Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.339
Filter
1.
Carbohydr Polym ; 337: 122160, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710575

ABSTRACT

Sterilisation technologies are essential to eliminate foodborne pathogens from food contact surfaces. However, most of the current sterilisation methods involve high energy and chemical consumption. In this study, a photodynamic inactivation coating featuring excellent antibacterial activity was prepared by dispersing curcumin as a plant-based photosensitiser in a chitosan solution. The coating generated abundant reactive oxygen species (ROS) after light irradiation at 420 nm, which eradicated ≥99.999 % of Escherichia coli O157:H7. It was also found that ROS damaged the cell membrane, leading to the leakage of cell contents and cell shrinkage on the basis of chitosan. In addition, the production of ROS first excited the bacterial antioxidant defence system resulting in the increase of peroxidase (POD) and superoxide dismutase (SOD). ROS levels exceed its capacity, causing damage to the defence system and further oxidative decomposition of large molecules, such as DNA and proteins, eventually leading to the death of E. coli O157:H7. We also found the curcumin/chitosan coating could effectively remove E. coli O157:H7 biofilms by oxidative of extracellular polysaccharides and proteins. All the contributors made the chitosan/curcumin coating an efficient detergent comparable with HClO.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Curcumin , Escherichia coli O157 , Photosensitizing Agents , Reactive Oxygen Species , Chitosan/chemistry , Chitosan/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Escherichia coli O157/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Reactive Oxygen Species/metabolism , Biofilms/drug effects , Food Microbiology , Light
2.
BMC Vet Res ; 20(1): 192, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734600

ABSTRACT

BACKGROUND: Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS: The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS: Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.


Subject(s)
Anti-Bacterial Agents , Escherichia coli O157 , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Nanoparticles , Nisin , Yogurt , Nisin/pharmacology , Nisin/chemistry , Yogurt/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli O157/drug effects , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Preservatives/pharmacology , Vero Cells , Food Microbiology , Chlorocebus aethiops , Food Preservation/methods
3.
Microbiol Res ; 284: 127711, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636240

ABSTRACT

Microbial ferroptosis has been proved to combat drug-resistant pathogens, but whether this pattern can be applied to the prevention and control of Escherichia coli remains to be further explored. In this study, ferrous gluconate (FeGlu) showed remarkable efficacy in killing E. coli MG1655 with a mortality rate exceeding 99.9%, as well as enterotoxigenic E. coli H10407 (ETEC H10407) and enterohemorrhagic E. coli O157:H7 (EHEC O157:H7). Bacteria death was instigated by the infiltration of Fe2+, accompanied by a burst of intracellular reactive oxygen species (ROS) and lipid peroxidation. Notably, mitigating lipid peroxidation failed to alleviate death of E. coli. Further findings confirmed that FeGlu induced DNA damage, and ΔrecA mutant showed more sensitive, implicating that DNA damage was involved in the death of E. coli. The direct interaction of Fe2+ with DNA was demonstrated by fluorescent staining, gel electrophoresis, and circular dichroism (CD). Moreover, proteomic analysis unveiled 50 differentially expressed proteins (DEPs), including 18 significantly down-regulated proteins and 32 significantly up-regulated proteins. Among them, the down-regulation of SOS-responsive transcriptional suppressor LexA indicated DNA damage induced severely by FeGlu. Furthermore, FeGlu influenced pathways such as fatty acid metabolism (FadB, FadE), iron-sulfur cluster assembly (IscA, IscU, YadR), iron binding, and DNA-binding transcription, along with α-linolenic acid metabolism, fatty acid degradation, and pyruvate metabolism. These pathways were related to FeGlu stress, including lipid peroxidation and DNA damage. In summary, FeGlu facilitated ferroptosis in E. coli through mechanisms involving lipid peroxidation and DNA damage, which presents a new strategy for the development of innovative antimicrobial strategies targeting E. coli infections.


Subject(s)
DNA Damage , Escherichia coli , Ferroptosis , Ferrous Compounds , Lipid Peroxidation , Reactive Oxygen Species , Ferroptosis/drug effects , DNA Damage/drug effects , Lipid Peroxidation/drug effects , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Ferrous Compounds/metabolism , Ferrous Compounds/pharmacology , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Proteomics , Escherichia coli O157/drug effects , Escherichia coli O157/genetics , Escherichia coli O157/metabolism
4.
Food Chem ; 450: 139331, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38621310

ABSTRACT

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.


