Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127.858
Filter
1.
Function (Oxf) ; 5(3): zqae009, 2024.
Article in English | MEDLINE | ID: mdl-38706961

ABSTRACT

Global prevalence of hypertension is on the rise, burdening healthcare, especially in developing countries where infectious diseases, such as malaria, are also rampant. Whether hypertension could predispose or increase susceptibility to malaria, however, has not been extensively explored. Previously, we reported that hypertension is associated with abnormal red blood cell (RBC) physiology and anemia. Since RBC are target host cells for malarial parasite, Plasmodium, we hypothesized that hypertensive patients with abnormal RBC physiology are at greater risk or susceptibility to Plasmodium infection. To test this hypothesis, normotensive (BPN/3J) and hypertensive (BPH/2J) mice were characterized for their RBC physiology and subsequently infected with Plasmodium yoelii (P. yoelii), a murine-specific non-lethal strain. When compared to BPN mice, BPH mice displayed microcytic anemia with RBC highly resistant to osmotic hemolysis. Further, BPH RBC exhibited greater membrane rigidity and an altered lipid composition, as evidenced by higher levels of phospholipids and saturated fatty acid, such as stearate (C18:0), along with lower levels of polyunsaturated fatty acid like arachidonate (C20:4). Moreover, BPH mice had significantly greater circulating Ter119+ CD71+ reticulocytes, or immature RBC, prone to P. yoelii infection. Upon infection with P. yoelii, BPH mice experienced significant body weight loss accompanied by sustained parasitemia, indices of anemia, and substantial increase in systemic pro-inflammatory mediators, compared to BPN mice, indicating that BPH mice were incompetent to clear P. yoelii infection. Collectively, these data demonstrate that aberrant RBC physiology observed in hypertensive BPH mice contributes to an increased susceptibility to P. yoelii infection and malaria-associated pathology.


Subject(s)
Erythrocytes , Hypertension , Malaria , Plasmodium yoelii , Animals , Malaria/immunology , Malaria/parasitology , Malaria/complications , Malaria/blood , Malaria/physiopathology , Mice , Erythrocytes/parasitology , Erythrocytes/metabolism , Disease Susceptibility , Male , Anemia/parasitology , Disease Models, Animal , Hemolysis
2.
Sci Rep ; 14(1): 10561, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719884

ABSTRACT

This study focuses on understanding the structural and molecular changes in lipid membranes under the influence of six halogenated flavonoid derivatives differing in the number and position of substitution of chlorine and bromine atoms (D1-D6). Utilizing various analytical techniques, including fluorometric methods, dynamic light scattering (DLS), attenuated Fourier transform infrared spectroscopy (ATR- FTIR), and FT-Raman spectroscopy, the research aims to elucidate the mechanisms underlying the interaction of flavonoids with cell membranes. Additionally, the study includes in silico analyses to explore the physicochemical properties of these compounds and their potential pharmaceutical applications, along with toxicity studies to assess their effects on cancer, normal, and red blood cells. Our study showed the ability of halogenated derivatives to interact mostly with the outer part of the membrane, especially in the lipid heads region however, some of them were able to penetrate deeper into the membrane and affect the fluidity of hydrocarbon chains. The potential to reduce cancer cell viability, the lack of toxicity towards erythrocytes, and the favourable physicochemical and pharmacokinetic properties suggest these halogenated flavonoids potential candidates for exploring their potential for medical use.


Subject(s)
Flavonoids , Membrane Lipids , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/metabolism , Humans , Membrane Lipids/metabolism , Membrane Lipids/chemistry , Cell Membrane/metabolism , Halogenation , Cytotoxins/chemistry , Cytotoxins/pharmacology , Cytotoxins/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Cell Survival/drug effects , Spectrum Analysis, Raman , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor
3.
Sci Rep ; 14(1): 10054, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698053

