Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33.966
Filter
1.
PLoS One ; 19(5): e0303598, 2024.
Article in English | MEDLINE | ID: mdl-38768135

ABSTRACT

Circulating miRNA has recently emerged as important biomolecules with potential clinical values as diagnostic markers for several diseases. However, to be used as such, it is critical to accurately quantify miRNAs in the clinic. Yet, preanalytical factors that can affect an error-free quantification of these miRNAs have not been explored. This study aimed at investigating several of these preanalytical factors that may affect the accurate quantification of miRNA-451a, miRNA-423-5p and miRNA-199a-3p in human blood samples. We initially evaluated levels of these three miRNAs in red blood cells (RBCs), white blood cells (WBCs), platelets, and plasma by droplet digital PCR (ddPCR). Next, we monitored miRNA levels in whole blood or platelet rich plasma (PRP) stored at different temperatures for different time periods by ddPCR. We also investigated the effects of hemolysis on miRNA concentrations in platelet-free plasma (PFP). Our results demonstrate that more than 97% of miRNA-451a and miRNA-423-5p in the blood are localized in RBCs, with only trace amounts present in WBCs, platelets, and plasma. Highest amount of the miRNA-199a-3p is present in platelets. Hemolysis had a significant impact on both miRNA-451a and miRNA-423-5p concentrations in plasma, however miRNA-199a levels remain unaffected. Importantly, PRP stored at room temperature (RT) or 4°C showed a statistically significant decrease in miRNA-451a levels, while the other two miRNAs were increased, at days 1, 2, 3 and 7. PFP at RT caused statistically significant steady decline in miRNA-451a and miRNA-423-5p, observed at 12, 24, 36, 48 and 72 hours. Levels of the miRNA-199a-3p in PFP was stable during first 72 hours at RT. PFP stored at -20°C for 7 days showed declining stability of miRNA-451a over time. However, at -80°C miRNA-451a levels were stable up to 7 days. Together, our data indicate that hemolysis and blood storage at RT, 4°C and -20°C may have significant negative effects on the accuracy of circulating miRNA-451a and miRNA-423-5p quantification.


Subject(s)
Erythrocytes , MicroRNAs , Humans , MicroRNAs/blood , MicroRNAs/genetics , Erythrocytes/metabolism , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Hemolysis , Blood Platelets/metabolism , Leukocytes/metabolism
2.
Function (Oxf) ; 5(3): zqae009, 2024.
Article in English | MEDLINE | ID: mdl-38706961

ABSTRACT

Global prevalence of hypertension is on the rise, burdening healthcare, especially in developing countries where infectious diseases, such as malaria, are also rampant. Whether hypertension could predispose or increase susceptibility to malaria, however, has not been extensively explored. Previously, we reported that hypertension is associated with abnormal red blood cell (RBC) physiology and anemia. Since RBC are target host cells for malarial parasite, Plasmodium, we hypothesized that hypertensive patients with abnormal RBC physiology are at greater risk or susceptibility to Plasmodium infection. To test this hypothesis, normotensive (BPN/3J) and hypertensive (BPH/2J) mice were characterized for their RBC physiology and subsequently infected with Plasmodium yoelii (P. yoelii), a murine-specific non-lethal strain. When compared to BPN mice, BPH mice displayed microcytic anemia with RBC highly resistant to osmotic hemolysis. Further, BPH RBC exhibited greater membrane rigidity and an altered lipid composition, as evidenced by higher levels of phospholipids and saturated fatty acid, such as stearate (C18:0), along with lower levels of polyunsaturated fatty acid like arachidonate (C20:4). Moreover, BPH mice had significantly greater circulating Ter119+ CD71+ reticulocytes, or immature RBC, prone to P. yoelii infection. Upon infection with P. yoelii, BPH mice experienced significant body weight loss accompanied by sustained parasitemia, indices of anemia, and substantial increase in systemic pro-inflammatory mediators, compared to BPN mice, indicating that BPH mice were incompetent to clear P. yoelii infection. Collectively, these data demonstrate that aberrant RBC physiology observed in hypertensive BPH mice contributes to an increased susceptibility to P. yoelii infection and malaria-associated pathology.