Subject(s)
Escherichia coli O157 , Nanoparticles , Silicon , beta-Galactosidase , Escherichia coli O157/drug effects , Escherichia coli O157/isolation & purification , Nanoparticles/chemistry , Silicon/chemistry , Silicon/pharmacology , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Microbial Sensitivity Tests , Food Contamination/analysis , Colorimetry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Microbiology
5.
Ultrason Sonochem ; 106: 106884, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677267

ABSTRACT

The purpose of this study was to investigate ferroptosis in Escherichia coli O157:H7 caused by ferrous sulfate (FeSO4) and to examine the synergistic effectiveness of FeSO4 combined with ultrasound-emulsified cinnamaldehyde nanoemulsion (CALNO) on inactivation of E. coli O157:H7 in vitro and in vivo. The results showed that FeSO4 could cause ferroptosis in E. coli O157:H7 via generating reactive oxygen species (ROS) and exacerbating lipid peroxidation. In addition, the results indicated that FeSO4 combined with CALNO had synergistic bactericidal effect against E. coli O157:H7 and the combined treatment could lead considerable nucleic acids and protein to release by damaging the cell membrane of E. coli O157:H7. Besides, FeSO4 combined with CALNO had a strong antibiofilm ability to inhibit E. coli O157:H7 biofilm formation by reducing the expression of genes related on biofilm formation. Finally, FeSO4 combined with CALNO exhibited the significant antibacterial activity against E. coli O157:H7 in hami melon and cherry tomato.


Subject(s)
Acrolein , Emulsions , Escherichia coli O157 , Ferroptosis , Ferrous Compounds , Escherichia coli O157/drug effects , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Ferrous Compounds/pharmacology , Ferrous Compounds/chemistry , Ferroptosis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Ultrasonic Waves , Reactive Oxygen Species/metabolism
6.
J Food Prot ; 85(9): 1370-1379, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35653627

ABSTRACT

ABSTRACT: The health and economic burden of foodborne illness is high, with approximately 2.4 million cases occurring annually in the United Kingdom. A survey to understand the baseline microbial quality and prevalence of food-related hazards of fresh beef mince on retail sale could inform risk assessment, management, and communication to ensure the safety of this commodity. In such a survey, a two-stage sampling design was used to reflect variations in population density and the market share of five categories of retail outlets in Scotland. From January to December 2019, 1,009 fresh minced beef samples were collected from 15 geographic areas. The microbial quality of each sample was assessed using aerobic colony count and Escherichia coli count. Samples were cultured for Campylobacter and Salmonella, and PCR was used to detect target genes (stx1 all variants, stx2 a to g, and rfbO157) for Shiga toxin-producing E. coli (STEC). The presence of viable E. coli O157 and STEC in samples with a positive PCR signal was confirmed via culture and isolation. Phenotypic antimicrobial sensitivity patterns of cultured pathogens and 100 E. coli isolates were determined, mostly via disk diffusion. The median aerobic colony count and E. coli counts were 6.4 × 105 (interquartile range, 6.9 × 104 to 9.6 × 106) and <10 CFU/g (interquartile range, <10 to 10) of minced beef, respectively. The prevalence was 0.1% (95% confidence interval [CI], 0 to 0.7%) for Campylobacter, 0.3% (95% CI, 0 to 1%) for Salmonella, 22% (95% CI, 20 to 25%) for PCR-positive STEC, and 4% (95% CI, 2 to 5%) for culture-positive STEC. The evidence for phenotypic antimicrobial resistance detected did not give cause for concern, mainly occurring in a few E. coli isolates as single nonsusceptibilities to first-line active substances. The low prevalence of pathogens and phenotypic antimicrobial resistance is encouraging, but ongoing consumer food safety education is necessary to mitigate the residual public health risk.