ABSTRACT

ß-Thalassaemia is one of the most common genetic diseases worldwide. During the past few decades, life expectancy of patients has increased significantly owing to advance in medical treatments. Cognitive impairment, once has been neglected, has gradually become more documented. Cognitive impairment in ß-thalassaemia patients is associated with natural history of the disease and socioeconomic factors. Herein, to determined effect of ß-thalassaemia intrinsic factors, 22-month-old ß-thalassaemia mouse was used as a model to assess cognitive impairment and to investigate any aberrant brain pathology in ß-thalassaemia. Open field test showed that ß-thalassaemia mice had decreased motor function. However, no difference of neuronal degeneration in primary motor cortex, layer 2/3 area was found. Interestingly, impaired learning and memory function accessed by a Morris water maze test was observed and correlated with a reduced number of living pyramidal neurons in hippocampus at the CA3 region in ß-thalassaemia mice. Cognitive impairment in ß-thalassaemia mice was significantly correlated with several intrinsic ß-thalassaemic factors including iron overload, anaemia, damaged red blood cells (RBCs), phosphatidylserine (PS)-exposed RBC large extracellular vesicles (EVs) and PS-exposed medium EVs. This highlights the importance of blood transfusion and iron chelation in ß-thalassaemia patients. In addition, to improve patients' quality of life, assessment of cognitive functions should become part of routine follow-up.


Subject(s)
Cognitive Dysfunction , Disease Models, Animal , Hippocampus , beta-Thalassemia , Animals , beta-Thalassemia/pathology , beta-Thalassemia/complications , beta-Thalassemia/genetics , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Mice , Hippocampus/pathology , Hippocampus/metabolism , Male , Neurons/metabolism , Neurons/pathology , Iron Overload/pathology , Iron Overload/metabolism , Iron Overload/complications , Extracellular Vesicles/metabolism , Erythrocytes/metabolism , Erythrocytes/pathology , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Maze Learning
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 617-626, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708493

ABSTRACT

OBJECTIVE: To investigate immunogenic and toxic effects of graphene oxide (GO) nanoparticles in mouse skeletal muscles and in human blood in vitro. METHODS: GO nanoparticles prepared using a probe sonicator were supended in deionized H2O or PBS, and particle size and surface charge of the nanoparticles were measured with dynamic light scattering (DLS). Different concentrations (0.5, 1.0 and 2.0 mg/mL) of GO suspension or PBS were injected at multiple sites in the gastrocnemius muscle (GN) of C57BL/6 mice, and inflammatory response and immune cell infiltrations were detected with HE and immunofluorescence staining. We also examined the effects of GO nanoparticles on human red blood cell (RBC) morphology, hemolysis and blood coagulation using scanning electron microscope (SEM), spectrophotometry, and thromboelastography (TEG). RESULTS: GO nanoparticles suspended in PBS exhibited better colloidal dispersity, stability and surface charge effects than those in deionized H2O. In mouse GNs, injection of GO suspensions dose- and time-dependently resulted in sustained muscular inflammation and myofiber degeneration at the injection sites, which lasted till 8 weeks after the injection; immunofluorescence staining revealed obvious infiltration of monocytes, macrophages, dendritic cells and CD4+ T cells around the injection sites in mouse GNs. In human RBCs, incubation with GO suspensions at 0.2, 2.0 and 20 mg/mL, but not at 0.002 or 0.02 mg/mL, caused significant alterations of cell morphology and hemolysis. TEG analysis showed significant abnormalities of blood coagulation parameters following treatment with high concentrations of GO. CONCLUSION: GO nanoparticles can induce sustained inflammatory and immunological responses in mouse GNs and cause RBC hemolysis and blood coagulation impairment, suggesting its muscular toxicity and hematotoxicity at high concentrations.


Subject(s)
Erythrocytes , Graphite , Hemolysis , Mice, Inbred C57BL , Muscle, Skeletal , Nanoparticles , Animals , Graphite/toxicity , Graphite/chemistry , Mice , Erythrocytes/drug effects , Humans , Muscle, Skeletal/drug effects , Hemolysis/drug effects , Particle Size , Blood Coagulation/drug effects
5.
Sci Rep ; 14(1): 12194, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806542

ABSTRACT

Blood exchange therapy, specifically Whole blood exchange (WBE), is increasingly being utilized in clinical settings to effectively treat a range of diseases. Consequently, there is an urgent requirement to establish convenient and clinically applicable animal models that can facilitate the exploration of blood exchange therapy mechanisms. Our study conducted continuous WBE in rats through femoral and tail vein catheterization using dual-directional syringe pumps. To demonstrate the applicability of continuous WBE, drug-induced hemolytic anemia (DIHA) was induced through phenylhydrazine hydrochloride (PHZ) injection. Notability, the rats of DIHA + WBE group all survived and recovered within the subsequent period. After the implementation of continuous WBE therapy day (Day 1), the DIHA + WBE group exhibited a statistically significant increase in red blood cells (RBC) (P = 0.0343) and hemoglobin (HGB) levels (P = 0.0090) compared to DIHA group. The rats in the DIHA + WBE group exhibited a faster recovery rate compared to the DIHA group, indicating the successful establishment of a continuous blood exchange protocol. This experimental approach demonstrates not just promising efficacy in the treatment of DIHA and offers a valuable tool for investigating the underlying mechanisms of blood exchange. Furthermore, it has a great potential to the advancement of biomedical research such as drug delivery exploration.