Subject(s)
Erythrocytes , Hypertension , Malaria , Plasmodium yoelii , Animals , Malaria/immunology , Malaria/parasitology , Malaria/complications , Malaria/blood , Malaria/physiopathology , Mice , Erythrocytes/parasitology , Erythrocytes/metabolism , Disease Susceptibility , Male , Anemia/parasitology , Disease Models, Animal , Hemolysis
3.
Sci Rep ; 14(1): 10561, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719884

ABSTRACT

This study focuses on understanding the structural and molecular changes in lipid membranes under the influence of six halogenated flavonoid derivatives differing in the number and position of substitution of chlorine and bromine atoms (D1-D6). Utilizing various analytical techniques, including fluorometric methods, dynamic light scattering (DLS), attenuated Fourier transform infrared spectroscopy (ATR- FTIR), and FT-Raman spectroscopy, the research aims to elucidate the mechanisms underlying the interaction of flavonoids with cell membranes. Additionally, the study includes in silico analyses to explore the physicochemical properties of these compounds and their potential pharmaceutical applications, along with toxicity studies to assess their effects on cancer, normal, and red blood cells. Our study showed the ability of halogenated derivatives to interact mostly with the outer part of the membrane, especially in the lipid heads region however, some of them were able to penetrate deeper into the membrane and affect the fluidity of hydrocarbon chains. The potential to reduce cancer cell viability, the lack of toxicity towards erythrocytes, and the favourable physicochemical and pharmacokinetic properties suggest these halogenated flavonoids potential candidates for exploring their potential for medical use.


Subject(s)
Flavonoids , Membrane Lipids , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/metabolism , Humans , Membrane Lipids/metabolism , Membrane Lipids/chemistry , Cell Membrane/metabolism , Halogenation , Cytotoxins/chemistry , Cytotoxins/pharmacology , Cytotoxins/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Cell Survival/drug effects , Spectrum Analysis, Raman , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor
4.
Immunohematology ; 40(1): 1-9, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38739025

ABSTRACT

KLF transcription factor 1 (KLF1) and GATA binding protein 1 (GATA1) are transcription factors (TFs) that initiate and regulate transcription of the genes involved in erythropoiesis. These TFs possess DNA-binding domains that recognize specific nucleotide sequences in genes, to which they bind and regulate transcription. Variants in the genes that encode either KLF1 or GATA1 can result in a range of hematologic phenotypes-from benign to severe forms of thrombocytopenia and anemia; they can also weaken the expression of blood group antigens. The Lutheran (LU) blood group system is susceptible to TF gene variations, particularly KLF1 variants. Individuals heterozygous for KLF1 gene variants show reduced Lutheran antigens on red blood cells that are not usually detected by routine hemagglutination methods. This reduced antigen expression is referred to as the In(Lu) phenotype. For accurate blood typing, it is important to distinguish between the In(Lu) phenotype, which has very weak antigen expression, and the true Lunull phenotype, which has no antigen expression. The International Society of Blood Transfusion blood group allele database registers KLF1 and GATA1 variants associated with modified Lutheran expression. Here, we review KLF1 and recent novel gene variants defined through investigating blood group phenotype and genotype discrepancies or, for one report, investigating cases with unexplained chronic anemia. In addition, we include a review of the GATA1 TF, including a case report describing the second GATA1 variant associated with a serologic Lu(a-b-) phenotype. Finally, we review both past and recent reports on variations in the DNA sequence motifs on the blood group genes that disrupt the binding of the GATA1 TF and either remove or reduce erythroid antigen expression. This review highlights the diversity and complexity of the transcription process itself and the need to consider these factors as an added component for accurate blood group phenotyping.