Subject(s)
Food Contamination , Food Microbiology , Red Meat , Animals , Anti-Bacterial Agents/pharmacology , Campylobacter/drug effects , Campylobacter/isolation & purification , Cattle , Drug Resistance, Bacterial , Escherichia coli O157/drug effects , Escherichia coli O157/isolation & purification , Hygiene , Red Meat/microbiology , Salmonella/drug effects , Salmonella/isolation & purification , Scotland , Shiga Toxin/genetics
7.
PLoS One ; 17(1): e0263359, 2022.
Article in English | MEDLINE | ID: mdl-35089984

ABSTRACT

Olive leaf extract (OLE) has been increasingly recognized as a natural and effective antimicrobial against a host of foodborne pathogens. This study attempts to predict the minimum inhibitory concentration (MIC) of OLE against Listeria monocytogenes F2365 by utilizing the asymptotic deceleration point (PDA) in a logistic model (LM), namely MIC-PDA. The experimental data obtained from the inhibitory rate (IR) versus OLE concentration against L. monocytogenes were sufficiently fitted (R2 = 0.88957). Five significant critical points were derived by taking the multi-order derivatives of the LM function: the inflection point (PI), the maximum acceleration point (PAM), the maximum deceleration point (PDM), the absolute acceleration point (PAA), and the asymptotic deceleration point (PDA). The PDA ([OLE] = 37.055 mg/mL) was employed to approximate the MIC-PDA. This MIC value was decreased by over 42% compared to the experimental MIC of 64.0 mg/mL, obtained using the conventional 2-fold dilution method (i.e., MIC-2fold). The accuracy of MIC-PDA was evaluated by an in vitro L. monocytogenes growth inhibition assay. Finally, the logistic modeling method was independently validated using our previously published inhibition data of OLE against the growths of Escherichia coli O157:H7 and Salmonella enteritidis. The MIC-PDA (for [OLE]) values were estimated to be 41.083 and 35.313 mg/mL, respectively, compared to the experimental value of 62.5 mg/mL. Taken together, MIC-PDA, as estimated from the logistic modeling, holds the potential to shorten the time and reduce cost when OLE is used as an antimicrobial in the food industry.


Subject(s)
Listeria monocytogenes/drug effects , Plant Extracts/pharmacology , Escherichia coli O157/drug effects , Logistic Models , Microbial Sensitivity Tests , Olea , Reproducibility of Results , Salmonella enteritidis/drug effects
8.
Appl Environ Microbiol ; 88(2): e0189121, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34788062

ABSTRACT

Prophage-encoded Escherichia coli O157:H7 transcription factor (TF), PchE, inhibits biofilm formation and attachment to cultured epithelial cells by reducing curli fimbriae expression and increasing flagella expression. To identify pchE regulators that might be used in intervention strategies to reduce environmental persistence or host infections, we performed a computational search of O157:H7 strain PA20 pchE promoter sequences for binding sites used by known TFs. A common site shared by MarA/SoxS/Rob TFs was identified and the typical MarA/Rob inducers, salicylate and decanoate, were tested for biofilm and motility effects. Sodium salicylate, a proven biofilm inhibitor, but not sodium decanoate, strongly reduced O157:H7 biofilms by a pchE-independent mechanism. Both salicylate and decanoate enhanced O157:H7 motility dependent on pchE using media and incubation temperatures optimum for culturing human epithelial cells. However, induction of pchE by salicylate did not activate the SOS response. MarA/SoxS/Rob inducers provide new potential agents for controlling O157:H7 interactions with the host and its persistence in the environment. IMPORTANCE There is a need to develop E. coli serotype O157:H7 nonantibiotic interventions that do not precipitate the release and activation of virulence factor-encoded prophage and transferrable genetic elements. One method is to stimulate existing regulatory pathways that repress bacterial persistence and virulence genes. Here we show that certain inducers of MarA and Rob have that ability, working through both pchE-dependent and pschE-independent pathways.


Subject(s)
Biofilms , Decanoates , Escherichia coli O157 , Escherichia coli Proteins , Salicylates , Biofilms/drug effects , DNA-Binding Proteins/genetics , Decanoates/pharmacology , Escherichia coli O157/drug effects , Escherichia coli O157/physiology , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Humans , Salicylates/pharmacology , Serogroup , Trans-Activators/genetics
9.
Food Microbiol ; 102: 103918, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34809944

