Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.654
Filter
1.
Antimicrob Resist Infect Control ; 13(1): 72, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971782

ABSTRACT

BACKGROUND: Before the COVID-19 pandemic there has been a constant increase in antimicrobial resistance (AMR) of Escherichia coli, the most common cause of urinary tract infections and bloodstream infections. The aim of this study was to investigate the impact of the COVID-19 pandemic on extended-spectrum ß-lactamase (ESBL) production in urine and blood E. coli isolates in Finland to improve our understanding on the source attribution of this major multidrug-resistant pathogen. METHODS: Susceptibility test results of 564,233 urine (88.3% from females) and 23,860 blood E. coli isolates (58.8% from females) were obtained from the nationwide surveillance database of Finnish clinical microbiology laboratories. Susceptibility testing was performed according to EUCAST guidelines. We compared ESBL-producing E. coli proportions and incidence before (2018-2019), during (2020-2021), and after (2022) the pandemic and stratified these by age groups and sex. RESULTS: The annual number of urine E. coli isolates tested for antimicrobial susceptibility decreased 23.3% during 2018-2022 whereas the number of blood E. coli isolates increased 1.1%. The annual proportion of ESBL-producing E. coli in urine E. coli isolates decreased 28.7% among males, from 6.9% (average during 2018-2019) to 4.9% in 2022, and 28.7% among females, from 3.0 to 2.1%. In blood E. coli isolates, the proportion decreased 32.9% among males, from 9.3 to 6.2%, and 26.6% among females, from 6.2 to 4.6%. A significant decreasing trend was also observed in most age groups, but risk remained highest among persons aged ≥ 60 years. CONCLUSIONS: The reduction in the proportions of ESBL-producing E. coli was comprehensive, covering both specimen types, both sexes, and all age groups, showing that the continuously increasing trends could be reversed. Decrease in international travel and antimicrobial use were likely behind this reduction, suggesting that informing travellers about the risk of multidrug-resistant bacteria, hygiene measures, and appropriate antimicrobial use is crucial in prevention. Evaluation of infection control measures in healthcare settings could be beneficial, especially in long-term care.


Subject(s)
COVID-19 , Escherichia coli Infections , Escherichia coli , Urinary Tract Infections , beta-Lactamases , Humans , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/enzymology , Finland/epidemiology , COVID-19/epidemiology , Female , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Male , Urinary Tract Infections/microbiology , Urinary Tract Infections/epidemiology , Middle Aged , beta-Lactamases/metabolism , beta-Lactamases/biosynthesis , Aged , Adult , Adolescent , Young Adult , Child , Infant , Child, Preschool , Aged, 80 and over , Microbial Sensitivity Tests , SARS-CoV-2 , Infant, Newborn , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/epidemiology , Bacteremia/microbiology , Drug Resistance, Multiple, Bacterial , Pandemics
2.
Nat Commun ; 15(1): 5811, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987310

ABSTRACT

Extraintestinal Pathogenic Escherichia coli (ExPEC) pose a significant threat to human and animal health. However, the diversity and antibiotic resistance of animal ExPEC, and their connection to human infections, remain largely unexplored. The study performs large-scale genome sequencing and antibiotic resistance testing of 499 swine-derived ExPEC isolates from China. Results show swine ExPEC are phylogenetically diverse, with over 80% belonging to phylogroups B1 and A. Importantly, 15 swine ExPEC isolates exhibit genetic relatedness to human-origin E. coli strains. Additionally, 49 strains harbor toxins typical of enteric E. coli pathotypes, implying hybrid pathotypes. Notably, 97% of the total strains are multidrug resistant, including resistance to critical human drugs like third- and fourth-generation cephalosporins. Correspondingly, genomic analysis unveils prevalent antibiotic resistance genes (ARGs), often associated with co-transfer mechanisms. Furthermore, analysis of 20 complete genomes illuminates the transmission pathways of ARGs within swine ExPEC and to human pathogens. For example, the transmission of plasmids co-harboring fosA3, blaCTX-M-14, and mcr-1 genes between swine ExPEC and human-origin Salmonella enterica is observed. These findings underscore the importance of monitoring and controlling ExPEC infections in animals, as they can serve as a reservoir of ARGs with the potential to affect human health or even be the origin of pathogens infecting humans.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli Proteins , Extraintestinal Pathogenic Escherichia coli , Phylogeny , Swine Diseases , Animals , Swine , China/epidemiology , Extraintestinal Pathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Escherichia coli Proteins/genetics , Anti-Bacterial Agents/pharmacology , Humans , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Genome, Bacterial/genetics , Whole Genome Sequencing , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , beta-Lactamases/genetics
3.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000557

