Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.534
Filter
1.
Protein Sci ; 33(7): e5068, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864739

ABSTRACT

Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.


Subject(s)
Escherichia coli Proteins , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Heat-Shock Proteins , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Protein Folding , Escherichia coli/genetics , Escherichia coli/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/genetics
2.
Nat Commun ; 15(1): 4751, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834573

ABSTRACT

Intracellular potassium (K+) homeostasis is fundamental to cell viability. In addition to channels, K+ levels are maintained by various ion transporters. One major family is the proton-driven K+ efflux transporters, which in gram-negative bacteria is important for detoxification and in plants is critical for efficient photosynthesis and growth. Despite their importance, the structure and molecular basis for K+-selectivity is poorly understood. Here, we report ~3.1 Å resolution cryo-EM structures of the Escherichia coli glutathione (GSH)-gated K+ efflux transporter KefC in complex with AMP, AMP/GSH and an ion-binding variant. KefC forms a homodimer similar to the inward-facing conformation of Na+/H+ antiporter NapA. By structural assignment of a coordinated K+ ion, MD simulations, and SSM-based electrophysiology, we demonstrate how ion-binding in KefC is adapted for binding a dehydrated K+ ion. KefC harbors C-terminal regulator of K+ conductance (RCK) domains, as present in some bacterial K+-ion channels. The domain-swapped helices in the RCK domains bind AMP and GSH and they inhibit transport by directly interacting with the ion-transporter module. Taken together, we propose that KefC is activated by detachment of the RCK domains and that ion selectivity exploits the biophysical properties likewise adapted by K+-ion-channels.


Subject(s)
Cryoelectron Microscopy , Escherichia coli Proteins , Escherichia coli , Potassium , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Glutathione/metabolism , Molecular Dynamics Simulation , Potassium/metabolism , Potassium-Hydrogen Antiporters/metabolism , Potassium-Hydrogen Antiporters/chemistry , Potassium-Hydrogen Antiporters/genetics , Protein Domains
3.
Protein Sci ; 33(6): e5012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723180

ABSTRACT

The enormous LysR-type transcriptional regulators (LTTRs), which are diversely distributed amongst prokaryotes, play crucial roles in transcription regulation of genes involved in basic metabolic pathways, virulence and stress resistance. However, the precise transcription activation mechanism of these genes by LTTRs remains to be explored. Here, we determine the cryo-EM structure of a LTTR-dependent transcription activation complex comprising of Escherichia coli RNA polymerase (RNAP), an essential LTTR protein GcvA and its cognate promoter DNA. Structural analysis shows two N-terminal DNA binding domains of GcvA (GcvA_DBD) dimerize and engage the GcvA activation binding sites, presenting the -35 element for specific recognition with the conserved σ70R4. In particular, the versatile C-terminal domain of α subunit of RNAP directly interconnects with GcvA_DBD, σ70R4 and promoter DNA, providing more interfaces for stabilizing the complex. Moreover, molecular docking supports glycine as one potential inducer of GcvA, and single molecule photobleaching experiments kinetically visualize the occurrence of tetrameric GcvA-engaged transcription activation complex as suggested for the other LTTR homologs. Thus, a general model for tetrameric LTTR-dependent transcription activation is proposed. These findings will provide new structural and functional insights into transcription activation of the essential LTTRs.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli , Transcriptional Activation , Escherichia coli/genetics , Escherichia coli/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Promoter Regions, Genetic , Cryoelectron Microscopy , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Models, Molecular , Molecular Docking Simulation , Gene Expression Regulation, Bacterial , Protein Multimerization , Binding Sites
4.
Methods Enzymol ; 697: 345-422, 2024.
Article in English | MEDLINE | ID: mdl-38816129

ABSTRACT

This chapter describes how to test different amyloid preparations for catalytic properties. We describe how to express, purify, prepare and test two types of pathological amyloid (tau and α-synuclein) and two functional amyloid proteins, namely CsgA from Escherichia coli and FapC from Pseudomonas. We therefore preface the methods section with an introduction to these two examples of functional amyloid and their remarkable structural and kinetic properties and high physical stability, which renders them very attractive for a range of nanotechnological designs, both for structural, medical and catalytic purposes. The simplicity and high surface exposure of the CsgA amyloid is particularly useful for the introduction of new functional properties and we therefore provide a computational protocol to graft active sites from an enzyme of interest into the amyloid structure. We hope that the methods described will inspire other researchers to explore the remarkable opportunities provided by bacterial functional amyloid in biotechnology.