ABSTRACT

Escherichia coli O157:H7 can be injured by the action of lactic acid (LA) and injured cells can be recovered under suitable condition. In this study, RNA sequencing analysis revealed the overall genes change of sublethally injured (4 mM LA, 60 min; SI) and initial recovered (minA, 20 min; R) cells. Compared with untreated samples, 53 up-regulated and 98 down-regulated differentially expressed genes (DEGs; Padj < 0.05, change fold ≥2) were found in SI. Meanwhile, Genes related to carbohydrate transport and metabolic were up-regulated and the addition of carbohydrate increased cells resistance to LA. Genes involved in osmotic stress response and cell membrane integrity were down-regulated and E. coli O157:H7 cells were sensitive to osmotic stress during sublethal injury. Genes related to iron stress response and cation transport were changed and cation may affect sublethal injury formation by influencing production of ROS and cellular processes. In R, 1370 up-regulated and 1110 down-regulated DEGs were subdivided into various GO terms and membrane, biological adhesion, cell projection, oxidation-reduction process and catalytic activity, etc., showed significant enrichment (corrected P < 0.05). Particularly, genes related to fimbrial, flagellum and type III secretion system were up-regulated, which may improve infection ability and virulence property during recovery of injured cells. These findings provide novel insights into formation and recovery of sublethally injured E. coli O157:H7 induced by LA.


Subject(s)
Escherichia coli O157 , Lactic Acid/pharmacology , Carbohydrate Metabolism , Colony Count, Microbial , Escherichia coli O157/drug effects , Escherichia coli O157/genetics , Gene Expression Regulation, Bacterial , Osmoregulation , Virulence
10.
Food Microbiol ; 102: 103925, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34809951

ABSTRACT

Antibacterial activity against Escherichia coli O157:H7 and Staphylococcus aureus of five typical plant-derived compounds [gallic acid (G.A), citral (Cit), thymol (Thy), salicylic acid (S.A), lauric acid (L.A)] were investigated by determining the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI). The results showed that only a combination of Thy and G.A (TGA), with a concentration of 0.1 and 1.25 mg/mL, respectively, had a synergistic effect (FICI = 0.5) on both E. coli O157:H7 and S. aureus. The amount of Thy and G.A in mixture were four-fold lower than the MICs of the individuals shown to cause the equivalent antimicrobial activity in trypticase soy broth (TSB). The microbial reduction obtained in TSB with addition of TGA were significantly higher (P < 0.05) than the reduction shown for the broth supplemented with the separated phenolics. TGA caused the changes of morphology and membrane integrity of bacteria. Additionally, the application of TGA on fresh-cut tomatoes are investigated. Fresh-cut tomatoes inoculated with E. coli O157:H7and S. aureus were washed for 2min, 5min, 10min at 4 °C, 25 °C, 40 °C in 0.3% NaOCl, or water containing TGA at various concentrations. Overall, the reduction of TGA achieved against S. aureus is higher than E. coli O157:H7. Same concentrations of combined antimicrobials at a temperature of 40 °C further increased the degree of microbial inactivation, with an additional 0.89-1.51 log CFU/g reduction compared to that at 25 °C. Moreover, 1/2MICThy+1/2MICG.A at 25 °C for 10min or 40 °C for 5min were generally acceptable with sensorial scores higher than 7. Our results showed that TGA could work synergistically on the inactivation of the tested bacteria and may be used as an alternative disinfectant of fresh produce.


Subject(s)
Anti-Infective Agents , Escherichia coli O157 , Gallic Acid , Solanum lycopersicum , Staphylococcus aureus , Thymol , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Escherichia coli O157/drug effects , Food Contamination/prevention & control , Food Microbiology , Gallic Acid/pharmacology , Solanum lycopersicum/microbiology , Staphylococcus aureus/drug effects , Thymol/pharmacology
11.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34948377