ABSTRACT

The effects of intestinal microflora on extraintestinal immune response by intestinal cytokines and metabolites have been documented, but whether intestinal microbes stimulate serum antibody generation is unknown. Here, serum antibodies against 69 outer membrane proteins of Escherichia coli, a dominant bacterium in the human intestine, are detected in 141 healthy individuals of varying ages. Antibodies against E. coli outer membrane proteins are determined in all serum samples tested, and frequencies of antibodies to five outer membrane proteins (OmpA, OmpX, TsX, HlpA, and FepA) are close to 100%. Serum antibodies against E. coli outer membrane proteins are further validated by Western blot and bacterial pull-down. Moreover, the present study shows that OstA, HlpA, Tsx, NlpB, OmpC, YfcU, and OmpA provide specific immune protection against pathogenic E. coli, while HlpA and OmpA also exhibit cross-protection against Staphylococcus aureus infection. These finding indicate that intestinal E. coli activate extraintestinal antibody responses and provide anti-infective immunity.


Subject(s)
Antibodies, Bacterial , Bacterial Outer Membrane Proteins , Escherichia coli , Humans , Escherichia coli/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Bacterial Outer Membrane Proteins/immunology , Adult , Female , Staphylococcus aureus/immunology , Male , Antibody Formation/immunology , Middle Aged , Escherichia coli Proteins/immunology , Young Adult , Aged , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Adolescent , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology
4.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999794

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.


Subject(s)
Colon , Diet, Western , Enterohemorrhagic Escherichia coli , Feces , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Diet, Western/adverse effects , Colon/microbiology , Feces/microbiology , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Fatty Acids, Volatile/metabolism , Bile Acids and Salts/metabolism , Escherichia coli O157
5.
Front Cell Infect Microbiol ; 14: 1399732, 2024.
Article in English | MEDLINE | ID: mdl-39006743

ABSTRACT

Tigecycline serves as a last-resort antimicrobial agent against severe infections caused by multidrug-resistant bacteria. Tet(X) and its numerous variants encoding flavin-dependent monooxygenase can confer resistance to tigecycline, with tet(X4) being the most prevalent variant. This study aims to investigate the prevalence and characterize tigecycline resistance gene tet(X) in E. coli isolates from various origins in Yangzhou, China, to provide insights into tet(X) dissemination in this region. In 2022, we tested the presence of tet(X) in 618 E. coli isolates collected from diverse sources, including patients, pig-related samples, chicken-related samples, and vegetables in Yangzhou, China. The antimicrobial susceptibility of tet(X)-positive E. coli isolates was conducted using the agar dilution method or the broth microdilution method. Whole genome sequencing was performed on tet(X)-positive strains using Illumina and Oxford Nanopore platforms. Four isolates from pig or pork samples carried tet(X4) and exhibited resistance to multiple antimicrobial agents, including tigecycline. They were classified as ST542, ST10, ST761, and ST48, respectively. The tet(X4) gene was located on IncFIA8-IncHI1/ST17 (n=2), IncFIA18-IncFIB(K)-IncX1 (n=1), and IncX1 (n=1) plasmids, respectively. These tet(X4)-carrying plasmids exhibited high similarity to other tet(X4)-bearing plasmids with the same incompatible types found in diverse sources in China. They shared related genetic environments of tet(X4) associated with ISCR2, as observed in the first identified tet(X4)-bearing plasmid p47EC. In conclusion, although a low prevalence (0.65%) of tet(X) in E. coli strains was observed in this study, the horizontal transfer of tet(X4) among E. coli isolates mediated by pandemic plasmids and the mobile element ISCR2 raises great concerns. Thus, heightened surveillance and immediate action are imperative to curb this clinically significant resistance gene and preserve the efficacy of tigecycline.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , Tigecycline , Tigecycline/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , China , Anti-Bacterial Agents/pharmacology , Swine , Animals , Escherichia coli Infections/microbiology , Humans , Plasmids/genetics , Chickens/microbiology , Whole Genome Sequencing , Drug Resistance, Multiple, Bacterial/genetics , Vegetables/microbiology , Escherichia coli Proteins/genetics
6.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955378