Subject(s)
Blood Group Antigens , Erythrocytes , GATA1 Transcription Factor , Kruppel-Like Transcription Factors , Humans , Kruppel-Like Transcription Factors/genetics , GATA1 Transcription Factor/genetics , Erythrocytes/metabolism , Erythrocytes/immunology , Blood Group Antigens/genetics , Blood Group Antigens/immunology , Lutheran Blood-Group System/genetics , Gene Expression Regulation , Erythropoiesis/genetics
5.
FASEB J ; 38(10): e23666, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38780091

ABSTRACT

Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with erythrocyte traits. However, the functional variants and their working mechanisms remain largely unknown. Here, we reported that the SNP of rs80207740, which was associated with red blood cell (RBC) volume and hemoglobin content across populations, conferred enhancer activity to XPO7 gene via allele-differentially binding to Ikaros family zinc finger 1 (IKZF1). We showed that the region around rs80207740 was an erythroid-specific enhancer using reporter assays, and that the G-allele further enhanced activity. 3D genome evidence showed that the enhancer interacted with the XPO7 promoter, and eQTL analysis suggested that the G-allele upregulated expression of XPO7. We further showed that the rs80207740-G allele facilitated the binding of transcription factor IKZF1 in EMSA and ChIP analyses. Knockdown of IKZF1 and GATA1 resulted in decreased expression of Xpo7 in both human and mouse erythroid cells. Finally, we constructed Xpo7 knockout mouse by CRISPR/Cas9 and observed anemic phenotype with reduced volume and hemoglobin content of RBC, consistent to the effect of rs80207740 on erythrocyte traits. Overall, our study demonstrated that rs80207740 modulated erythroid indices by regulating IKZF1 binding and Xpo7 expression.


Subject(s)
Alleles , Erythrocytes , Genome-Wide Association Study , Ikaros Transcription Factor , Polymorphism, Single Nucleotide , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Humans , Animals , Mice , Erythrocytes/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Promoter Regions, Genetic
6.
Sci Rep ; 14(1): 11242, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755230

ABSTRACT

The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.


Subject(s)
Erythrocytes , Plasmodium falciparum , Proteomics , Protozoan Proteins , Erythrocytes/parasitology , Erythrocytes/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Humans , Proteomics/methods , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Ascorbate Peroxidases/metabolism , Protein Binding , Biotinylation , Endonucleases , Peptides , Proteins , Multifunctional Enzymes
7.
Expert Rev Hematol ; 17(4-5): 107-116, 2024.
Article in English | MEDLINE | ID: mdl-38708453

ABSTRACT

INTRODUCTION: Bystander hemolysis occurs when antigen-negative red blood cells (RBCs) are lysed by the complement system. Many clinical entities including passenger lymphocyte syndrome, hyperhemolysis following blood transfusion, and paroxysmal nocturnal hemoglobinuria are complicated by bystander hemolysis. AREAS COVERED: The review provides data about the role of the complement system in the pathogenesis of bystander hemolysis. Moreover, future perspectives on the understanding and management of this syndrome are described. EXPERT OPINION: Complement system can be activated via classical, alternative, and lectin pathways. Classical pathway activation is mediated by antigen-antibody (autoantibodies and alloantibodies against autologous RBCs, infectious agents) complexes. Alternative pathway initiation is triggered by heme, RBC microvesicles, and endothelial injury that is a result of intravascular hemolysis. Thus, C5b is formed, binds with C6-C9 compomers, and MAC (C5b-9) is formulated in bystander RBCs membranes, leading to cell lysis. Intravascular hemolysis, results in activation of the alternative pathway, establishing a vicious cycle between complement activation and bystander hemolysis. C5 inhibitors have been used effectively in patients with hyperhemolysis syndrome and other entities characterized by bystander hemolysis.