Subject(s)
Phenylhydrazines , Animals , Rats , Male , Anemia, Hemolytic/blood , Anemia, Hemolytic/therapy , Disease Models, Animal , Hemoglobins , Erythrocytes/metabolism , Rats, Sprague-Dawley
6.
Stem Cell Res Ther ; 15(1): 142, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750578

ABSTRACT

Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.


Subject(s)
Erythrocytes , Erythropoiesis , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Cell Differentiation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism
7.
Science ; 384(6695): eadj4088, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696552

ABSTRACT

The developmental decision made by malaria parasites to become sexual underlies all malaria transmission. Here, we describe a rich atlas of short- and long-read single-cell transcriptomes of over 37,000 Plasmodium falciparum cells across intraerythrocytic asexual and sexual development. We used the atlas to explore transcriptional modules and exon usage along sexual development and expanded it to include malaria parasites collected from four Malian individuals naturally infected with multiple P. falciparum strains. We investigated genotypic and transcriptional heterogeneity within and among these wild strains at the single-cell level, finding differential expression between different strains even within the same host. These data are a key addition to the Malaria Cell Atlas interactive data resource, enabling a deeper understanding of the biology and diversity of transmission stages.


Subject(s)
Erythrocytes , Malaria, Falciparum , Plasmodium falciparum , Sexual Development , Humans , Erythrocytes/parasitology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Sexual Development/genetics , Single-Cell Analysis , Transcriptome , Atlases as Topic
8.
Immunohematology ; 40(1): 1-9, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38739025

ABSTRACT

KLF transcription factor 1 (KLF1) and GATA binding protein 1 (GATA1) are transcription factors (TFs) that initiate and regulate transcription of the genes involved in erythropoiesis. These TFs possess DNA-binding domains that recognize specific nucleotide sequences in genes, to which they bind and regulate transcription. Variants in the genes that encode either KLF1 or GATA1 can result in a range of hematologic phenotypes-from benign to severe forms of thrombocytopenia and anemia; they can also weaken the expression of blood group antigens. The Lutheran (LU) blood group system is susceptible to TF gene variations, particularly KLF1 variants. Individuals heterozygous for KLF1 gene variants show reduced Lutheran antigens on red blood cells that are not usually detected by routine hemagglutination methods. This reduced antigen expression is referred to as the In(Lu) phenotype. For accurate blood typing, it is important to distinguish between the In(Lu) phenotype, which has very weak antigen expression, and the true Lunull phenotype, which has no antigen expression. The International Society of Blood Transfusion blood group allele database registers KLF1 and GATA1 variants associated with modified Lutheran expression. Here, we review KLF1 and recent novel gene variants defined through investigating blood group phenotype and genotype discrepancies or, for one report, investigating cases with unexplained chronic anemia. In addition, we include a review of the GATA1 TF, including a case report describing the second GATA1 variant associated with a serologic Lu(a-b-) phenotype. Finally, we review both past and recent reports on variations in the DNA sequence motifs on the blood group genes that disrupt the binding of the GATA1 TF and either remove or reduce erythroid antigen expression. This review highlights the diversity and complexity of the transcription process itself and the need to consider these factors as an added component for accurate blood group phenotyping.


Subject(s)
Blood Group Antigens , Erythrocytes , GATA1 Transcription Factor , Kruppel-Like Transcription Factors , Humans , Kruppel-Like Transcription Factors/genetics , GATA1 Transcription Factor/genetics , Erythrocytes/metabolism , Erythrocytes/immunology , Blood Group Antigens/genetics , Blood Group Antigens/immunology , Lutheran Blood-Group System/genetics , Gene Expression Regulation , Erythropoiesis/genetics
9.
Sci Rep ; 14(1): 11242, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755230

ABSTRACT

The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.