ABSTRACT

AIMS: This study was conducted to evaluate the in vitro activity of clinically relevant aminoglycosides and to determine the prevalence of genes encoding aminoglycoside modifying enzymes (AMEs) and 16S ribosomal RNA (rRNA) methyltransferases among aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) clinical isolates. Associated resistances to beta-lactams and their bla genes as well as the genetic relatedness of isolates were also investigated. MATERIALS AND METHODS: A total of 105 aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) isolates recovered between March and May 2017 from 100 patients hospitalized in different wards of Charles Nicolle Hospital of Tunis, Tunisia, were studied. Minimal inhibitory concentrations of aminoglycoside compounds were determined by broth microdilution method. Aminoglycosides resistance encoding genes [aph(3´)-Ia, aph(3') IIa, aph(3´)-VIa, ant(2″)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, rmtA, rmtB, rmtC, armA, and npmA] and bla genes were investigated by PCR and sequencing. Genetic relatedness was examined by multilocus sequence typing (MLST) for representative isolates. RESULTS: High rates of aminoglycoside resistance were found: gentamicin (85.7%), tobramycin (87.6%), kanamycin (78.0%), netilmincin (74.3%), and amikcin (18.0%). Most common AME gene was aac(3)-IIa (42%), followed by aac(6')-Ib (36.2%) and aph(3')-VIa (32.4%). The majority of isolates were resistant to beta-lactams and blaCTX-M-15 was the most common ESBL. The blaNDM-1 and blaOXA-48 were also produced by 1 and 23 isolates, respectively. Novel sequence types have been reported among our isolates and high-risk clonal lineages have been detected, such as E. coli ST43 (ST131 in Achtman MLST scheme) and K. pneumoniae (ST11/ST13). CONCLUSIONS: The high prevalence of aminoglycoside resistance rates and the diversity of corresponding genes, with diverse ß-lactamase enzymes among genetically heterogeneous clinical isolates present a matter of concern.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , Aminoglycosides/pharmacology , Tunisia , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Klebsiella Infections/microbiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
7.
Sci Rep ; 14(1): 15387, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965339

ABSTRACT

Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.


Subject(s)
Biofilms , Lactobacillus , Probiotics , Tryptamines , Uropathogenic Escherichia coli , Vagina , Biofilms/drug effects , Biofilms/growth & development , Humans , Tryptamines/pharmacology , Female , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/physiology , Probiotics/pharmacology , Vagina/microbiology , Lactobacillus/drug effects , Lactobacillus/metabolism , Lactobacillus/physiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/prevention & control , Adult , Anti-Bacterial Agents/pharmacology
8.
PLoS One ; 19(7): e0305920, 2024.
Article in English | MEDLINE | ID: mdl-38968271

ABSTRACT

Sepsis is a life-threatening condition mainly caused by gram-negative and gram-positive bacteria. Understanding the type of causative agent in the early stages is essential for precise antibiotic therapy. This study sought to identify a host gene set capable of distinguishing between sepsis induced by gram-negative bacteria; Escherichia coli and gram-positive bacteria; Staphylococcus aureus in community-onset adult patients. In the present study, microarray expression information was used to apply the Least Absolute Shrinkage and Selection Operator (Lasso) technique to select the predictive gene set for classifying sepsis induced by E. coli or S. aureus pathogens. We identified 25 predictive genes, including LILRA5 and TNFAIP6, which had previously been associated with sepsis in other research. Using these genes, we trained a logistic regression classifier to distinguish whether a sample contains an E. coli or S. aureus infection or belongs to a healthy control group, and subsequently assessed its performance. The classifier achieved an Area Under the Curve (AUC) of 0.96 for E. coli and 0.98 for S. aureus-induced sepsis, and perfect discrimination (AUC of 1) for healthy controls from the other conditions in a 10-fold cross-validation. The genes demonstrated an AUC of 0.75 in distinguishing between sepsis patients with E. coli and S. aureus pathogens. These findings were further confirmed in two distinct independent validation datasets which gave high prediction AUC ranging from 0.72-0.87 and 0.62 in distinguishing three groups of participants and two groups of patients respectively. These genes were significantly enriched in the immune system, cytokine signaling in immune system, innate immune system, and interferon signaling. Transcriptional patterns in blood can differentiate patients with E. coli-induced sepsis from those with S. aureus-induced sepsis. These diagnostic markers, upon validation in larger trials, may serve as a foundation for a reliable differential diagnostics assay.


Subject(s)
Escherichia coli Infections , Escherichia coli , Sepsis , Staphylococcal Infections , Staphylococcus aureus , Humans , Sepsis/microbiology , Sepsis/genetics , Sepsis/diagnosis , Staphylococcus aureus/genetics , Escherichia coli/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/genetics , Adult , Biomarkers , Male , Female , Gene Expression Profiling , Middle Aged
9.
Front Cell Infect Microbiol ; 14: 1414188, 2024.
Article in English | MEDLINE | ID: mdl-38979511