Subject(s)
Amyloid , Escherichia coli Proteins , Escherichia coli , Protein Engineering , alpha-Synuclein , tau Proteins , Amyloid/chemistry , Amyloid/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Engineering/methods , tau Proteins/metabolism , tau Proteins/chemistry , Humans , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Pseudomonas/metabolism , Pseudomonas/chemistry , Catalysis , Catalytic Domain
5.
Proc Natl Acad Sci U S A ; 121(21): e2400260121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743624

ABSTRACT

We introduce ZEPPI (Z-score Evaluation of Protein-Protein Interfaces), a framework to evaluate structural models of a complex based on sequence coevolution and conservation involving residues in protein-protein interfaces. The ZEPPI score is calculated by comparing metrics for an interface to those obtained from randomly chosen residues. Since contacting residues are defined by the structural model, this obviates the need to account for indirect interactions. Further, although ZEPPI relies on species-paired multiple sequence alignments, its focus on interfacial residues allows it to leverage quite shallow alignments. ZEPPI can be implemented on a proteome-wide scale and is applied here to millions of structural models of dimeric complexes in the Escherichia coli and human interactomes found in the PrePPI database. PrePPI's scoring function is based primarily on the evaluation of protein-protein interfaces, and ZEPPI adds a new feature to this analysis through the incorporation of evolutionary information. ZEPPI performance is evaluated through applications to experimentally determined complexes and to decoys from the CASP-CAPRI experiment. As we discuss, the standard CAPRI scores used to evaluate docking models are based on model quality and not on the ability to give yes/no answers as to whether two proteins interact. ZEPPI is able to detect weak signals from PPI models that the CAPRI scores define as incorrect and, similarly, to identify potential PPIs defined as low confidence by the current PrePPI scoring function. A number of examples that illustrate how the combination of PrePPI and ZEPPI can yield functional hypotheses are provided.


Subject(s)
Proteome , Proteome/metabolism , Humans , Protein Interaction Mapping/methods , Models, Molecular , Escherichia coli/metabolism , Escherichia coli/genetics , Databases, Protein , Protein Binding , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Proteins/chemistry , Proteins/metabolism , Sequence Alignment
6.
PLoS Biol ; 22(5): e3002628, 2024 May.
Article in English | MEDLINE | ID: mdl-38814940

ABSTRACT

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Subject(s)
Adenosine Triphosphate , Cell Division , Escherichia coli Proteins , Escherichia coli , Peptidoglycan , Peptidoglycan/metabolism , Hydrolysis , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , Cell Wall/metabolism , Protein Conformation , Models, Molecular , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/genetics , Bacterial Outer Membrane Proteins , ATP-Binding Cassette Transporters , Cystic Fibrosis Transmembrane Conductance Regulator , Lipoproteins , Cell Cycle Proteins
7.
Nat Commun ; 15(1): 4537, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806470

ABSTRACT

The multidrug efflux transporter EmrE from Escherichia coli requires anionic residues in the substrate binding pocket for coupling drug transport with the proton motive force. Here, we show how protonation of a single membrane embedded glutamate residue (Glu14) within the homodimer of EmrE modulates the structure and dynamics in an allosteric manner using NMR spectroscopy. The structure of EmrE in the Glu14 protonated state displays a partially occluded conformation that is inaccessible for drug binding by the presence of aromatic residues in the binding pocket. Deprotonation of a single Glu14 residue in one monomer induces an equilibrium shift toward the open state by altering its side chain position and that of a nearby tryptophan residue. This structural change promotes an open conformation that facilitates drug binding through a conformational selection mechanism and increases the binding affinity by approximately 2000-fold. The prevalence of proton-coupled exchange in efflux systems suggests a mechanism that may be shared in other antiporters where acid/base chemistry modulates access of drugs to the substrate binding pocket.