Subject(s)
Erythrocytes , Plasmodium falciparum , Proteomics , Protozoan Proteins , Erythrocytes/parasitology , Erythrocytes/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Humans , Proteomics/methods , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Ascorbate Peroxidases/metabolism , Protein Binding , Biotinylation , Endonucleases , Peptides , Proteins , Multifunctional Enzymes
10.
Arch Microbiol ; 206(6): 257, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734773

ABSTRACT

There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.


Subject(s)
Antifungal Agents , Candida , Protease Inhibitors , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Protease Inhibitors/pharmacology , Microbial Sensitivity Tests , Animals , Capsicum/microbiology , Reactive Oxygen Species/metabolism , Seeds/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Erythrocytes/drug effects , Larva/microbiology , Larva/growth & development , Larva/drug effects
11.
Anat Histol Embryol ; 53(3): e13054, 2024 May.
Article in English | MEDLINE | ID: mdl-38735037

ABSTRACT

Identifying and analysing distinct blood cells is crucial for the diagnosis and treatment of diseases in the field of biomedicine. The present study was undertaken to study the cytomorphological and cytochemical characteristics of the blood cells of Zoar, a non-descript indigenous breed of chicken extensively reared under backyard poultry farming in Mizoram, India. For this study, 2 mL of blood samples were aseptically collected from the wings veins of 12 chickens and were processed for light microscopic study under standard protocols. The matured erythrocytes were elliptical, while the immature erythrocytes appeared oval. The heterophils were positive for SBB (SBB), Periodic Acid Schiff (PAS), acid phosphatase, alkaline phosphatase and Arylsulphatase while the eosinophils were positive for SBB, PAS, alkaline phosphatase, cytochrome oxidase and peroxidase. The basophils of were positive for toluidine blue while the thrombocytes were positive for PAS. These cytochemical and cytoenzymatic staining properties plays a very important role in diagnosis, differentiation, and classification of leukaemias.


Subject(s)
Chickens , Eosinophils , Erythrocytes , Animals , Chickens/anatomy & histology , India , Erythrocytes/cytology , Eosinophils/cytology , Blood Cells/cytology , Blood Platelets/cytology , Alkaline Phosphatase/blood , Basophils/cytology , Acid Phosphatase/blood , Electron Transport Complex IV/analysis
12.
Expert Rev Hematol ; 17(4-5): 107-116, 2024.
Article in English | MEDLINE | ID: mdl-38708453

ABSTRACT

INTRODUCTION: Bystander hemolysis occurs when antigen-negative red blood cells (RBCs) are lysed by the complement system. Many clinical entities including passenger lymphocyte syndrome, hyperhemolysis following blood transfusion, and paroxysmal nocturnal hemoglobinuria are complicated by bystander hemolysis. AREAS COVERED: The review provides data about the role of the complement system in the pathogenesis of bystander hemolysis. Moreover, future perspectives on the understanding and management of this syndrome are described. EXPERT OPINION: Complement system can be activated via classical, alternative, and lectin pathways. Classical pathway activation is mediated by antigen-antibody (autoantibodies and alloantibodies against autologous RBCs, infectious agents) complexes. Alternative pathway initiation is triggered by heme, RBC microvesicles, and endothelial injury that is a result of intravascular hemolysis. Thus, C5b is formed, binds with C6-C9 compomers, and MAC (C5b-9) is formulated in bystander RBCs membranes, leading to cell lysis. Intravascular hemolysis, results in activation of the alternative pathway, establishing a vicious cycle between complement activation and bystander hemolysis. C5 inhibitors have been used effectively in patients with hyperhemolysis syndrome and other entities characterized by bystander hemolysis.


Subject(s)
Complement Activation , Complement System Proteins , Erythrocytes , Hemolysis , Humans , Hemolysis/immunology , Erythrocytes/immunology , Erythrocytes/metabolism , Complement System Proteins/immunology , Complement System Proteins/metabolism , Bystander Effect , Hemoglobinuria, Paroxysmal/immunology , Hemoglobinuria, Paroxysmal/therapy
13.
Biosens Bioelectron ; 258: 116352, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718635