ABSTRACT

In Escherichia coli, the disaccharide trehalose can be metabolized as a carbon source or be accumulated as an osmoprotectant under osmotic stress. In hypertonic environments, E. coli accumulates trehalose in the cell by synthesis from glucose mediated by the cytosolic enzymes OtsA and OtsB. Trehalose in the periplasm can be hydrolyzed into glucose by the periplasmic trehalase TreA. We have previously shown that a treA mutant of extraintestinal E. coli strain BEN2908 displayed increased resistance to osmotic stress by 0.6 M urea, and reduced production of type 1 fimbriae, reduced invasion of avian fibroblasts, and decreased bladder colonization in a murine model of urinary tract infection. Since loss of TreA likely results in higher periplasmic trehalose concentrations, we wondered if deletion of otsA and otsB genes, which would lead to decreased internal trehalose concentrations, would reduce resistance to stress by 0.6 M urea and promote type 1 fimbriae production. The BEN2908ΔotsBA mutant was sensitive to osmotic stress by urea, but displayed an even more pronounced reduction in production of type 1 fimbriae, with the consequent reduction in adhesion/invasion of avian fibroblasts and reduced bladder colonization in the murine urinary tract. The BEN2908ΔtreAotsBA mutant also showed a reduction in production of type 1 fimbriae, but in contrast to the ΔotsBA mutant, resisted better than the wild type in the presence of urea. We hypothesize that, in BEN2908, resistance to stress by urea would depend on the levels of periplasmic trehalose, but type 1 fimbriae production would be influenced by the levels of cytosolic trehalose.


Subject(s)
Fimbriae, Bacterial , Osmoregulation , Trehalose , Urinary Bladder , Urinary Tract Infections , Animals , Trehalose/metabolism , Mice , Urinary Bladder/microbiology , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Disease Models, Animal , Female , Osmotic Pressure , Extraintestinal Pathogenic Escherichia coli/metabolism , Extraintestinal Pathogenic Escherichia coli/genetics , Urea/metabolism , Trehalase/metabolism , Trehalase/genetics , Gene Deletion , Glucose/metabolism
10.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(7): 969-976, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-39004969

ABSTRACT

Objective: To understand the infection status, epidemiological characteristics and drug resistance of Diarrheagenic Escherichia coli (DEC) in Shanghai and provide evidence for the disease surveillance. Methods: The epidemiological data of diarrhea cases in Shanghai from 2016 to 2022 were collected from Shanghai Diarrhea Comprehensive Surveillance System, and stool samples were collected from the cases for DEC detection. The drug resistance data was obtained from Chinese Pathogen Identification Network. Statistical analysis was conducted by using χ2 and fisher test. Results: In 24 883 diarrhea cases detected during 2016-2022, the DEC positive rate was 9.13% (2 271/24 883), the single DEC positive rate was 8.83% (2 197/24 883) and the mixed DEC positive rate was 0.30% (74/24 883). The main type of DEC was Enterotoxigenic Escherichia coli (ETEC) [4.33% (1 077/24 883)]. The DEC positive rate was highest in people aged ≤5 years 18.48% (22/119). The annual peak of DEC positive rate was observed during July - September [5.91% (1 470/24 883)]. The DEC positive rate were 9.47% (554/5 847) and 9.02% (1 717/19 036) in urban area and in suburbs, respectively, Enteroaggregative Escherichia coli (EAEC) [3.98% (233/5 847)] and ETEC [4.56% (868/19 036)] were mainly detected. From 2016 to 2019, the DEC positive rate was 9.42% (1 821/19 330), while it was 8.10% (450/5 553) from 2020 to 2022, the main DEC types were ETEC (4.87%, 941/19 330) and EAEC (4.70%, 261/5 553). The multi-drug resistance rate was 40.21% (618/1 537). The top three antibiotics with high drug resistance rates were ampicillin [64.74% (995/1 537)], nalidixic acid [58.49% (899/1 537)] and tetracycline [45.09% (693/1 537)]. Conclusions: Compared with 2016- 2019, a decrease in DEC detection rate was observed during 2020-2022, and the main type of DEC detected shifted from ETEC to EAEC. The prevalence of multi-drug resistance was severe. Therefore, it is necessary to further strengthen the surveillance for DEC drug resistance and standardize the use of clinical antibiotics.


Subject(s)
Diarrhea , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Humans , Diarrhea/microbiology , Diarrhea/epidemiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , China/epidemiology , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Feces/microbiology , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Drug Resistance, Bacterial , Child, Preschool , Child , Infant , Adolescent , Adult
11.
BMC Womens Health ; 24(1): 383, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961459

