous organelle that is involved in the transport of parasite proteins to the surface of the erythrocyte. This reveals that the Maurer's cleft is produced in a different manner than the other parasite-induced membranes. Overall, these findings provide a platform for the study of a new aspect of the host-parasite interaction.


Subject(s)
Malaria , Parasites , Animals , Humans , Phosphatidylcholines/metabolism , Plasmodium falciparum/metabolism , Erythrocytes/parasitology , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...