Subject(s)
Complement Activation , Complement System Proteins , Erythrocytes , Hemolysis , Humans , Hemolysis/immunology , Erythrocytes/immunology , Erythrocytes/metabolism , Complement System Proteins/immunology , Complement System Proteins/metabolism , Bystander Effect , Hemoglobinuria, Paroxysmal/immunology , Hemoglobinuria, Paroxysmal/therapy
8.
Nat Commun ; 15(1): 3821, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714702

ABSTRACT

Differentiation of stem and progenitor cells is a highly regulated process that involves the coordinated action of multiple layers of regulation. Here we show how the post-transcriptional regulatory layer instructs the level of chromatin regulation via miR-144 and its targets to orchestrate chromatin condensation during erythropoiesis. The loss of miR-144 leads to impaired chromatin condensation during erythrocyte maturation. Among the several targets of miR-144 that influence chromatin organization, the miR-144-dependent regulation of Hmgn2 is conserved from fish to humans. Our genetic probing of the miR-144/Hmgn2 regulatory axis establish that intact miR-144 target sites in the Hmgn2 3'UTR are necessary for the proper maturation of erythrocytes in both zebrafish and human iPSC-derived erythroid cells while loss of Hmgn2 rescues in part the miR-144 null phenotype. Altogether, our results uncover miR-144 and its target Hmgn2 as the backbone of the genetic regulatory circuit that controls the terminal differentiation of erythrocytes in vertebrates.


Subject(s)
Chromatin , Erythropoiesis , MicroRNAs , Zebrafish , MicroRNAs/metabolism , MicroRNAs/genetics , Erythropoiesis/genetics , Zebrafish/genetics , Zebrafish/metabolism , Humans , Animals , Chromatin/metabolism , Chromatin/genetics , Erythrocytes/metabolism , 3' Untranslated Regions/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Cell Differentiation/genetics
9.
Sci Rep ; 14(1): 10054, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698053

ABSTRACT

ß-Thalassaemia is one of the most common genetic diseases worldwide. During the past few decades, life expectancy of patients has increased significantly owing to advance in medical treatments. Cognitive impairment, once has been neglected, has gradually become more documented. Cognitive impairment in ß-thalassaemia patients is associated with natural history of the disease and socioeconomic factors. Herein, to determined effect of ß-thalassaemia intrinsic factors, 22-month-old ß-thalassaemia mouse was used as a model to assess cognitive impairment and to investigate any aberrant brain pathology in ß-thalassaemia. Open field test showed that ß-thalassaemia mice had decreased motor function. However, no difference of neuronal degeneration in primary motor cortex, layer 2/3 area was found. Interestingly, impaired learning and memory function accessed by a Morris water maze test was observed and correlated with a reduced number of living pyramidal neurons in hippocampus at the CA3 region in ß-thalassaemia mice. Cognitive impairment in ß-thalassaemia mice was significantly correlated with several intrinsic ß-thalassaemic factors including iron overload, anaemia, damaged red blood cells (RBCs), phosphatidylserine (PS)-exposed RBC large extracellular vesicles (EVs) and PS-exposed medium EVs. This highlights the importance of blood transfusion and iron chelation in ß-thalassaemia patients. In addition, to improve patients' quality of life, assessment of cognitive functions should become part of routine follow-up.


Subject(s)
Cognitive Dysfunction , Disease Models, Animal , Hippocampus , beta-Thalassemia , Animals , beta-Thalassemia/pathology , beta-Thalassemia/complications , beta-Thalassemia/genetics , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Mice , Hippocampus/pathology , Hippocampus/metabolism , Male , Neurons/metabolism , Neurons/pathology , Iron Overload/pathology , Iron Overload/metabolism , Iron Overload/complications , Extracellular Vesicles/metabolism , Erythrocytes/metabolism , Erythrocytes/pathology , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Maze Learning
10.
Stem Cell Res Ther ; 15(1): 142, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750578

ABSTRACT

Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.