ABSTRACT

BACKGROUND: The role of bacterial contamination in the development and progression of endometriosis lesions is currently a hot topic for gynecologists. In this study, we decided to compare the endometrial cultures of women affected by endometriosis with those of non-endometriotic women, focusing on specific microbial pathogens. MATERIAL AND METHOD: In this cross-sectional case-control study, 30 women with endometriosis in stages 4 of the disease whose endometriosis was confirmed based on clinical, ultrasound, and histopathological findings, and 30 women without endometriosis who were candidates for surgery due to benign uterine diseases with regular menstrual cycle, underwent endometrial biopsy with Novak Kort in sterile conditions before starting their operation, and the results of their endometrial culture were analyzed and compared. RESULTS: Results of the study indicate that there were no significant differences in terms of age, BMI, smoking, education level, place of residency, use of the intrauterine device, or vaginal douche, and age of menarche between the case and control groups. The only demographic difference observed was in parity, where the control group had a significantly higher parity than the case group (P = 0.001). Out of the 60 cultures, only 15 samples were positive in the endometriosis group, and E. coli was the most prevalent species, with 10 (33.3%) samples testing positive for it. Klebsiella spp. and Enterobacteria spp. were also detected in 3 (10.0%) and 2 (6.7%) samples, respectively. The comparison between the two groups showed that only E. coli had a significant association with the presence of endometriosis (P = 0.001). There was no significant relationship between the location of endometriosis in the pelvic cavity and culture results. It was observed that parity among the E. coli negative group was significantly higher compared to the E. coli positive group (P < 0.001). CONCLUSION: Based on The high occurrence of E. coli in women with endometriosis, along with its potential involvement in the progression and/or recurrence of this condition, the researchers propose that treating women with endometriosis and recurrent IVF failure, as well as those with endometriosis recurrence after surgical treatment, with suitable antibiotics and repeated culture until the culture becomes negative, could be beneficial.


Subject(s)
Endometriosis , Escherichia coli Infections , Escherichia coli , Humans , Female , Endometriosis/microbiology , Endometriosis/complications , Case-Control Studies , Iran/epidemiology , Adult , Escherichia coli/isolation & purification , Cross-Sectional Studies , Escherichia coli Infections/epidemiology , Escherichia coli Infections/complications , Escherichia coli Infections/microbiology , Endometrium/microbiology , Endometrium/pathology , Klebsiella/isolation & purification
12.
Clin Lab ; 70(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38965964

ABSTRACT

BACKGROUND: Streptococcus agalactiae (GBS) and Escherichia coli (E. coli) are the main pathogenic bacteria in neonatal sepsis. Therefore, the clinical characteristics, nonspecific indicators, and drug susceptibilities of these two bacteria were studied. METHODS: In total, 81 and 80 children with sepsis caused by GBS and E. coli infection, respectively, admitted to the neonatal department of our hospital between May 2012 and July 2023, were selected, and the clinical characteris-tics of the two groups were analyzed. Nonspecific indicators and drug sensitivity test results were analyzed retrospectively. RESULTS: Birth weight, tachypnea, groan, tachycardia or bradycardia, and the incidence of complications, such as pneumonia, respiratory failure, and purulent meningitis, were higher in the GBS group than in the E. coli group. The children were born prematurely, and the mother had a premature rupture of membranes. The incidence of jaundice, abdominal distension, atypical clinical manifestations, and complications of necrotizing enterocolitis was lower than of the E. coli group, and the differences were statistically significant (p < 0.05). The WBC, NE#, NE#/LY#, hs-CRP, and PCT of the GBS group were higher than those of the E. coli group, whereas the MPV, D-D, and FDP levels were lower than those in the E. coli group. The differences were all statistically significant (p < 0.05). The 81-bead GBS had high resistance rates against tetracycline (95%), erythromycin (48.8%), and clindamycin (40%), and no strains resistant to vancomycin, linezolid, penicillin, or ampicillin appeared, whereas 80 strains of E. coli were more resistant to penicillin and third-generation cephalosporins, with the higher resistance rates to ampicillin (68.30%), trimethoprim/sulfamethoxazole (53.6%), and ciprofloxacin (42.90%). Resistance rates to carbapenems and aminoglycosides were extremely low. CONCLUSIONS: Both GBS and E. coli neonatal sepsis have specific clinical characteristics, especially in terms of clinical manifestations, complications, non-specific indicators, and drug resistance. Early identification is important for clinical diagnosis and treatment.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Neonatal Sepsis , Streptococcal Infections , Streptococcus agalactiae , Humans , Streptococcus agalactiae/drug effects , Streptococcus agalactiae/isolation & purification , Neonatal Sepsis/microbiology , Neonatal Sepsis/diagnosis , Neonatal Sepsis/drug therapy , Neonatal Sepsis/epidemiology , Infant, Newborn , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Female , Streptococcal Infections/microbiology , Streptococcal Infections/epidemiology , Streptococcal Infections/drug therapy , Streptococcal Infections/diagnosis , Retrospective Studies , Male , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/diagnosis , Escherichia coli Infections/drug therapy , Microbial Sensitivity Tests , Drug Resistance, Bacterial
13.
Sci Rep ; 14(1): 15494, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969720