Subject(s)
Antiporters , Escherichia coli Proteins , Escherichia coli , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Antiporters/metabolism , Antiporters/chemistry , Antiporters/genetics , Binding Sites , Protein Binding , Protons , Protein Conformation , Magnetic Resonance Spectroscopy , Glutamic Acid/metabolism , Glutamic Acid/chemistry , Models, Molecular
8.
Biochemistry ; 63(11): 1388-1394, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38742763

ABSTRACT

Proteins produced with leucine analogues, where CH2F groups substitute specific methyl groups, can readily be probed by 19F NMR spectroscopy. As CF and CH groups are similar in hydrophobicity and size, fluorinated leucines are expected to cause minimal structural perturbation, but the impact of fluorine on the rotational freedom of CH2F groups is unclear. We present high-resolution crystal structures of Escherichia coli peptidyl-prolyl cis-trans isomerase B (PpiB) prepared with uniform high-level substitution of leucine by (2S,4S)-5-fluoroleucine, (2S,4R)-5-fluoroleucine, or 5,5'-difluoroleucine. Apart from the fluorinated leucine residues, the structures show complete structural conservation of the protein backbone and the amino acid side chains except for a single isoleucine side chain located next to a fluorine atom in the hydrophobic core of the protein. The carbon skeletons of the fluorinated leucine side chains are also mostly conserved. The CH2F groups show a strong preference for staggered rotamers and often appear locked into single rotamers. Substitution of leucine CH3 groups for CH2F groups is thus readily tolerated in the three-dimensional (3D) structure of a protein, and the rotation of CH2F groups can be halted at cryogenic temperatures.


Subject(s)
Leucine , Leucine/chemistry , Escherichia coli/metabolism , Protein Conformation , Models, Molecular , Crystallography, X-Ray , Peptidylprolyl Isomerase/chemistry , Peptidylprolyl Isomerase/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism
9.
Biochemistry ; 63(11): 1376-1387, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38753308

ABSTRACT

Global substitution of leucine for analogues containing CH2F instead of methyl groups delivers proteins with multiple sites for monitoring by 19F nuclear magnetic resonance (NMR) spectroscopy. The 19 kDa Escherichia coli peptidyl-prolyl cis-trans isomerase B (PpiB) was prepared with uniform high-level substitution of leucine by (2S,4S)-5-fluoroleucine, (2S,4R)-5-fluoroleucine, or 5,5'-difluoroleucine. The stability of the samples toward thermal denaturation was little altered compared to the wild-type protein. 19F nuclear magnetic resonance (NMR) spectra showed large chemical shift dispersions between 6 and 17 ppm. The 19F chemical shifts correlate with the three-bond 1H-19F couplings (3JHF), providing the first experimental verification of the γ-gauche effect predicted by [Feeney, J. J. Am. Chem. Soc. 1996, 118, 8700-8706] and establishing the effect as the predominant determinant of the 19F chemical shifts of CH2F groups. Individual CH2F groups can be confined to single rotameric states by the protein environment, but most CH2F groups exchange between different rotamers at a rate that is fast on the NMR chemical shift scale. Interactions between fluorine atoms in 5,5'-difluoroleucine bias the CH2F rotamers in agreement with results obtained previously for 1,3-difluoropropane. The sensitivity of the 19F chemical shift to the rotameric state of the CH2F groups potentially renders them particularly sensitive for detecting allosteric effects.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Peptidylprolyl Isomerase , Peptidylprolyl Isomerase/metabolism , Peptidylprolyl Isomerase/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Ligands , Nuclear Magnetic Resonance, Biomolecular/methods , Leucine/chemistry , Leucine/metabolism , Leucine/analogs & derivatives , Fluorine/chemistry
10.
Biochem Biophys Res Commun ; 721: 150146, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38781660

ABSTRACT

To enable an efficient bacterial cell surface display with effective protein expression and cell surface loading ability via autotransporter for potential vaccine development applications, the inner membrane protein translocation efficiency was investigated via a trial-and-error strategy by replacing the original unusual long signal peptide of E. coli Ag43 with 11 different signal peptides. The receptor-binding domain (RBD) of coronavirus was used as a neutral display substrate to optimize the expression conditions, and the results showed that signal peptides from PelB, OmpC, OmpF, and PhoA protein enhance the bacterial cell surface display efficiency of RBD. In addition, the temperature has also a significant effect on the autodisplay efficiency of RBD. Our data provide further technical basis for the biotechnological application of Ag43 as a bacterial surface display carrier system and further potential application in vaccine development.