ABSTRACT

For food quality and safety issues, the emergence of foodborne pathogenic bacteria has further accelerated the spread of antibiotic residues and drug resistance genes. To alleviate the harm caused by bacterial infections, it is necessary to seek novel antimicrobial agents as biopreservatives to prevent microbial spoilage. Nanoantimicrobials have been widely used in the direct treatment of bacterial infections. CNMs, formed by chitosan nanoparticles and peptides, are promising antibiotic alternatives for use as excellent new antibacterial drugs against pathogenic bacteria. Herein, the current study evaluated the function of CNMs in the protection of foodborne pathogen Escherichia coli (E. coli) O157 infection using an intestinal epithelial cell model. Antibacterial activity assays indicated that CNMs exerted excellent bactericidal activity against E. coli O157. Assessment of the cytotoxicity risks toward cells demonstrated that 0.0125-0.02% of CNMs did not cause toxicity, but 0.4% of CNMs caused cytotoxicity. Additionally, CNMs did not induced genotoxicity either. CNMs protected against E. coli O157-induced barrier dysfunction by increasing transepithelial electrical resistance, decreasing lactate dehydrogenase and promoting the protein expression of occludin. CNMs were further found to ameliorate inflammation via modulation of tumor factor α, toll-like receptor 4 and nuclear factor κB (NF-κB) expression via inhibition of mitogen-activated protein kinase and NF-κB activation and improved antioxidant activity. Taken together, CNMs could protect the host against E. coli O157-induced intestinal barrier damage and inflammation, showing that CNMs have great advantages and potential application as novel antimicrobial polymers in the food industry as food biopreservatives, bringing new hope for the treatment of bacterial infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/prevention & control , Escherichia coli O157/drug effects , Food Preservatives/pharmacology , Foodborne Diseases/prevention & control , Peptides/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Cell Line , Chitosan/chemistry , Chitosan/pharmacology , Escherichia coli Infections/pathology , Escherichia coli O157/physiology , Food Preservatives/chemistry , Foodborne Diseases/pathology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Nanoparticles/chemistry , Peptides/chemistry , Swine
12.
Int J Biol Macromol ; 192: 939-949, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34662654

ABSTRACT

Pomegranate peel polyphenols (PPP), which are natural, safe, and green antibacterial agents, were introduced and embedded in chitosan to form stable nanoparticles. The PPP@chitosan nanoparticles (PPP@CNPs) were further electrospun into nanofibers based on Pleurotus eryngii polysaccharide (PEP). The preferable distribution of particle size, polydispersity index, and zeta potential was realized through the addition of PPP at 3 mg/mL, which achieved the highest encapsulation rate of 23.71 ± 0.51%. The tensile strength and elongation at break of nanofibers reached 15.76 MPa and 0.69% with the addition of 1% PEP through electrospinning. The results of scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated that the addition of nanoparticles increased the diameter of PEP nanofibers from 148 nm to 163 nm, and the surface roughness of the fibers also increased. Meanwhile, the addition of nanoparticles improved the thermal stability of PEP nanofibers. PPP@CNPs/PEP nanofibers can inhibit the growth of E. coli O157:H7 on pork and cucumber surfaces during the five-days storage, and the inhibition rates were all above 95%. Besides, the nanofibers did not have any impact on the color and texture of foods.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Fungal Polysaccharides/chemistry , Nanofibers/chemistry , Pleurotus/chemistry , Polyphenols/chemistry , Pomegranate/chemistry , Chemical Phenomena , Dose-Response Relationship, Drug , Escherichia coli O157/drug effects , Microbial Sensitivity Tests , Microscopy, Atomic Force , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Spectrum Analysis , Thermogravimetry
13.
PLoS One ; 16(10): e0256324, 2021.
Article in English | MEDLINE | ID: mdl-34710139

ABSTRACT

Because of the continuous rise of foodborne illnesses caused by the consumption of raw fruits and vegetables, effective post-harvest anti-microbial strategies are necessary. The aim of this study was to evaluate the anti-microbial efficacy of ozone (O3) against two common causes of fresh produce contamination, the Gram-negative Escherichia coli O157:H7 and Gram-positive Listeria monocytogenes, and to relate its effects to potential mechanisms of xenobiosis by transcriptional network modeling. The study on non-host tomato environment correlated the dose × time aspects of xenobiosis by examining the correlation between bacterial survival in terms of log-reduction and defense responses at the level of gene expression. In E. coli, low (1 µg O3/g of fruit) and moderate (2 µg O3/g of fruit) doses caused insignificant reduction in survival, while high dose (3 µg/g of fruit) caused significant reduction in survival in a time-dependent manner. In L. monocytogenes, moderate dose caused significant reduction even with short-duration exposure. Distinct responses to O3 xenobiosis between E. coli and L. monocytogenes are likely related to differences in membrane and cytoplasmic structure and components. Transcriptome profiling by RNA-Seq showed that primary defenses in E. coli were attenuated after exposure to a low dose, while the responses at moderate dose were characterized by massive upregulation of pathogenesis and stress-related genes, which implied the activation of defense responses. More genes were downregulated during the first hour at high dose, with a large number of such genes getting significantly upregulated after 2 hr and 3 hr. This trend suggests that prolonged exposure led to potential adaptation. In contrast, massive downregulation of genes was observed in L. monocytogenes regardless of dose and exposure duration, implying a mechanism of defense distinct from that of E. coli. The nature of bacterial responses revealed by this study should guide the selection of xenobiotic agents for eliminating bacterial contamination on fresh produce without overlooking the potential risks of adaptation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli O157/drug effects , Foodborne Diseases/prevention & control , Listeria monocytogenes/drug effects , Ozone/pharmacology , Solanum lycopersicum/microbiology , Bacterial Load/drug effects , Food Microbiology , Foodborne Diseases/microbiology , Fruit/microbiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Microbial Viability/drug effects , Proof of Concept Study , RNA, Bacterial/genetics , RNA-Seq , Transcriptome/drug effects , Transcriptome/genetics , Vegetables/microbiology
14.
Comput Biol Chem ; 95: 107568, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34543910