ABSTRACT

Anal swabs of 1-month-old Holstein calves with diarrhea were collected from an intensive cattle farm, and a highly pathogenic Escherichia coli strain was obtained by isolation and purification. To study the virulence and resistance genes of pathogenic E. coli that cause diarrhea in calves, a strain of E. coli E12 isolated from calf diarrhea samples was used as experimental material in this experiment, and the virulence of the E12 strain were identified by the mouse infection test, and the whole genome map of the E12 strain were obtained by whole-genome sequencing and analyzed for genome characterization. The results showed that the lethality of strain E12 was 100%, the total length of E12-encoded genes was 4,294,530 bp, Cluster of Orthologous Groups of proteins (COG) annotated to 4,194 functional genes, and the virulence genes of sequenced strain E12 were compared with the virulence genes of sequenced strain E12 from the Virulence Factors of Pathogenic Bacteria (VFDB), which contained a total of 366 virulence genes in sequenced strain E12. The analysis of virulence genes of E12 revealed a total of 52 virulence genes in the iron transferrin system, 56 virulence genes in the secretory system, 41 virulence genes in bacterial toxins, and a total of 217 virulence genes in the Adhesin and Invasins group. The antibiotic resistance genes of sequenced strain E12 were identified through the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Research Database, and it was found that its chromosome and plasmid included a total of 127 antibiotic resistance genes in four classes, and that E12 carried 71 genes related to the antibiotic efflux pumps, 36 genes related to antibiotic inactivation, and 14 antibiotic target alteration and reduced penetration into antibiotics, and 6 antibiotic resistance genes, and the resistance phenotypes were consistent with the genotypes. The pathogenic E. coli that causes diarrhea in calves on this ranch contains a large number of virulence and resistance genes. The results provide a theoretical basis for the prevention and treatment of diarrhea and other diseases caused by E. coli disease.


Subject(s)
Diarrhea , Escherichia coli Infections , Escherichia coli , Genome, Bacterial , Virulence Factors , Whole Genome Sequencing , Animals , Cattle , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Virulence Factors/genetics , Mice , Diarrhea/microbiology , Diarrhea/veterinary , Virulence/genetics , Cattle Diseases/microbiology , China , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
14.
BMC Microbiol ; 24(1): 248, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971718

ABSTRACT

BACKGROUND: The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers and patients) and broiler isolates (meat and caecum). RESULTS: The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance (PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from broiler and humans, but overall, the SNP distance was high. CONCLUSION: Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC in humans in Norway.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Quinolones , Animals , Chickens/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Norway , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Genomics , Plasmids/genetics , Poultry Diseases/microbiology , Microbial Sensitivity Tests , Genome, Bacterial/genetics , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Meat/microbiology , Mutation , Escherichia coli Proteins/genetics , Cecum/microbiology
15.
Microb Drug Resist ; 30(7): 304-313, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949898

ABSTRACT

Little is known about the characteristics of uropathogenic Escherichia coli (UPEC) associated with recurrent urinary tract infections (RUTIs). The present study aimed to analyze the phenotypic antimicrobial resistance of recurrent UPEC isolates attributable to either relapse or reinfection. A total of 140 E. coli strains were isolated from 70 outpatients with RUTIs. All isolates were analyzed by random amplified polymorphic DNA-polymerase chain reaction to evaluate genetic similarity between the first and second isolates. We found that 64.2% (45/70) of outpatients had a relapse with the primary infecting E. coli strain and 35.7% (25/70) had reinfection with a new E. coli strain. Compared with reinfecting strains, relapse UPEC isolates exhibited much higher antimicrobial resistance; 89% of these isolates were multidrug-resistant and 46.6% were extended-spectrum ß-lactamase producers. Our study provides evidence that RUTIs are mainly driven by the persistence of the original strain in the host (relapses) despite appropriate antibiotic treatments, and only RUTIs attributed to relapses seem to favor multidrug resistance in UPEC isolates.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Microbial Sensitivity Tests , Recurrence , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Female , Male , Middle Aged , Adult , beta-Lactamases/genetics , Aged , Random Amplified Polymorphic DNA Technique
16.
Acta Vet Scand ; 66(1): 34, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020377