Subject(s)
Erythrocytes , Erythropoiesis , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Cell Differentiation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism
11.
Sci Rep ; 14(1): 11302, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760404

ABSTRACT

Delayed cerebral ischemia (DCI) is a serious, life-threatening, complication affecting patients who have survived the initial bleeding from a ruptured intracranial aneurysm. Due to the challenging diagnosis, potential DCI prognostic markers should be of value in clinical practice. According to recent reports isoprostanes and red blood cell distribution (RDW) showed to be promising in this respect. We conducted a prospective study of 27 aSAH patients and control group (n = 8). All patients from the study group were treated within the first day of the initial bleeding. We collected data regarding clinical status and results of biochemical, and radiological examinations. We measured cerebrospinal fluid (CSF) concentration of 8-iso-prostaglandin F2α (F2-IsoP) and RDW on days 1, 3, and 5. Both CSF F2-IsoP level and RDW-SD measured on day 1 were significant predictors of DCI. The receiver operating characteristics curve for DCI prediction based on the multivariate model yielded an area under the curve of 0.924 (95% CI 0.824-1.000, p < 0.001). In our study, the model based on the combination of RDW and the level of isoprostanes in CSF on the first day after the initial bleeding showed a prognostic value for DCI prediction. Further studies are required to validate this observation.


Subject(s)
Biomarkers , Brain Ischemia , Dinoprost , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/cerebrospinal fluid , Subarachnoid Hemorrhage/complications , Female , Male , Middle Aged , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Dinoprost/analogs & derivatives , Dinoprost/cerebrospinal fluid , Prognosis , Brain Ischemia/cerebrospinal fluid , Brain Ischemia/etiology , Brain Ischemia/diagnosis , Brain Ischemia/blood , Prospective Studies , Erythrocyte Indices , Aged , Erythrocytes/metabolism , Adult , ROC Curve
12.
Eur Biophys J ; 53(4): 183-192, 2024 May.
Article in English | MEDLINE | ID: mdl-38647542

ABSTRACT

The sensitivity of cytosol water's microwave dielectric (MD) response to D-glucose uptake in Red Blood Cells (RBCs) allows the detailed study of cellular mechanisms as a function of controlled exposures to glucose and other related analytes like electrolytes. However, the underlying mechanism behind the sensitivity to glucose exposure remains a topic of debate. In this research, we utilize MDS within the frequency range of 0.5-40 GHz to explore how ionic redistributions within the cell impact the microwave dielectric characteristics associated with D-glucose uptake in RBC suspensions. Specifically, we compare glucose uptake in RBCs exposed to the physiological concentration of Ca2+ vs. Ca-free conditions. We also investigate the potential involvement of Na+/K+ redistribution in glucose-mediated dielectric response by studying RBCs treated with a specific Na+/K+ pump inhibitor, ouabain. We present some insights into the MD response of cytosol water when exposed to Ca2+ in the absence of D-glucose. The findings from this study confirm that ion-induced alterations in bound/bulk water balance do not affect the MD response of cytosol water during glucose uptake.


Subject(s)
Cytosol , Erythrocytes , Glucose , Microwaves , Water , Cytosol/metabolism , Glucose/metabolism , Water/metabolism , Erythrocytes/metabolism , Erythrocytes/drug effects , Erythrocytes/cytology , Calcium/metabolism , Humans , Biological Transport , Ions/metabolism , Ouabain/pharmacology , Sodium/metabolism
13.
Biophys J ; 123(10): 1289-1296, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38641875