Subject(s)
Escherichia coli , Protein Domains , Protein Sorting Signals , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Cell Surface Display Techniques , Protein Binding , Cell Membrane/metabolism
11.
Int J Biol Macromol ; 269(Pt 1): 131923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697437

ABSTRACT

Recent advances in mass spectrometry (MS) yielding sensitive and accurate measurements along with developments in software tools have enabled the characterization of complex systems routinely. Thus, structural proteomics and cross-linking mass spectrometry (XL-MS) have become a useful method for structural modeling of protein complexes. Here, we utilized commonly used XL-MS software tools to elucidate the protein interactions within a membrane protein complex containing FtsH, HflK, and HflC, over-expressed in E. coli. The MS data were processed using MaxLynx, MeroX, MS Annika, xiSEARCH, and XlinkX software tools. The number of identified inter- and intra-protein cross-links varied among software. Each interaction was manually checked using the raw MS and MS/MS data and distance restraints to verify inter- and intra-protein cross-links. A total of 37 inter-protein and 148 intra-protein cross-links were determined in the FtsH-HflK-HflC complex. The 59 of them were new interactions on the lacking region of recently published structures. These newly identified interactions, when combined with molecular docking and structural modeling, present opportunities for further investigation. The results provide valuable information regarding the complex structure and function to decipher the intricate molecular mechanisms underlying the FtsH-HflK-HflC complex.


Subject(s)
Membrane Proteins , Proteomics , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Proteomics/methods , Molecular Docking Simulation , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Escherichia coli/metabolism , Software , Models, Molecular
12.
Curr Opin Microbiol ; 79: 102480, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714141

ABSTRACT

In the densely populated intracellular milieu, polypeptides are at constant risk of nonspecific interactions and aggregation, posing a threat to essential cellular functions. Cells rely on a network of protein folding factors to deal with this challenge. The Hsp60 family of molecular chaperones, which depend on ATP for function, stands out in the proteostasis network by a characteristic structure comprising two multimeric rings arranged back to back. This review provides an updated overview of GroEL, the bacterial Hsp60, and its GroES (Hsp10) cofactor. Specifically, we highlight recent breakthroughs in understanding the intricate folding mechanisms of the GroEL-GroES nanomachine and explore the newly discovered interaction between GroEL and the chaperedoxin CnoX. Despite considerable research on the GroEL-GroES system, numerous questions remain to be explored.


Subject(s)
Chaperonin 10 , Chaperonin 60 , Protein Folding , Chaperonin 60/metabolism , Chaperonin 60/chemistry , Chaperonin 60/genetics , Chaperonin 10/metabolism , Chaperonin 10/chemistry , Protein Binding , Bacteria/metabolism , Bacteria/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics
13.
DNA Repair (Amst) ; 139: 103693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776712

ABSTRACT

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg2+ requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E. coli MutT (EcoMutT) and mycobacterial MutT1 (MsmMutT1) belong to the Nudix hydrolase superfamily that utilize 8-oxo-(d)GTP (referring to both 8-oxo-GTP or 8-oxo-dGTP). However, predominant products of their activities are different. While EcoMutT produces 8-oxo-(d)GMP, MsmMutT1 gives rise to 8-oxo-(d)GDP. Here, we show that the altered cleavage specificities of the two proteins are largely a consequence of the variation at the equivalent of Gly37 (G37) in EcoMutT to Lys (K65) in the MsmMutT1. Remarkably, mutations of G37K (EcoMutT) and K65G (MsmMutT1) switch their cleavage specificities to produce 8-oxo-(d)GDP, and 8-oxo-(d)GMP, respectively. Further, a time course analysis using 8-oxo-GTP suggests that MsmMutT1(K65G) hydrolyses 8-oxo-(d)GTP to 8-oxo-(d)GMP in a two-step reaction via 8-oxo-(d)GDP intermediate. Expectedly, unlike EcoMutT (G37K) and MsmMutT1, EcoMutT and MsmMutT1 (K65G) rescue an E. coli ΔmutT strain, better by decreasing A to C mutations.