ABSTRACT

Monitoring the use of antimicrobials and the emergence of resistance in animals and people is important for the control of antimicrobial resistance, and for establishing sustainable and effective disease management practices. In this study, we used Enterococcus spp. and Escherichia coli as indicator species to investigate antimicrobial susceptibility patterns and how these change over time, on ten Swedish pig farms. Indoor environmental sock sampling was performed once a month during the entire production cycle of one batch of pigs on each farm, resulting in 60 samples collected in total. Selective culture for E. coli and Enterococcus spp. resulted in 122 isolates of E. coli, 74 isolates of E. faecium, but no isolates of E. faecalis. Microdilution was used to determine minimum inhibitory concentrations for twelve antimicrobial substances in E. coli and fifteen substances in E. faecium. The overall prevalence of resistance was low. Among the E. coli isolates, the proportions non-wild type (resistant, NWT) isolates were as follows: azithromycin and amikacin 1% (n = 1), trimethoprim and sulfamethoxazole 2% (n = 3), ampicillin 6% (n = 7) and tetracycline 9% (n = 11). Among the E. faecium isolates, the NWT proportions were: teicoplanin, linezolid and gentamicin 1% (n = 1), daptomycin 3% (n = 2), erythromycin 26% (n = 19), tetracycline 27% (n = 20), quinupristin/dalfopristin 58% (n = 42). The resistance patterns differed between the farms, likely due to different antimicrobial use, biosecurity measures and source of the animals. The NWT prevalence among E. coli decreased over time, whereas no similar trend could be observed in E. faecium. The results of the current study illustrate the complex factors affecting the antimicrobial resistance patterns observed on each farm, indicating that specific practices and risk factors have an impact on the prevalence and type of antimicrobial resistance. Further studies of the farm environments in combination with antimicrobial use and other risk factor data are needed to elucidate the multifaceted drivers of antimicrobial resistance development on livestock farms.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecium , Escherichia coli , Microbial Sensitivity Tests , Swine Diseases , Animals , Enterococcus faecium/drug effects , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Swine , Anti-Bacterial Agents/pharmacology , Sweden/epidemiology , Microbial Sensitivity Tests/veterinary , Swine Diseases/microbiology , Swine Diseases/epidemiology , Farms , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Prevalence , Animal Husbandry/methods
17.
Vet Med Sci ; 10(4): e1472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031748

ABSTRACT

BACKGROUND: The escalation of antimicrobial resistance (AMR) in recent years has been of major public health concern globally. Escherichia coli are amongst the bacteria that have been targeted for AMR surveillance due to their ability to cause infection in both animals and humans. Their propensity to produce extended spectrum beta-lactamases further complicates the choices of treatment regimens. OBJECTIVES: To investigate the prevalence of antimicrobial-resistance in E. coli strains isolated from faecal samples of dogs and cats from selected veterinary surgeries and animal shelters from Harare, Zimbabwe. MATERIALS AND METHODS: A cross-sectional study was carried out to select animals by a systematic random procedure. Faecal samples were collected for culture and isolation of E. coli. Their susceptibility to antimicrobial drugs was assessed using the disc diffusion method. RESULTS: A total of 95% (133/140) of the samples from cats (n = 40) and dogs (n = 93) yielded E. coli. Resistance was recorded for ampicillin (45.9%), trimethoprim-sulphamethoxazole (44.4%), nalidixic acid (29.3%), ceftazidime (15.8%) and azithromycin (12.8%), but not for gentamicin and imipenem. A total of 18% of the isolates were multi-drug-resistant where resistance to nalidixic acid, ampicillin and trimethoprim-sulphamethoxazole predominated. CONCLUSION: We observed relatively high AMR of E. coli strains against ampicillin. The isolation of multi-drug-resistant strains of E. coli may signal the dissemination of resistance genes in the ecosystem of these bacteria which may have a public health impact.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Drug Resistance, Multiple, Bacterial , Escherichia coli , Feces , Dogs , Animals , Cats , Zimbabwe/epidemiology , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/genetics , Feces/microbiology , Cat Diseases/microbiology , Cat Diseases/epidemiology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Prevalence
18.
Proc Natl Acad Sci U S A ; 121(29): e2400666121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976738

ABSTRACT

Urinary tract infection (UTI) commonly afflicts people with diabetes. This augmented infection risk is partly due to deregulated insulin receptor (IR) signaling in the kidney collecting duct. The collecting duct is composed of intercalated cells (ICs) and principal cells (PCs). Evidence suggests that ICs contribute to UTI defenses. Here, we interrogate how IR deletion in ICs impacts antibacterial defenses against uropathogenic Escherichia coli. We also explore how IR deletion affects immune responses in neighboring PCs with intact IR expression. To accomplish this objective, we profile the transcriptomes of IC and PC populations enriched from kidneys of wild-type and IC-specific IR knock-out mice that have increased UTI susceptibility. Transcriptomic analysis demonstrates that IR deletion suppresses IC-integrated stress responses and innate immune defenses. To define how IR shapes these immune defenses, we employ murine and human kidney cultures. When challenged with bacteria, murine ICs and human kidney cells with deregulated IR signaling cannot engage central components of the integrated stress response-including activating transcriptional factor 4 (ATF4). Silencing ATF4 impairs NFkB activation and promotes infection. In turn, NFkB silencing augments infection and suppresses antimicrobial peptide expression. In diabetic mice and people with diabetes, collecting duct cells show reduced IR expression, impaired integrated stress response engagement, and compromised immunity. Collectively, these translational data illustrate how IR orchestrates collecting duct antibacterial responses and the communication between ICs and PCs.