ABSTRACT

This study was planned to in silico screening of ssDNA aptamer against Escherichia coli O157:H7 by combination of machine learning and the PseKNC approach. For this, firstly a total numbers of 47 validated ssDNA aptamers as well as 498 random DNA sequences were considered as positive and negative training data respectively. The sequences then converted to numerical vectors using PseKNC method through Pse-in-one 2.0 web server. After that, the numerical vectors were subjected to classification by the SVM, ANN and RF algorithms available in Orange 3.2.0 software. The performances of the tested models were evaluated using cross-validation, random sampling and ROC curve analyzes. The primary results demonstrated that the ANN and RF algorithms have appropriate performances for the data classification. To improve the performances of mentioned classifiers the positive training data was triplicated and re-training process was also performed. The results confirmed that data size improvement had significant effect on the accuracy of data classification especially about RF model. Subsequently, the RF algorithm with accuracy of 98% was selected for aptamer screening. The thermodynamics details of folding process as well as secondary structures of the screened aptamers were also considered as final evaluations. The results confirmed that the selected aptamers by the proposed method had appropriate structure properties and there is no thermodynamics limit for the aptamers folding.


Subject(s)
Aptamers, Nucleotide/pharmacology , DNA, Single-Stranded/pharmacology , Escherichia coli O157/drug effects , Machine Learning , Aptamers, Nucleotide/chemistry , Computational Biology , DNA, Single-Stranded/chemistry , Drug Evaluation, Preclinical , Thermodynamics
15.
J Am Chem Soc ; 143(36): 14635-14645, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34410692

ABSTRACT

Antibodies are recognition molecules that can bind to diverse targets ranging from pathogens to small analytes with high binding affinity and specificity, making them widely employed for sensing and therapy. However, antibodies have limitations of low stability, long production time, short shelf life, and high cost. Here, we report a facile approach for the design of luminescent artificial antibodies with nonbiological polymeric recognition phases for the sensitive detection, rapid identification, and effective inactivation of pathogenic bacteria. Transition-metal dichalcogenide (TMD) nanosheets with a neutral dextran phase at the interfaces selectively recognized S. aureus, whereas the nanosheets bearing a carboxymethylated dextran phase selectively recognized E. coli O157:H7 with high binding affinity. The bacterial binding sites recognized by the artificial antibodies were thoroughly identified by experiments and molecular dynamics simulations, revealing the significance of their multivalent interactions with the bacterial membrane components for selective recognition. The luminescent WS2 artificial antibodies could rapidly detect the bacteria at a single copy from human serum without any purification and amplification. Moreover, the MoSe2 artificial antibodies selectively killed the pathogenic bacteria in the wounds of infected mice under light irradiation, leading to effective wound healing. This work demonstrates the potential of TMD artificial antibodies as an alternative to antibodies for sensing and therapy.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Escherichia coli Infections/drug therapy , Luminescent Agents/therapeutic use , Nanostructures/therapeutic use , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/radiation effects , Dextrans/chemistry , Escherichia coli O157/drug effects , Escherichia coli O157/isolation & purification , Light , Luminescent Agents/chemistry , Luminescent Agents/radiation effects , Mice , Molecular Dynamics Simulation , Molybdenum/chemistry , Molybdenum/radiation effects , Molybdenum/therapeutic use , Nanostructures/chemistry , Nanostructures/radiation effects , Photothermal Therapy , Selenium Compounds/chemistry , Selenium Compounds/radiation effects , Selenium Compounds/therapeutic use , Skin/microbiology , Spectrum Analysis, Raman , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Sulfides/chemistry , Sulfides/radiation effects , Sulfides/therapeutic use , Tungsten Compounds/chemistry , Tungsten Compounds/radiation effects , Tungsten Compounds/therapeutic use , Wound Healing/drug effects
16.
Infect Genet Evol ; 95: 105055, 2021 11.
Article in English | MEDLINE | ID: mdl-34461310