ABSTRACT

Red blood cells (RBCs) are vital for transporting oxygen from the lungs to the body's tissues through the intricate circulatory system. They achieve this by binding and releasing oxygen molecules to the abundant hemoglobin within their cytosol. The volume of RBCs affects the amount of oxygen they can carry, yet whether this volume is optimal for transporting oxygen through the circulatory system remains an open question. This study explores, through high-fidelity numerical simulations, the impact of RBC volume on advective oxygen transport efficiency through arterioles, which form the area of greatest flow resistance in the circulatory system. The results show that, strikingly, RBCs with volumes similar to those found in vivo are most efficient to transport oxygen through arterioles. The flow resistance is related to the cell-free layer thickness, which is influenced by the shape and the motion of the RBCs: at low volumes, RBCs deform and fold, while at high volumes, RBCs collide and follow more diffuse trajectories. In contrast, RBCs with a healthy volume maximize the cell-free layer thickness, resulting in a more efficient advective transport of oxygen.


Subject(s)
Erythrocytes , Oxygen , Oxygen/metabolism , Erythrocytes/metabolism , Erythrocytes/cytology , Arterioles/metabolism , Biological Transport , Humans , Models, Biological , Cell Size , Erythrocyte Volume
14.
Am J Hematol ; 99(6): 1201-1204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563490

ABSTRACT

Glycolytic activity and in vitro effect of the pyruvate kinase activator AG-946 in red blood cells from low-risk myelodysplastic syndromes patients. Data showed decreased glycolytic activity in red blood cells of 2/3 of patients with lower-risk MDS. These results highlight a potential effect of the PK activator in this setting.


Subject(s)
Erythrocytes , Glycolysis , Myelodysplastic Syndromes , Pyruvate Kinase , Humans , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/blood , Glycolysis/drug effects , Erythrocytes/metabolism , Erythrocytes/drug effects , Aged , Male , Female , Middle Aged , Proof of Concept Study , Aged, 80 and over
15.
Br J Haematol ; 204(5): 2025-2039, 2024 May.
Article in English | MEDLINE | ID: mdl-38613149

ABSTRACT

Splenectomised ß-thalassaemia/haemoglobin E (HbE) patients have increased levels of circulating microparticles or medium extra-cellular vesicles (mEVs). The splenectomised mEVs play important roles in thromboembolic complications in patients since they can induce platelet activation and endothelial cell dysfunction. However, a comprehensive understanding of the mechanism of mEV generation in thalassaemia disease has still not been reached. Thalassaemic mEVs are hypothesised to be generated from cellular oxidative stress in red blood cells (RBCs) and platelets. Therefore, a proteomic analysis of mEVs from splenectomised and non-splenectomised ß-thalassaemia/HbE patients was performed by liquid chromatography with tandem mass spectrometry. A total of 171 proteins were identified among mEVs. Interestingly, 72 proteins were uniquely found in splenectomised mEVs including immunoglobulin subunits and cytoskeleton proteins. Immunoglobulin G (IgG)-bearing mEVs in splenectomised patients were significantly increased. Furthermore, complement C1q was detected in both mEVs with IgG binding and mEVs without IgG binding. Interestingly, the percentage of mEVs generated from RBCs with IgG binding was approximately 15-20 times higher than the percentage of RBCs binding with IgG. This suggested that the vesiculation of thalassaemia mEVs could be a mechanism of RBCs to eliminate membrane patches harbouring immune complex and may consequently prevent cells from phagocytosis and lysis.


Subject(s)
Hemoglobin E , Proteomics , beta-Thalassemia , Humans , beta-Thalassemia/blood , beta-Thalassemia/metabolism , Hemoglobin E/metabolism , Proteomics/methods , Female , Male , Adult , Extracellular Vesicles/metabolism , Splenectomy , Immunoglobulin G/blood , Erythrocyte Membrane/metabolism , Proteome/analysis , Adolescent , Erythrocytes/metabolism , Cell-Derived Microparticles/metabolism , Young Adult
16.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573856