Subject(s)
Mice, Knockout , Receptor, Insulin , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Mice , Urinary Tract Infections/microbiology , Urinary Tract Infections/metabolism , Urinary Tract Infections/immunology , Humans , Receptor, Insulin/metabolism , Uropathogenic Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Kidney/metabolism , Signal Transduction , Kidney Tubules, Collecting/metabolism , Immunity, Innate , Mice, Inbred C57BL
19.
BMC Microbiol ; 24(1): 250, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978012

ABSTRACT

BACKGROUND: ESBL-producing Escherichia coli pose a growing health risk in community and healthcare settings. We investigated the resistome, virulome, mobilome, and genetic relatedness of multidrug-resistant (MDR) E. coli isolates from patients and their environment in a Ghanaian teaching hospital. MATERIALS AND METHODS: Twenty-three MDR ESBL-producing or carbapenem-resistant E. coli isolates from a collection of MDR Gram-negative bacteria (GNB) from patients and environments were selected for genomic analyses. Whole genome sequencing and bioinformatics tools were used to analyze genomic characteristics and phylogeny. RESULTS: The prevalence and incidence of rectal carriage of ESBL E. coli among patients were 13.65% and 11.32% respectively. The ß-lactamase genes, blaTEM-1B (10 isolates) and blaCTX-M-15 (12 isolates) were commonly associated with IncFIB plasmid replicons and co-occurred with aminoglycoside, macrolide, and sulfamethoxazole/trimethoprim resistance. Insertion sequences, transposons, and class I integrons were found with blaCTX-M-15. Carriage and environmental isolates carried multiple virulence genes, with terC being the most prevalent in 21 isolates. Seventeen sequence types (STs) were identified, including a novel ST (ST13846). Phylogenetic analysis grouped the isolates into four main clusters, with one outlier. High genetic relatedness was observed between two carriage isolates of ST940 and between a carriage isolate and an environmental isolate of ST648. Isolates with different STs, collected at different times and locations, also showed genetic similarities. CONCLUSION: We identified ESBL-producing E. coli with diverse genomic characteristics circulating in different hospital directorates. Clonal relatedness was observed among isolates from patients and the environment, as well as between different patients, suggesting transmission within and between sources.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Hospitals, Teaching , Phylogeny , beta-Lactamases , Humans , Ghana/epidemiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/classification , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing , Plasmids/genetics , Microbial Sensitivity Tests , Genome, Bacterial/genetics , Genomics , Virulence Factors/genetics , Male , Female , Adult
20.
PLoS One ; 19(7): e0302521, 2024.
Article in English | MEDLINE | ID: mdl-38980845

ABSTRACT

Antibiotic exposure is associated with resistant bacterial colonization, but this relationship can be obscured in community settings owing to horizontal bacterial transmission and broad distributions. Locality-level exposure estimates considering inhabitants' length of stay, exposure history, and exposure conditions of areas nearby could clarify these relationships. We used prescription data filled during 2010-2015 for 23 antibiotic types for members of georeferenced households in a population-based infectious disease surveillance platform. For each antibiotic and locality, we generated exposure estimates, expressed in defined daily doses (DDD) per 1000 inhabitant days of observation (IDO). We also estimated relevant environmental parameters, such as the distance of each locality to water, sanitation, and other amenities. We used data on ampicillin, ceftazidime, and trimethoprim-and-sulfamethoxazole resistant Escherichia coli colonization from stool cultures of asymptomatic individuals in randomly selected households. We tested exposure-colonization associations using permutation analysis of variance and logistic generalized linear mixed-effect models. Overall, exposure was highest for trimethoprim-sulfamethoxazole (1.8 DDD per 1000 IDO), followed by amoxicillin (0.7 DDD per 1000 IDO). Of 1,386 unique household samples from 195 locations tested between September 2015 and January 2016, 90%, 85% and 4% were colonized with E. coli resistant to trimethoprim and sulfamethoxazole, ampicillin, and ceftazidime, respectively. Ceftazidime-resistant E. coli colonization was common in areas with increased trimethoprim-sulfamethoxazole, cloxacillin, and erythromycin exposure. No association with any of the physical environmental variables was observed. We did not detect relationships between distribution patterns of ampicillin or trimethoprim-and-sulfamethoxazole resistant E. coli colonization and the risk factors assessed. Appropriate temporal and spatial scaling of raw antibiotic exposure data to account for evolution and ecological contexts of antibiotic resistance could clarify exposure-colonization relationships in community settings and inform community stewardship program.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Female , Male , Adult , Child , Adolescent , Child, Preschool , Middle Aged , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Ceftazidime/pharmacology , Drug Resistance, Bacterial/drug effects , Young Adult , Ampicillin/pharmacology , Infant
SELECTION OF CITATIONS
SEARCH DETAIL
...