ABSTRACT

Escherichia coli is a common gram-negative bacterium found in the gut and intestinal tract of warm-blooded animals including humans. An evolved seropathotype E. coli O157:H7 (STEC) came into existence in 1982, since then it has been evolved as a stronger and more robust drug-resistant pathotype of E. coli. This drug resistance is due to horizontal gene transfer, natural gene evolution for survival, and most of the cases due to the ability of STEC to switch to the biofilm growth mode from planktonic lifestyle. During the growth in biofilm mode, Escherichia coli O157:H7 opts more robust ability to grow in adverse environments i.e., in presence of antibiotics and other antimicrobial chemicals. Due to the biofilm matrix, the microbial community acquires drug resistance. This makes the treatment of diseases caused by E. coli O157:H7 a complex challenge. To address the illnesses caused by this biofilm-forming pathogen, there are several possible strategies such as antibiotic therapies, synthetic antimicrobial chemicals, adjunct therapy of synergistic effect of multiple drugs, and more importantly plant originated compounds as a new anti-biofilm candidate. The present review summarizes various phytochemicals and their derivatives reported in the last decade mostly to eliminate the biofilm of STEC. The review will progressively reveal the antibiofilm mechanism of the phytochemicals against STEC and to be a potential candidate for the development of the future antibacterial drugs to STEC induced infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli O157/drug effects , Phytochemicals/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli O157/physiology , Humans , Phytochemicals/chemistry
17.
Int J Food Microbiol ; 356: 109364, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34418698

ABSTRACT

Inactivation rate constant or inactivation coefficient (specific lethality) quantifies the rate at which a chemical sanitizer inactivates a microorganism. This study presents a modified disinfection kinetics model to evaluate the potential effect of organic content on the chlorine inactivation coefficient of Escherichia coli O157:H7 in fresh produce wash processes. Results show a significant decrease in the bactericidal efficacy of free chlorine (FC) in the presence of organic load compared to its absence. While the chlorine inactivation coefficient of Escherichia coli O157:H7 is 70.39 ± 3.19 L/mg/min in the absence of organic content, it drops by 73% for a chemical oxygen demand (COD) level of 600-800 mg/L. Results also indicate that the initial chlorine concentration and bacterial load have no effect on the chlorine inactivation coefficient. A second-order chemical reaction model for FC decay, which utilizes a proportion of COD as an indicator of organic content in fresh produce wash was employed, yielding an apparent reaction rate of (9.45 ± 0.22) × 10-4 /µM/min. This model was validated by predicting FC concentration in multi-run continuous wash cycles with periodic replenishment of chlorine.


Subject(s)
Chlorine , Escherichia coli O157 , Food Handling , Food Microbiology , Microbial Viability , Models, Biological , Chlorine/pharmacology , Colony Count, Microbial , Disinfectants/pharmacology , Escherichia coli O157/drug effects , Food Handling/methods , Food Microbiology/methods
18.
Food Microbiol ; 100: 103854, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34416957

ABSTRACT

This study investigated the effects of combinations of acetic or malic acid and various solutes (salt, glucose, glycine, or sucrose) on the survival of Escherichia coli O157:H7 in laboratory broth. Additionally, the effectiveness of combining organic acids and various concentrations of salt (0-18%) or sucrose (0-100%) with different water activity values against E. coli O157:H7 were evaluated. For treatment of 1% malic acid, the addition of 3% salt showed synergistic effect. Whereas, when 3% salt, glucose, glycine, or sucrose was added to 1% acetic acid, the solutes antagonized the action of the acid against E. coli O157:H7. Acetic, lactic, or propionic acid combined with salt at either 7 or 9% or sucrose at 60, 80, or 100% resulted in the highest resistance of E. coli O157:H7. From a result of evaluating the membrane fatty acid (MFA) composition of cells, salt or sucrose significantly increased levels of saturated fatty acids (SFAs) or SFAs and cyclopropane fatty acids, respectively. From the results of this study, the addition of solutes and organic compounds may increase the tolerance of E. coli O157:H7 to acetic, lactic, and propionic acid treatments and that the salt or sucrose significantly affects cell MFA composition.