ABSTRACT

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Subject(s)
Erythrocytes , Plasmodium falciparum , Polysaccharides , Protozoan Proteins , Humans , Antigens, Protozoan/metabolism , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Erythrocytes/parasitology , Erythrocytes/metabolism , Lectins/metabolism , Lectins/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , Polysaccharides/metabolism , Protein Binding , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
17.
Viruses ; 16(4)2024 04 22.
Article in English | MEDLINE | ID: mdl-38675987

ABSTRACT

Consistent with the biochemistry of coronaviruses as well established over decades, SARS-CoV-2 makes its initial attachment to host cells through the binding of its spike protein (SP) to sialylated glycans (containing the monosaccharide sialic acid) on the cell surface. The virus can then slide over and enter via ACE2. SARS-CoV-2 SP attaches particularly tightly to the trillions of red blood cells (RBCs), platelets and endothelial cells in the human body, each cell very densely coated with sialic acid surface molecules but having no ACE2 or minimal ACE2. These interlaced attachments trigger the blood cell aggregation, microvascular occlusion and vascular damage that underlie the hypoxia, blood clotting and related morbidities of severe COVID-19. Notably, the two human betacoronaviruses that express a sialic acid-cleaving enzyme are benign, while the other three-SARS, SARS-CoV-2 and MERS-are virulent. RBC aggregation experimentally induced in several animal species using an injected polysaccharide caused most of the same morbidities of severe COVID-19. This glycan biochemistry is key to disentangling controversies that have arisen over the efficacy of certain generic COVID-19 treatment agents and the safety of SP-based COVID-19 vaccines. More broadly, disregard for the active physiological role of RBCs yields unreliable or erroneous reporting of pharmacokinetic parameters as routinely obtained for most drugs and other bioactive agents using detection in plasma, with whole-blood levels being up to 30-fold higher. Appreciation of the active role of RBCs can elucidate the microvascular underpinnings of other health conditions, including cardiovascular disease, and therapeutic opportunities to address them.


Subject(s)
COVID-19 , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , Polysaccharides/metabolism , Animals , Spike Glycoprotein, Coronavirus/metabolism , Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Erythrocytes/metabolism , Erythrocytes/virology , Pandemics , Microvessels/metabolism , Microvessels/virology , Virus Attachment , COVID-19 Drug Treatment , Endothelial Cells/metabolism , Endothelial Cells/virology , Angiotensin-Converting Enzyme 2/metabolism , Erythrocyte Aggregation
18.
J Ethnopharmacol ; 329: 118106, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38570146

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Opuntia ficus-indica (L.) Mill is frequently observed in the Moroccan traditional medicinal system, where these approaches are employed to mitigate the onset of diabetes and the subsequent complications it may entail. AIM OF THE STUDY: The aim of this research was to examine the effectiveness of Opuntia ficus-indica seed oil in preventing diabetic complications. Specifically, the study assessed its ability to counteract glycation at various stages, protected red blood cells from the harmful effects of glycated albumin, and inhibited pancreatic lipase digestive enzymes to understand its potential antihyperglycemic properties. Additionally, the study aimed to identify the chemical components responsible for these effects, evaluate antioxidant and anti-inflammatory properties, and conduct computational investigations such as molecular docking. MATERIALS AND METHODS: The assessement of Opuntia ficus-indica seed oil antiglycation properties involved co-incubating the extract oil with a bovine serum albumin-glucose glycation model. The study investigated various stages of glycation, incorporating fructosamine (inceptive stage), protein carbonyls (intermediate stage), and AGEs (late stage). Additionally, measurement of ß-amyloid aggregation of albumin was performed using Congo red, which is specific to amyloid structures. Additionally, the evaluation of oil's safeguarding effect on erythrocytes against toxicity induced by glycated albumin included the measurement of erythrocyte hemolysis, lipid peroxidation, reduced glutathione. The fatty acid of Opuntia ficus-indica seed oil were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro evaluation of antihyperglycemic activity involved the use of pancreatic lipase enzyme, while the assessement of antioxidant capability was carried out through the utilization of the ABTS and FRAP methods. The in vitro assessement of the denaturation of albumin activity was also conducted. In conjunction with the experimental outcomes, computational investigations were undertaken, specifically employing ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. Furthermore, molecular docking was utilized to predict antioxidant and antiglycation mechanisms based on protein targets. RESULTS: In vitro glycation assays, Opuntia ficus-indica seed oil displayed targeted inhibitory effects at multiple distinct stages. Within erythrocytes, in addition to mitigating hemolysis and lipid peroxidation induced by glycated albumin. GC-MS investigation revealed a richness of fatty acids and the most abundant compounds are Linoleic acid (36.59%), Palmitic acid (20.84%) and Oleic acid (19.33%) respectively. The findings of antioxidant ability showed a remarkable activity on FRAP and ABTS radicals. This oil showed a pronounced inhibitory impact (p < 0.001) on pancreatic lipase enzyme. It also exerted a notibale inhibition of albumin denaturation, in vitro. CONCLUSION: The identified results were supported by the abundant compounds of fatty acids unveiled through GC-MS analysis, along with the computational investigation and molecular docking.