ABSTRACT

The production of HbS - an abnormal hemoglobin (Hb) - in sickle cell disease (SCD) results in poorly deformable red blood cells (RBCs) that are prone to microcapillary occlusion, causing tissue ischemia and organ damage. Novel treatments, including gene therapy, may reduce SCD morbidity, but methods to functionally evaluate RBCs remain limited. Previously, we presented the microfluidic impedance red cell assay (MIRCA) for rapid assessment of RBC deformability, employing electrical impedance-based readout to measure RBC occlusion of progressively narrowing micropillar openings. We describe herein the design, development, validation, and clinical utility of the next-generation MIRCA assay, featuring enhanced portability, rapidity, and usability. It incorporates a miniaturized impedance analyzer and features a simplified wash-free operation that yields an occlusion index (OI) within 15 min as a new metric for RBC occlusion. We show a correlation between OI and percent fetal hemoglobin (%HbF), other laboratory biomarkers of RBC hemolysis, and SCD severity. To demonstrate the assay's versatility, we tested RBC samples from treatment-naïve SCD patients in Uganda that yielded OI levels similar to those from hydroxyurea (HU)-treated patients in the U.S., highlighting the role of %HbF in protecting against microcapillary occlusion independent of other pharmacological effects. The MIRCA assay could also identify a subset of HU-treated patients with high occlusion risks, suggesting that they may require treatment adjustments including a second-line therapy to improve their outcomes. This work demonstrates the potential of the MIRCA assay for accelerated evaluation of RBC health, function, and therapeutic effect in an ex vivo model of the microcapillary networks.


Subject(s)
Anemia, Sickle Cell , Biosensing Techniques , Electric Impedance , Erythrocytes , Humans , Anemia, Sickle Cell/blood , Biosensing Techniques/instrumentation , Equipment Design , Erythrocyte Deformability , Microfluidic Analytical Techniques/instrumentation , Hemolysis , Lab-On-A-Chip Devices
14.
Sci Rep ; 14(1): 11302, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760404

ABSTRACT

Delayed cerebral ischemia (DCI) is a serious, life-threatening, complication affecting patients who have survived the initial bleeding from a ruptured intracranial aneurysm. Due to the challenging diagnosis, potential DCI prognostic markers should be of value in clinical practice. According to recent reports isoprostanes and red blood cell distribution (RDW) showed to be promising in this respect. We conducted a prospective study of 27 aSAH patients and control group (n = 8). All patients from the study group were treated within the first day of the initial bleeding. We collected data regarding clinical status and results of biochemical, and radiological examinations. We measured cerebrospinal fluid (CSF) concentration of 8-iso-prostaglandin F2α (F2-IsoP) and RDW on days 1, 3, and 5. Both CSF F2-IsoP level and RDW-SD measured on day 1 were significant predictors of DCI. The receiver operating characteristics curve for DCI prediction based on the multivariate model yielded an area under the curve of 0.924 (95% CI 0.824-1.000, p < 0.001). In our study, the model based on the combination of RDW and the level of isoprostanes in CSF on the first day after the initial bleeding showed a prognostic value for DCI prediction. Further studies are required to validate this observation.


Subject(s)
Biomarkers , Brain Ischemia , Dinoprost , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/cerebrospinal fluid , Subarachnoid Hemorrhage/complications , Female , Male , Middle Aged , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Dinoprost/analogs & derivatives , Dinoprost/cerebrospinal fluid , Prognosis , Brain Ischemia/cerebrospinal fluid , Brain Ischemia/etiology , Brain Ischemia/diagnosis , Brain Ischemia/blood , Prospective Studies , Erythrocyte Indices , Aged , Erythrocytes/metabolism , Adult , ROC Curve
15.
Sensors (Basel) ; 24(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794040

ABSTRACT

Malaria is a disease that affects millions of people worldwide, particularly in developing countries. The development of accurate and efficient methods for the detection of malaria-infected cells is crucial for effective disease management and control. This paper presents the electrical impedance spectroscopy (EIS) of normal and malaria-infected red blood cells. An EIS microfluidic device, comprising a microchannel and a pair of coplanar electrodes, was fabricated for single-cell measurements in a continuous manner. Based on the EIS results, the aim of this work is to discriminate Plasmodium falciparum-infected red blood cells from the normal ones. Different from typical impedance spectroscopy, our measurement was performed for the cells in a low-conductivity medium in a frequency range between 50 kHz and 800 kHz. Numerical simulation was utilized to study the suitability parameters of the microchannel and electrodes for the EIS experiment over the measurement frequencies. The measurement results have shown that by using the low-conductivity medium, we could focus on the change in the conductance caused by the presence of a cell in the sensing electrode gap. The results indicated a distinct frequency spectrum of the conductance between the normal and infected red blood cells, which can be further used for the detection of the disease.