Subject(s)
Deoxyguanine Nucleotides , Escherichia coli Proteins , Escherichia coli , Mycobacterium smegmatis , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Substrate Specificity , Deoxyguanine Nucleotides/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Amino Acid Substitution , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/analogs & derivatives
14.
Acta Biochim Pol ; 71: 12299, 2024.
Article in English | MEDLINE | ID: mdl-38721302

ABSTRACT

This report describes a comprehensive approach to local random mutagenesis of the E. coli Ntn-amidohydrolase EcAIII, and supplements the results published earlier for the randomization series RDM1. Here, random mutagenesis was applied in the center of the EcAIII molecule, i.e., in the region important for substrate binding and its immediate neighborhood (series RDM2, RDM3, RDM7), in the vicinity of the catalytic threonine triplet (series RDM4, RDM5, RDM6), in the linker region (series RDM8), and in the sodium-binding (stabilization) loop (series RDM9). The results revealed that the majority of the new EcAIII variants have abolished or significantly reduced rate of autoprocessing, even if the mutation was not in a highly conserved sequence and structure regions. AlphaFold-predicted structures of the mutants suggest the role of selected residues in the positioning of the linker and stabilization of the scissile bond in precisely correct orientation, enabling the nucleophilic attack during the maturation process. The presented data highlight the details of EcAIII geometry that are important for the autoproteolytic maturation and for the catalytic mechanism in general, and can be treated as a guide for protein engineering experiments with other Ntn-hydrolases.


Subject(s)
Amidohydrolases , Escherichia coli , Mutagenesis , Amidohydrolases/genetics , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Models, Molecular , Amino Acid Sequence , Mutation
15.
mBio ; 15(5): e0341423, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38572988

ABSTRACT

Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded ß-barrel of the partially resolved BCCP domain. Disruption of ß-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTß-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTß to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the "swing domain model" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.


Subject(s)
Acetyl-CoA Carboxylase , Carbon-Nitrogen Ligases , Chloroflexus , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/chemistry , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/chemistry , Chloroflexus/genetics , Chloroflexus/metabolism , Chloroflexus/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Biotin/metabolism , Biotin/biosynthesis , Malonyl Coenzyme A/metabolism , Acetyl Coenzyme A/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Fatty Acid Synthase, Type II
16.
Science ; 384(6692): 227-232, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38603484

ABSTRACT

DNA supercoiling must be precisely regulated by topoisomerases to prevent DNA entanglement. The interaction of type IIA DNA topoisomerases with two DNA molecules, enabling the transport of one duplex through the transient double-stranded break of the other, remains elusive owing to structures derived solely from single linear duplex DNAs lacking topological constraints. Using cryo-electron microscopy, we solved the structure of Escherichia coli DNA gyrase bound to a negatively supercoiled minicircle DNA. We show how DNA gyrase captures a DNA crossover, revealing both conserved molecular grooves that accommodate the DNA helices. Together with molecular tweezer experiments, the structure shows that the DNA crossover is of positive chirality, reconciling the binding step of gyrase-mediated DNA relaxation and supercoiling in a single structure.


Subject(s)
DNA Gyrase , DNA, Superhelical , DNA , Escherichia coli Proteins , Escherichia coli , Cryoelectron Microscopy , DNA/chemistry , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Protein Domains
17.
Proc Natl Acad Sci U S A ; 121(19): e2301458121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683989

ABSTRACT

Proteins that are kinetically stable are thought to be less prone to both aggregation and proteolysis. We demonstrate that the classical lac system of Escherichia coli can be leveraged as a model system to study this relation. ß-galactosidase (LacZ) plays a critical role in lactose metabolism and is an extremely stable protein that can persist in growing cells for multiple generations after expression has stopped. By attaching degradation tags to the LacZ protein, we find that LacZ can be transiently degraded during lac operon expression but once expression has stopped functional LacZ is protected from degradation. We reversibly destabilize its tetrameric assembly using α-complementation, and show that unassembled LacZ monomers and dimers can either be degraded or lead to formation of aggregates within cells, while the tetrameric state protects against proteolysis and aggregation. We show that the presence of aggregates is associated with cell death, and that these proteotoxic stress phenotypes can be alleviated by attaching an ssrA tag to LacZ monomers which leads to their degradation. We unify our findings using a biophysical model that enables the interplay of protein assembly, degradation, and aggregation to be studied quantitatively in vivo. This work may yield approaches to reversing and preventing protein-misfolding disease states, while elucidating the functions of proteolytic stability in constant and fluctuating environments.