Subject(s)
Antioxidants , Erythrocytes , Fatty Acids , Gas Chromatography-Mass Spectrometry , Molecular Docking Simulation , Opuntia , Oxidative Stress , Plant Oils , Seeds , Opuntia/chemistry , Erythrocytes/drug effects , Erythrocytes/metabolism , Oxidative Stress/drug effects , Seeds/chemistry , Fatty Acids/chemistry , Morocco , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Gas Chromatography-Mass Spectrometry/methods , Glycation End Products, Advanced/metabolism , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Lipase/antagonists & inhibitors , Lipase/metabolism , Glycosylation/drug effects , Glycated Serum Albumin , Humans , Serum Albumin, Bovine , Serum Albumin/metabolism
19.
Transfus Apher Sci ; 63(3): 103928, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653627

ABSTRACT

RBC transfusions are a vital clinical therapy to treat anemic patients. The in vivo assessment of red blood cell (RBC) quality post-transfusion is critical to ensuring that the introduction of new RBC products meet established regulatory and clinical quality requirements. Although in vitro quality control testing is routinely performed by blood manufacturers, it is crucial that in vivo tests are performed during the evaluation and regulatory process of new RBC products. This article reviews existing in vivo techniques, like chromium-51 labelling and biotinylation, for determining the circulation and survival of RBCs, and advocates for a move to radiation-free methods. The timely need for radiation-free methods to assess emerging non-DEHP container systems is just one example of why efforts to improve the methods available for in vivo quality assessment is important in transfusion medicine. This review aims to advance our understanding of RBC transfusion in vivo quality assessment and enhance transfusion practices.


Subject(s)
Erythrocyte Transfusion , Transfusion Medicine , Humans , Erythrocyte Transfusion/methods , Transfusion Medicine/methods , Erythrocytes/metabolism
20.
Transfus Apher Sci ; 63(3): 103929, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658294

ABSTRACT

Granted with a potent ability to interact with and tolerate oxidative stressors, RBCs scavenge most reactive oxygen and nitrogen species (RONS) generated in circulation. This essential non-canonical function, however, renders RBCs susceptible to damage when vascular RONS are generated in excess, making vascular redox imbalance a common etiology of anemia, and thus a common indication for transfusion. This accentuates the relevance of impairments in redox metabolism during hypothermic storage, as the exposure to chronic oxidative stressors upon transfusion could be exceedingly deleterious to stored RBCs. Herein, we review the prominent mechanisms of the hypothermic storage lesion that alter the ability of RBCs to scavenge exogenous RONS as well as the associated clinical relevance.


Subject(s)
Blood Preservation , Erythrocytes , Oxidation-Reduction , Humans , Erythrocytes/metabolism , Blood Preservation/methods , Erythrocyte Transfusion/methods , Reactive Oxygen Species/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...