Subject(s)
Dielectric Spectroscopy , Erythrocytes , Plasmodium falciparum , Erythrocytes/parasitology , Dielectric Spectroscopy/methods , Dielectric Spectroscopy/instrumentation , Humans , Plasmodium falciparum/physiology , Plasmodium falciparum/pathogenicity , Electrodes , Lab-On-A-Chip Devices , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Electric Impedance , Malaria/diagnosis , Malaria/parasitology
16.
Med Eng Phys ; 128: 104164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789211

ABSTRACT

In computational fluid dynamic studies related to blood flow, investigating the behavior of blood particles is crucial, especially red blood cells as they constitute a significant proportion of blood particles. Additionally, studying red blood cell movements is necessary, especially in stenotic artery geometries. A new multiphase scheme was utilized to demonstrate the effect of red blood cells on hemodynamics in complex coronary arteries and investigate the consequence of their motion. To investigate the effect of red blood cell movement on flow, the dense discrete phase model (DDPM) was used. This simulation was performed in 3D coronary arteries with different degrees of stenosis, utilizing blood pressure as inlet and outlet boundary conditions while assuming the arterial wall to be rigid. The model prediction shows good agreement with experimental data. Velocity values were comparable in both single-phase and two-phase flow simulations, but the shear stress in two-phase modeling had higher values. In the two-phase DDPM modeling, the recirculation areas indicated a higher probability of atherosclerosis plaque re-formation in the pre-stenosis area compared to the stenosis and post-stenosis areas. The DDPM model was found to be more effective in obtaining shear stress values in the artery. Additionally, this model provides good results compared to the single-phase model in investigating the movement of particles along the artery as well as recirculation areas that lead to the deposition of particles.


Subject(s)
Coronary Stenosis , Coronary Vessels , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Humans , Hydrodynamics , Hemodynamics , Erythrocytes , Models, Cardiovascular , Stress, Mechanical , Models, Biological
17.
PLoS One ; 19(5): e0304520, 2024.
Article in English | MEDLINE | ID: mdl-38787842

ABSTRACT

BACKGROUND: Mechanical thrombectomy (MT) has become the gold standard care for treating acute ischemic stroke (AIS) due to large vessel occlusion. Emerging evidence suggests that understanding the composition of clots prior to intervention could be useful for the selection of neuroendovascular techniques, potentially improving the efficacy of treatments. However, current imaging modalities lack the ability to distinguish clot composition accurately and reliably. Since water content can influence signal intensity on CT and MRI scans, its assessment may provide indirect clues about clot composition. This study aimed to elucidate the correlation between water content and clot composition using human clots retrieved from stroke patients and experimentally generated ovine clots. MATERIALS AND METHODS: This study involved an analysis of ten clots retrieved from patients with AIS undergoing MT. Additionally, we created ten red blood cells (RBC)-rich and ten fibrin-rich ovine blood clots, which were placed in a human intracranial vascular model under realistic flow conditions. The water content and compositions of these clots were evaluated, and linear regression analyses were performed to determine the relationship between clot composition and water content. RESULTS: The regression analysis in human stroke clots revealed a significant negative association between RBC concentration and water content. We also observed a positive correlation between water content and both fibrin and platelets in ovine blood clots. Conclusion.


Subject(s)
Ischemic Stroke , Water , Animals , Ischemic Stroke/blood , Ischemic Stroke/diagnostic imaging , Humans , Sheep , Thrombectomy , Thrombosis/diagnostic imaging , Erythrocytes/metabolism , Fibrin/metabolism , Fibrin/analysis , Magnetic Resonance Imaging/methods , Male , Brain Ischemia/diagnostic imaging , Female
18.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791153