Subject(s)
Acetic Acid/pharmacology , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Glucose/metabolism , Malates/pharmacology , Propionates/pharmacology , Sodium Chloride/metabolism , Sucrose/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Culture Media/chemistry , Culture Media/metabolism , Escherichia coli O157/metabolism , Fatty Acids/metabolism , Glycine/metabolism
19.
Food Microbiol ; 100: 103866, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34416966

ABSTRACT

The elaboration of guidelines for the industry to establish minimum concentration to prevent cross-contamination during washing practices based on operational limits is the core of the recommended criteria for the use of sanitizers. Several studies have evidenced that sanitizers reduced the levels of foodborne pathogens. However, they might lead to the progress into a viable but non-culturable (VBNC) state of the cells. This evidence has raised concerns regarding the effectiveness of the recommended washing practices for the inactivation of microbial cells present in the process wash water (PWW). The present study evaluated if the most commonly used sanitizers, including sodium hypochlorite (chlorine), peroxyacetic acid (PAA) and chlorine dioxide (ClO2) at established operational limits induced the VBNC stage of Listeria monocytogenes and Escherichia coli O157:H7. Prevention of cross-contamination was examined in four different types of PWW from washing shredded lettuce and cabbage, diced onions, and baby spinach under simulated commercial conditions of high organic matter and 1 min contact time. The results obtained for chlorine showed that recommended operational limits (20-25 mg/L free chlorine) were effective in inactivating L. monocytogenes and E. coli O157:H7 in the different PWWs. However, the operational limits established for PAA (80 mg/L) and ClO2 (3 mg/L) reduced the levels of culturable pathogenic bacteria but induced the VBNC state of the remaining cells. Consequently, the operational limits for chlorine are satisfactory to inactivate foodborne pathogens present in PWW and prevent cross-contamination but higher concentrations or longer contact times should be needed for PAA and ClO2 to reduce the likelihood of the induction of VBNC bacteria cells, as it represents a hazard.


Subject(s)
Chlorine Compounds/pharmacology , Chlorine/pharmacology , Disinfectants/pharmacology , Escherichia coli O157/drug effects , Listeria monocytogenes/drug effects , Oxides/pharmacology , Peracetic Acid/pharmacology , Colony Count, Microbial , Escherichia coli O157/growth & development , Food Handling/instrumentation , Listeria monocytogenes/growth & development , Microbial Viability/drug effects
20.
Meat Sci ; 182: 108624, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34273762

ABSTRACT

The aim of the study was to develop marination liquids (MLs) enriched with probiotics (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus or their combination) to improve the safety and sensory quality of meat during marination. The total acidity, total phenolic content, antioxidant and antimicrobial activities of MLs were in the range of 0.70-0.92 g tartaric acid/100 mL, 331.00-513.80 mg GAE/L, 71.10%-93.37% and 6.50-10.00 mm, respectively. At the end of the marination, the numbers of Escherichia coli O157: H7, Listeria monocytogenes and Salmonella Typhimurium on meat samples (≅6 log CFU/g) were decreased in the range of 0.7-2.7, 2.1-3.3 and 0.8-2.0 log CFU/g, respectively, depending on the type of ML and the treatment time used. Additionally, meat sample marinated with MLs containing L. casei was the most preferred sample in terms of appearance, color, flavor and general acceptability. These results showed that the existing effects of koruk juice were increased by probiotics.


Subject(s)
Food Handling/methods , Probiotics , Red Meat/microbiology , Vitis/chemistry , Animals , Anti-Infective Agents , Antioxidants/analysis , Cattle , Escherichia coli O157/drug effects , Female , Food Microbiology , Humans , Lactobacillus , Listeria monocytogenes/drug effects , Male , Salmonella typhimurium/drug effects , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...