Subject(s)
Escherichia coli , Lac Operon , Proteolysis , beta-Galactosidase , beta-Galactosidase/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Protein Aggregates , Enzyme Stability
18.
Inorg Chem ; 63(19): 8730-8738, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38687645

ABSTRACT

Iron-sulfur (Fe-S) clusters are essential inorganic cofactors dedicated to a wide range of biological functions, including electron transfer and catalysis. Specialized multiprotein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein, on which Fe-S clusters are assembled before being transferred to cellular targets. Here, we describe the first characterization of the native Fe-S cluster of the anaerobically purified SufBC2D scaffold from Escherichia coli by XAS and Mössbauer, UV-visible absorption, and EPR spectroscopies. Interestingly, we propose that SufBC2D harbors two iron-sulfur-containing species, a [2Fe-2S] cluster and an as-yet unidentified species. Mutagenesis and biochemistry were used to propose amino acid ligands for the [2Fe-2S] cluster, supporting the hypothesis that both SufB and SufD are involved in the Fe-S cluster ligation. The [2Fe-2S] cluster can be transferred to ferredoxin in agreement with the SufBC2D scaffold function. These results are discussed in the context of Fe-S cluster biogenesis.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Iron-Sulfur Proteins , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Electron Spin Resonance Spectroscopy , Spectroscopy, Mossbauer , X-Ray Absorption Spectroscopy , Carrier Proteins
19.
Eur Biophys J ; 53(4): 193-203, 2024 May.
Article in English | MEDLINE | ID: mdl-38647543

ABSTRACT

Na+/H+ antiporters facilitate the exchange of Na+ for H+ across the cytoplasmic membrane in prokaryotic and eukaryotic cells. These transporters are crucial to maintain the homeostasis of sodium ions, consequently pH, and volume of the cells. Therefore, sodium/proton antiporters are considered promising therapeutic targets in humans. The Na+/H+ antiporter in Escherichia coli (Ec-NhaA), a prototype of cation-proton antiporter (CPA) family, transports two protons and one sodium (or Li+) in opposite direction. Previous mutagenesis experiments on Ec-NhaA have proposed Asp164, Asp163, and Asp133 amino acids with the significant implication in functional and structural integrity and create site for ion-binding. However, the mechanism and the sites for the binding of the two protons remain unknown and controversial which could be critical for pH regulation. In this study, we have explored the role of Glu78 in the regulation of pH by Ec-NhaA. Although we have created various mutants, E78C has shown a considerable effect on the stoichiometry of NhaA and presented comparable phenotypes. The ITC experiment has shown the binding of ~ 5 protons in response to the transport of one lithium ion. The phenotype analysis on selective medium showed a significant expression compared to WT Ec-NhaA. This represents the importance of Glu78 in transporting the H+ across the membrane where a single mutation with Cys amino acid alters the number of H+ significantly maintaining the activity of the protein.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Glutamic Acid , Mutagenesis, Site-Directed , Sodium-Hydrogen Exchangers , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Glutamic Acid/metabolism , Glutamic Acid/chemistry , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Ion Exchange , Models, Molecular
20.
Protein Expr Purif ; 219: 106487, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657915

ABSTRACT

The bacterial Efe system functions as an importer of free Fe2+ into cells independently of iron-chelating compounds such as siderophores and consisted of iron-binding protein EfeO, peroxidase EfeB, and transmembrane permease EfeU. While we and other researchers reported crystal structures of EfeO and EfeB, that of EfeU remains undetermined. In this study, we constructed expression system of EfeU derived from Escherichia coli, selected E. coli Rosetta-gami 2 (DE3) as an expression host, and succeeded in purification of the proteins which were indicated to form an oligomer by blue native PAGE. We obtained preliminary data of the X-ray crystallography, suggesting that expression and purification methods we established in this study enable structural analysis of the bacterial Efe system.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Iron , Escherichia coli/genetics , Escherichia coli/metabolism , Crystallography, X-Ray , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/isolation & purification , Iron/metabolism , Iron/chemistry , Gene Expression , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Iron-Binding Proteins/chemistry , Iron-Binding Proteins/genetics , Iron-Binding Proteins/isolation & purification , Iron-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...