ABSTRACT

Garlic is known to have diverse effects on mammalian cells, being cytotoxic, especially to cancer cells, but also protect against oxidative stress. Mammalian erythrocyte is a simple cell devoid of intracellular organelles, protein synthesis ability, and most signaling pathways. Therefore, examination of the effects of garlic on erythrocytes allows for revealing primary events in the cellular action of garlic extract. In this study, human erythrocytes or erythrocyte membranes were exposed to garlic extract at various dilutions. Hemoglobin oxidation to methemoglobin, increased binding of hemoglobin to the membrane, and formation of Heinz bodies were observed. Garlic extract depleted acid-soluble thiols, especially glutathione, and induced a prooxidative shift in the cellular glutathione redox potential. The extract increased the osmotic fragility of erythrocytes, induced hemolysis, and inhibited hemolysis in isotonic ammonium chloride, indicative of decreased membrane permeability for Cl- and increased the membrane fluidity. Fluorescent probes indicated an increased level of reactive oxygen species and induction of lipid peroxidation, but these results should be interpreted with care since the extract alone induced oxidation of the probes (dichlorodihydrofluorescein diacetate and BODIPY C11). These results demonstrate that garlic extract induces oxidative changes in the erythrocyte, first of all, thiol and hemoglobin oxidation.


Subject(s)
Erythrocytes , Garlic , Hemolysis , Oxidation-Reduction , Plant Extracts , Garlic/chemistry , Humans , Plant Extracts/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Hemolysis/drug effects , Oxidation-Reduction/drug effects , Lipid Peroxidation/drug effects , Hemoglobins/metabolism , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Osmotic Fragility/drug effects
19.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791223

ABSTRACT

Amyloid beta peptides (Aß) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Soluble Aß oligomers, rather than monomer or insoluble amyloid fibrils, show red blood cell (RBC) membrane-binding capacity and trigger several morphological and functional alterations in RBCs that can result in impaired oxygen transport and delivery. Since bioactive lipids have been recently proposed as potent protective agents against Aß toxicity, we investigated the role of sphingosine-1-phosphate (S1P) in signaling pathways involved in the mechanism underlying ATP release in Ab-treated RBCs. In RBCs following different treatments, the ATP, 2,3 DPG and cAMP levels and caspase 3 activity were determined by spectrophotometric and immunoassay. S1P rescued the inhibition of ATP release from RBCs triggered by Ab, through a mechanism involving caspase-3 and restoring 2,3 DPG and cAMP levels within the cell. These findings reveal the molecular basis of S1P protection against Aß in RBCs and suggest new therapeutic avenues in AD.


Subject(s)
Adenosine Triphosphate , Amyloid beta-Peptides , Caspase 3 , Cyclic AMP , Erythrocytes , Lysophospholipids , Sphingosine , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Amyloid beta-Peptides/metabolism , Erythrocytes/metabolism , Erythrocytes/drug effects , Humans , Cyclic AMP/metabolism , Adenosine Triphosphate/metabolism , Caspase 3/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , 2,3-Diphosphoglycerate/metabolism , Signal Transduction/drug effects
20.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791402

ABSTRACT

Alkaloids are natural compounds useful as scaffolds for discovering new bioactive molecules. This study utilized alkaloid gramine to synthesize two groups of C3-substituted indole derivatives, which were either functionalized at N1 or not. The compounds were characterized by spectroscopic methods. The protective effects of the new compounds against in vitro oxidative hemolysis induced by standard oxidant 2,2'-azobis(2-amidinopropane dihydro chloride (AAPH) on human erythrocytes as a cell model were investigated. Additionally, the compounds were screened for antimicrobial activity. The results indicated that most of the indole derivatives devoid of the N1 substitution exhibited strong cytoprotective properties. The docking studies supported the affinities of selected indole-based ligands as potential antioxidants. Furthermore, the derivatives obtained exhibited potent fungicidal properties. The structures of the eight derivatives possessing indole moiety bridged to the imidazole-, benzimidazole-, thiazole-, benzothiazole-, and 5-methylbenzothiazoline-2-thiones were determined by X-ray diffraction. The C=S bond lengths in the thioamide fragment pointed to the involvement of zwitterionic structures of varying contribution. The predominance of zwitterionic mesomers may explain the lack of cytoprotective properties, while steric effects, which limit multiple the hydrogen-bond acceptor properties of a thione sulfur, seem to be responsible for the high hemolytic activity.


Subject(s)
Erythrocytes , Hemolysis , Indoles , Humans , Hemolysis/drug effects , Indoles/chemistry , Indoles/pharmacology , Erythrocytes/drug effects , Molecular Docking Simulation , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Structure-Activity Relationship , Antioxidants/pharmacology , Antioxidants/chemistry , Microbial Sensitivity Tests , Cytoprotection/drug effects , Amidines
SELECTION OF CITATIONS
SEARCH DETAIL
...